
The Shape Boltzmann Machine: a Strong Model of Object Shape

S. M. Ali Eslami
School of Informatics

University of Edinburgh†

s.m.eslami@sms.ed.ac.uk

Nicolas Heess
Gatsby Unit

University College London†

nheess@gatsby.ucl.ac.uk

John Winn
Microsoft Research

Cambridge
jwinn@microsoft.com

Abstract

A good model of object shape is essential in applica-
tions such as segmentation, object detection, inpainting and
graphics. For example, when performing segmentation, local
constraints on the shape can help where the object boundary
is noisy or unclear, and global constraints can resolve am-
biguities where background clutter looks similar to part of
the object. In general, the stronger the model of shape, the
more performance is improved. In this paper, we use a type
of Deep Boltzmann Machine [22] that we call a Shape Boltz-
mann Machine (ShapeBM) for the task of modeling binary
shape images. We show that the ShapeBM characterizes a
strong model of shape, in that samples from the model look
realistic and it can generalize to generate samples that differ
from training examples. We find that the ShapeBM learns
distributions that are qualitatively and quantitatively better
than existing models for this task.

1. Introduction

Models of the shape of an object play a crucial role in
many imaging algorithms, such as those for object detection
and segmentation [3, 24, 1, 8], inpainting [6] and graph-
ics [2]. In segmentation, local constraints on the shape,
such as smoothness and continuity, can help provide correct
segmentations where the object boundary is noisy or lost
in shadow. More global constraints, such as ensuring the
correct number of parts (legs, wheels, etc.), can resolve am-
biguities where background regions look similar to an object
part [14]. Shape also plays an important role in generative
models of images [21, 8]. In general, the better the model
of object shape, the more performance will be improved in
these applications.

This paper addresses the question of how to build a strong
probabilistic model of binary object shapes. We define a
strong model as one which meets two requirements:

†The majority of this work was performed whilst the authors were at
Microsoft Research in Cambridge.

Realism Generalization
Globally Locally

Mean [13] X - -
Factor Analysis [5] X - X
Fragments [3] - X X
Grid MRFs/CRFs [20] - X X
High-order potentials [17] limited X X
Database [12] X X -

ShapeBM X X X

Table 1. Comparison of a number of different shape models.

(a) MRF (b) Mean (c) FA (d) ShapeBM

Figure 1. Samples generated by (a) an MRF model of horse shapes,
(b) a mean-only model, (c) discrete FA, and (d) the ShapeBM.

1. Realism – samples from the model look realistic;

2. Generalization – the model can generate samples that
differ from training examples.

The first constraint ensures that the model captures shape
characteristics at all spatial scales well enough to place prob-
ability mass only on images that belong to the ‘true’ shape
distribution. The second constraint ensures that there are no
gaps in the learned distribution, i.e. that it also covers novel
unseen but valid shapes.

There have been a wide variety of approaches to modeling
2D shape. The most commonly used shape models are grid-
structured Markov Random Fields (MRFs) or Conditional
Random Fields (CRFs, e.g. [4]). In such models, the pairwise
potentials connecting neighboring pixels impose very local
constraints like smoothness but are unable to capture more
complex properties such as convexity or curvature, nor can
they account for longer-range properties. Carefully designed
high-order potentials (e.g. [17, 19]) allow particular local or
longer-range shape properties to be modeled within an MRF,
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but these potentials fall short of capturing all such properties
so as to make realistic-looking samples.

Other approaches represent shape using a level set or
parameterized contour. These have different strengths and
weaknesses, but all share the fundamental challenge of im-
posing sufficient constraints to limit the model to valid
shapes while allowing for the right degree of flexibility to
capture all possible shapes. For example, a common ap-
proach when using a contour (or an image) is to use a mean
shape in combination with some principal directions of vari-
ation, as captured by a Principal Components Analysis [7]
or Factor Analysis [5, 8]. Such models capture the typical
global shape of an object and global variations on this shape
(such as changes in the aspect ratio of a face). However, they
cannot capture multimodal shape distributions, and tend to
be poor at learning about local variations which affect only
part of the shape (e.g. the angle of a horse’s front legs).

