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Advantages of dimensionality reduction

Reduce operational time and storage costs.

Remove multi-collinearity in features.

Visualize in 2D or 3D.
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Non-linear dimensionality reduction

Based on assumption that original data x ∈ RD is distributed

compactly on non-linear surface with dimensionality d < D.

Let y ∈ Rd denote the coordinates of x on the surface.

d is usually unknown.

Sample dataset:

Linear dimensionality reduction techniques will fail here.
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Typical datasets for dimensionality reduction evaluation

Comment: true datasets have much more dimensions, more

complex structure, errors, outliers, etc.
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Categorization

Non-linear approaches of dimensionality reduction:

preserving global properties

kernel PCA, autoencoders, MDS, ISOMAP, di�usion maps,
MVU

preserving local properties

LLE, LTSA

global alignment of local linear models (not considered here)
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Global methods

Table of Contents

1 Global methods

2 Local methods
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Global methods

Multi-dimensional scaling

Multi-dimensional scaling

Map x → y preserving distances as much as possible.

Approaches:

absolute di�erence∑
i,j

(