Non-parametric approaches employ what is effectively a
large database of template shapes [12] or shape fragments
[3, 15]. In the former case, because no attempt is made to
understand the composition of the shape, it is impossible to
generalize to novel shapes not present in the database. In the
latter case, the challenge lies in how to compose the shape
fragments to form valid shapes. To date, no method has been
proposed which can generate a variety of realistic looking
whole shapes by composing fragments.

Table 1 and Fig. 1 summarize why these existing ap-
proaches do not meet the criteria for a strong shape model.

In this paper, we consider a class of models from the
machine learning community, known as Deep Boltzmann
Machines (DBMs, [22]). The main contribution of this pa-
per is to show how a strong model of binary shape can be
constructed using a form of DBM, which we call the Shape
Boltzmann Machine (ShapeBM). We demonstrate that a
ShapeBM trained on a relatively small dataset is both able
to generate realistic samples and to generalize to generate
samples that differ from images in the training dataset.

2. Undirected models of shape
In this section we will review several undirected models

suitable for modeling binary shape images. We will start with
the commonly used grid-structured MRF and describe how
it can be modified to form an undirected model known as the
Restricted Boltzmann Machine (RBM). We then describe
how RBMs can be stacked to form the hierarchical structure
of the Deep Boltzmann Machine (DBM).

Grid MRFs: A binary grid-structured MRF defines a distri-
bution over binary images v whose energy function is:

E(v) =
∑

i

fi(vi; bi) +
∑
(i,j)

fij(vi, vj ;wij), (1)

where i ranges over image pixels, (i, j) ranges over grid
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Figure 2. Undirected models of shape: (a) 1D slice of a Markov
Random Field. (b) Restricted Boltzmann Machine in 1D. (c) Deep
Boltzmann Machine in 1D. (d) 1D slice of a Shape Boltzmann
Machine. (e) Shape Boltzmann Machine in 2D.

edges between pixels i and j and the potentials are parame-
terized by bi and wij . The grid structure of the MRF arises
from the pairwise potentials fij shown in Fig. 2(a). These
potentials induce dependencies between neighboring pixels
that can favor local shape properties such as connectedness
or smoothness. In an attempt to capture more complex or
global shape properties, much recent research has focused
on constructing higher-order potentials (HOPs), which take
the configuration of larger groups of image pixels into ac-
count (cf. Sec. 1), but remain computationally tractable. The
higher order potentials in [19], for instance, are defined in
terms of a set of ‘reference patterns’ and penalize deviations
of groups of pixels from these patterns. Such HOPs can be
considered to be introducing an auxiliary hidden variable
connected through pairwise potentials to multiple image pix-
els. The introduction of such hidden variables provides a
powerful way to capture and learn complex properties of
multiple image pixels. Yet, because the model only contains
pairwise potentials, learning and inference remain tractable.

Restricted Boltzmann Machines: A model that makes
heavy use of hidden variables is the Restricted Boltzmann
Machine (RBM, e.g. [10]). In an RBM, a number of hidden
variables h are used, each of which is connected to all image
pixels as shown in Fig. 2(b). However, unlike a grid MRF,
there are no direct connections between the image pixels.
There are also no direct connections between the hidden
variables. Hence, the energy function takes the form:

E(v,h) =
∑

i

bivi +
∑
i,j

wijvihj +
∑

j

cjhj , (2)

where i now ranges over pixels and j ranges over hidden vari-
ables. The key points to note are that the potential functions
are all simple products and that the only pairwise potentials
are those between each visible and each hidden variable. By
learning the parameters of the potentials {wij , bi, cj}, the
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model can learn about high-order constraints in the data set.
The distribution over v is given by marginalizing over

the hidden variables: p(v) =
∑

h exp{−E(v,h)}/Z(Θ),
where Θ denotes all parameters of the model. This marginal-
ization allows the model to capture high-order dependencies
between the visible units. In fact, the hidden units can be
summed out analytically [10], giving rise to an alternative
formulation of the RBM in terms of high-order potentials
that no longer includes latent variables.

Because the RBM has edges only between hidden and
visible variables, all hidden units are conditionally indepen-
dent given the visible units (and vice versa). This property
can be exploited to make inference exact and efficient. The
conditional probabilities are:

p(vi = 1|h) = σ(
∑

j

wijhj + bi), (3)

p(hj = 1|v) = σ(
∑

i

wijvi + cj), (4)

where σ(y) = 1/(1 + exp(−y)) is the sigmoid function.
This property allows for efficient implementations of block-
Gibbs sampling where all v and all h are sampled in parallel
in an alternating manner, which can be exploited during
approximate learning [23].

Deep Boltzmann Machines: RBMs can, in principle, ap-
proximate any binary distribution [10], but this can require
an exponential number of hidden units and a similarly large
amount of training data. The DBM provides a richer model
by introducing additional layers of latent variables as shown
in Fig. 2(c). The additional layers capture high-order de-
pendencies between the hidden variables of previous layers
and so can learn about complex structure in the data using
relatively few hidden units. The energy of a DBM with two
layers of latent variables is given by:

E(v,h1,h2) =
∑

i

bivi +
∑
i,j

w1
ijvih

1
j +

∑
j

c1jh
1
j

+
∑
j,k

w2
jkh

1
jh

2
k +

∑
k

c2kh
2
k. (5)

Although exact inference is no longer possible in this
model, the conditional distributions p(v|h1), p(h1|v,h2),
and p(h2|h1) remain independent due to the layering (taking
forms analogous to Eqs. 3, 4). This allows for computation-
ally efficient inference, either by layerwise block-Gibbs sam-
pling from the posterior p(h1,h2|v) (Fig. 3), or by using
a mean field procedure with a fully factorized approximate
posterior as described in [22]. The layering further admits
a layer-wise pre-training procedure that makes it less likely
that learning will get stuck in local optima. Hence the DBM
is both a rich model of binary images and a tractable one.

v

h1

h2

...

image reconstruction sample 1 sample n

Figure 3. DBM MCMC. Block-Gibbs MCMC sampling scheme,
in which v, h1 and h2 variables are sampled in turn. Note that
each sample of h1 is obtained conditioned on the current state of
v and h2. For sufficiently large values of n, sample n will be
uncorrelated with the original image.

3. The Shape Boltzmann Machine

RBMs and DBMs are powerful generative models, but
also have many parameters. Since they are typically trained
on large amounts of unlabeled data (thousands or tens of
thousands of examples), this is usually less of a problem
than in supervised settings. Segmented images, however, are
expensive to obtain and datasets are typically small (hun-
dreds of examples). In order to learn a model that accurately
captures the properties of binary shapes, but also generalizes
even when trained on small datasets, we use a form of DBM
but additionally impose carefully chosen connectivity and
capacity constraints (in a similar vein to [16, 18]).

The ShapeBM used below has two layers of latent vari-
ables: h1 and h2. The visible units v are the pixels of a
binary image of size N × N . In the first layer we enforce
local receptive fields by connecting each hidden unit in h1

only to a subset of the visible units, corresponding to one
of four square patches, as shown in Fig. 2(d,e). Each patch
overlaps its neighbor by b pixels and so has a side length of
N/2 + b/2. We furthermore share weights between the four
sets of hidden units and patches. These modifications reduce
the number of first layer parameters by a factor of about 16
which reduces the amount of data needed for training by a
similar factor. At the same time these modifications take
into account two important properties of shapes: first, the re-
stricted receptive field size reflects the fact that the strongest
dependencies between pixels are typically local, while dis-
tant parts of an object often vary more independently (the
small overlap allows boundary continuity to be learned pri-
marily at the lowest layer); second, weight sharing takes
account of the fact that many generic properties of shapes
(e.g. smoothness) are independent of the image position.

For the second layer we choose full connectivity between
h1 and h2, but restrict the relative capacity of h2: we use
4 × 500 hidden units for h1 vs. 50 or 100 for h2 in our
single class experiments. While the first layer is primarily
concerned with generic, local properties, the role of the
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second layer is to impose global constraints, e.g. with respect
to the class of an object shape or its overall posture. The
second layer mediates dependencies between pixels that are
far apart (not in the same local receptive field), but these
dependencies will be weaker than between nearby pixels
that share first-level hidden units. Limiting the capacity of
the second-layer encourages this separation of concerns and
helps to prevent the model from overfitting to small training
sets. Note that this is in contrast to [22] which use a top-most
layer that is at least as large as all of the preceding layers.

Learning: Learning of the model involves maximizing
log p(v; Θ) of the observed data v with respect to its param-
eters Θ = {b,W 1,W 2, c1, c2} (cf. Eq. 5). This is difficult
for three reasons: (1) the intractability of the normalization
constant Z (which depends on the parameters); (2) the pres-
ence of latent variables; and (3) the tendency of learning to
get stuck in poor local optima. The procedure proposed in
[22] minimizes these difficulties and we follow it closely.

Learning proceeds in two phases. In the pre-training
phase we greedily train the model bottom up, one layer at
a time. The purpose of this phase is to find good initial
values for all parameters of the model. We begin by training
an RBM on the observed data using stochastic maximum
likelihood learning (SML, also referred to as ‘persistent CD’,
[23, 22]). The number of hidden units of this RBM is the
same as the size of h1 in the full ShapeBM model and it
obeys the same connectivity constraints as the ShapeBM’s
first layer. Once this RBM is trained, we infer the conditional
mean of the hidden units using Eq. 4 for each training image.
The resulting vectors then serve as the training data for a
second RBM with the same number of hidden units as h2,
which is again trained using SML.

We use the parameters of these two RBMs to initialize the
parameters of the full ShapeBM model as described in [22].
In the second phase we perform approximate stochastic gra-
dient ascent in the likelihood of the full model to fine-tune
the parameters in an expectation-maximization-like scheme.
This involves the same sample-based approximation to the
gradient of the normalization constant used for learning the
RBMs [23, 22], as well as a mean-field approximation to the
posterior p(h1,h2|v) of training images. This joint training
is essential to separate out learning of local and global shape
properties into the two hidden layers.

4. Experiments
We performed both qualitative and quantitative experi-

ments to assess whether the ShapeBM can act as a strong
model of object shape.

4.1. Weizmann horses

The first dataset we investigated was the Weizmann horse
dataset [3] which contains 327 images, all of horses facing
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Figure 4. Sampled shapes. (a) A selection of images from the
Weizmann horse dataset. (b) A collection of samples from a dis-
crete Factor Analysis model. The Gaussianity assumption forces
the model to allocate probability mass to unlikely horse shapes.
(c) Samples from an RBM. (d) Samples from a ShapeBM. The
model generates samples of varying pose, with the correct numbers
of legs and details are preserved (samples are arranged l-r, u-d in
decreasing order of generalization).

to the left, but in a variety of poses. The binary images are
cropped and normalized to 32×32 pixels (see Fig. 4(a)). This
dataset is challenging, because in addition to their overall
pose variation, the positions of the horses’ heads, tails and
legs change considerably from image to image. Compared
to the amount of variability seen in the data, the number of
training images is relatively small.

We trained a ShapeBM with overlap b = 4, and 2000
and 100 units for h1 and h2 respectively. The first layer
was pre-trained for 3000 epochs (iterations) and the second
layer for 1000 epochs. After pre-training, joint training was
performed for 1000 epochs. Our MATLAB implementation
completed training in around 4 hours, running on a dual-core,
3GHz PC with 4GB of memory.

For comparison, we trained a Factor Analysis (FA) model
with 10 latent dimensions, and an RBM with 500 hidden
units on the same data1. The FA model was modified to work
on discrete binary images, similarly to the Clipped Factor
Analysis model described in [5].

Realism: To assess the Realism requirement, we sampled
a set of shapes2 from each model, as shown in Fig. 4. FA

1We obtained the best results with these settings of the parameters.
2In the sampling figures, we display the (grayscale) conditional proba-

bility of each pixel given a particular hidden configuration. Binary samples
can be generated per-pixel from a Bernoulli distribution where the gray
level specifies the distribution mean.
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effectively defines a Gaussian distribution over the image
pixels and is thus inherently unimodal. In order to account
for the diversity of shapes in the training data it is therefore
forced to allocate probability mass to images that do not
correspond to realistic horse shapes, as shown in Fig. 4(b).

By contrast, the RBM can, in principle, account for multi-
modal data and could thus assign probability mass more
selectively. However, as the samples of Fig. 4(c) indicate, the
model has also failed to learn a good model of the variability
of horse shapes – the samples are mostly of the same pose,
and details of the shape are lost when the pose changes.
These problems are symptomatic of training with insufficient
data. Increasing the number of hidden units in the hope
of learning more local filters did not solve the problem,
confirming that the lack of data is the issue3.

We now consider the samples from the ShapeBM in
Fig. 4(d). These were generated using the scheme outlined
in Fig. 3. First, we note that the model generates natural
shapes from a variety of poses. Second, we observe that
details such as legs are preserved and remain sharply defined
in the samples. Third, we note that the horses have the cor-
rect number of legs. Finally, we note that the patch overlap
ensures seamless connections between the four quadrants of
the image. Indeed, horse samples generated by the model
look sufficiently realistic that we consider the model to have
fulfilled the Realism requirement.

Generalization: We next investigated to what extent the
ShapeBM meets the Generalization requirement, to ensure
that the model has not simply memorized the training data.
In Fig. 5 we show the difference between the sampled shapes
from Fig. 4(d) and their closest images in the training set.
We use the Hamming distance between training images and
a thresholded version of the conditional probability (> 0.3),
as the similarity measure4. Red indicates pixels that are in
the sample but not in the closest training image, and yellow
indicates pixels in the training image but not in the sample.
Fig. 5 shows that the model generalizes to realistic horse
shapes that it has not encountered in the training set.

Another way to diagnose the generalization behavior of
the models is to inspect their first layer weight matrices.
Each column in W corresponds to a ‘filter’ that is associated
with the activation of one of the hidden units. As shown
in Fig. 6, the filters for the FA and RBM have only global
structure. This means they are unable to combine local filters
to generate novel horse shapes. In contrast, because spatial
locality and parameter-sharing are built into the ShapeBM,
it learns general-purpose filters that allow it to generalize
factorially from the training examples.

3An RBM with similar connectivity constraints as the first layer of
the ShapeBM has fewer parameters than a fully connected RBM and thus
suffers less from overfitting, but without the second layer it fails to account
for global constraints on the shape.

4This measure was found to retrieve the visually most similar images.

Figure 5. Generalization. Top: A sample from the ShapeBM,
the closest image in the training dataset to the generated sample,
and the difference between the two images. Red pixels have been
generated by the sample but are absent in the training image; yellow
pixels are present in the training image but absent in the sample.
The model has generalized to an unseen, but realistic horse shape.
Bottom: Generalizations made in each of the samples in Fig. 4(d).

Learned invariance: To tease out the kinds of information
captured at the different levels of the model, in Fig. 7 we plot
two sets of samples from an alternative sampling scheme. In
these chains we only iterate between sampling v and h1, and
we keep the h2 variables fixed to values sampled using one
of the training images. We observe that in doing so we fix the
horse’s pose, but since h1 changes from sample to sample the
position of its legs and other small details vary. This suggests
that the highest layer in the model predominantly captures
global information and has learned to be invariant to small-
scale changes in shape. This automatic, implicit, separation
of large-scale and small-scale statistics is fundamental to the
operation of the model.

Shape completion: We further assessed both the realism
and generalization capabilities of the ShapeBM by using it
to perform shape completion, where the goal is to generate
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Figure 6. First layer example weights. (a) Weights learned by the
FA model capture only global modes of variability. (b) Weights
learned by the RBM also fail to capture local modes of variation.
(c) General, more local filters learned by a ShapeBM (18×18).

5



Figure 7. Learned invariance. Sampling chains are run for two
fixed, but different, configurations of h2. The horse’s pose remains
fixed, but configurations of legs, and neck and back positions vary.
This suggests that the highest layer in the model predominantly
captures high-level pose information.

likely configurations of pixels for a missing region of the
shape, given the rest of the shape. To perform completion,
we sample as before, but every time v is sampled we ‘clamp’
the observed pixels of the image to their given values. Since
the model specifies a distribution over the missing region,
multiple such samples capture the variability of possible so-
lutions that exist for any given completion task. In Fig. 8
we show how the samples become more constrained as the
missing region shrinks. Fig. 9 shows completions of rectan-
gular regions of images that the model had not seen during
training. Despite the large sizes of the missing portions, and
the horses’ varying poses, completions look realistic.

The ShapeBM’s ability to do shape completion suggests
applications in a computer graphics setting. Sampled com-
pletions can be constrained in real-time by simply clamping
certain pixels of the image. In Fig. 10(a) we show snapshots
of a graphical user interface in which the user modifies a
horse silhouette with a digital brush. The model’s ability
to generalize enables it to generate samples that satisfy the
user’s constraints. The model’s accurate knowledge about
horse shapes ensures that the samples remain realistic. As
shown, a database-driven approach can fail to find shapes
that match the constraints. The same sampling technique
can also be used to generate complete horse silhouettes in
different poses given simple stick figures provided by the

→

→

→

Figure 8. Shape completion variability. Blue in the first column
indicates the missing regions. The samples highlight the variability
in possible completions captured by the model. As the missing
region shrinks, the samples become more constrained.

Figure 9. Image completion. The ShapeBM completes rectangular
imputations of random size on images not seen during training.

Mean RBM FA ShapeBM
Score −50.72 −47.00 −40.82 −28.85

Table 2. Imputation scores.

user (see Fig. 10(b)). This GUI and a video showing its use
may be downloaded from http://bit.ly/ShapeBM.

Quantitative comparison: In order to compare the perfor-
mance of the models quantitatively, we introduce what we
will refer to as an ‘imputation score’ for the shape comple-
tion task as a measure of the strength of a model. We collect
25 additional horse silhouettes from the web, and divide
each into 9 segments. In each imputation test, we remove
one of the segments and estimate the conditional probabil-
ity of that segment under the model, given the remaining 8
segments. The log probabilities are then averaged across the
different segments and images to give the score. Log-scores,
for a particular image and segment, are approximated via
sampling. We draw configurations of the latent variables
from the posterior given the observed part of the image and
then evaluate the conditional probability of the true configu-
ration of the unobserved segment given the latent variables,
i.e. p(vu|vo) ≈

∑
s p(vu|hs)/S, where u and o indicate

the set of unobserved/observed pixels, and hs are samples
from p(h|vo) obtained via MCMC. A high score in this test
indicates both the realism of samples and the generaliza-
tion capability of a model, since models that do not allocate
probability mass on good shapes (from the ‘true’ generating
distribution of horses) and models that waste probability
mass on bad shapes are both penalized. As the results show
in Table 2, the ShapeBM significantly outperforms the other
models at this task.

4.2. Caltech-101 motorbikes

In the previous section we demonstrated that the
ShapeBM model can learn a strong model for horses. To
verify that the model works not just for horses, and to test
on higher-resolution images, we trained a model on 798 mo-
torbike silhouettes from the Caltech-101 dataset [9]. Here,
the binary images are cropped and normalized to 64 × 64

6
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Figure 10. Constrained shape completion. Missing regions (blue pixels, top row) are completed using the ShapeBM and by finding the
closest match (NN) to the prescribed pixels in the training data. (a) The horse’s back is pulled up by the ShapeBM using an appropriate ‘on’
brush. Notice how the stomach moves up and the head angle changes to maintain a valid shape. The horse’s back is then pushed down with
an ‘off’ brush. (b) Given only minimal user input, the model completes the images to generate realistic horse shapes. (c,d) Motorbikes (at
64× 64). In most cases, the nearest neighbor method fails to find a suitable training image to satisfy the constraints.

pixels (see Fig. 11(a)). We trained a ShapeBM with overlap
b = 4, and 1200 and 50 units for h1 and h2 respectively,
using the same schedule as before. Fig. 11 displays samples
from the model, as well as shape completions on unseen
data. The model generalizes from the training data-points in
non-trivial ways whilst maintaining validity of the overall
object shape. Image completions look natural and connect
smoothly at the boundaries. We demonstrate constrained
image completion in Fig. 10(c,d) and note that the model
generates conformant shapes that align neatly with the fixed
portion of the image. The database-driven approach can fail
to find suitable images in the training dataset.

(a)

(b)

(c)

(d)

Figure 11. Results on Caltech-101 motorbikes. (a) A selection of
images from the dataset. (b) A chain of samples generated by the
ShapeBM (at 64 × 64). (c) The model generalizes from training
examples in non-trivial ways, whilst maintaining overall motorbike
look-and-feel. (d) Completion of images not seen during training.

4.3. Multiple object categories

Class-specific shape models are appropriate if the class
is known, but for segmentation/detection applications the
object class may not be known. To this end, we investigated
if the ShapeBM can be used to learn shapes of multiple ob-
ject classes simultaneously. For this purpose, we trained a
ShapeBM on a combination of the Weizmann data and 3
other animal categories from Caltech-101 [9]. In addition
to 327 horse images, the dataset contains images of 68 drag-
onflies, 78 llamas and 59 rhinos (for a total of 531 images).
The images are cropped and normalized to 32× 32 pixels. A
ShapeBM with b = 4, and 2000 and 400 units for h1 and h2

was jointly trained without information about image class.
In our experiments we have found that the ShapeBM still

learns a strong model, as demonstrated by Fig. 12. It would
be informative to know if ShapeBM’s unsupervised learning
procedure has led it to discover the underlying grouping
of the shapes into categories. In order to do this, we com-
pute average inter- and intra-class distances of all training
instances, both in data-space (v) and in latent-space (h2). In
Fig. 13(a) we plot the ratio of these distances for the four
classes. These results suggest that the ShapeBM latent repre-
sentation groups the shapes from each category much more
closely than they are in pixel-space.

We also tested how well the model discovered object cate-
gories by using it to classify in a setting with very few labeled
examples. We trained a generalized linear model (GLM) us-
ing the glmnet algorithm [11] on between T = 1 . . . 20
randomly selected images of each category and tested on
59 − T images per category, averaging over 100 runs. We
find that despite its smaller size, given only a few training ex-
amples, the latent h2 is most discriminative (see Fig. 13(b)).
After just one labeled example per category, classification
accuracy is 56.0% using h2 vs. just 36.8% using v.
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rhinos dragonflies llamas

Figure 12. Multiple object categories. Top: A selection of images
from the augmented dataset. Middle: The model simultaneously
identifies the object class and fills in the missing image region.
Bottom: Samples from a single tempered chain.
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Figure 13. (a) Inter- and intra-class distance ratios (values > 1 indi-
cate that inter-class distances are larger). (b) GLM classification.

5. Conclusions and future work
In this paper we have shown how the ShapeBM can learn

high quality probability distributions over object shapes in
terms of both realism of samples from the distribution and
generalization to new examples of the same shape class.

In future, we plan to investigate how the model scales
to higher-resolution images and how it can be extended to
reason about multiple occluding objects (in a similar vein to
[21]). We believe that such a model would be suited for use
as a prior for tasks like the PASCAL segmentation challenge.
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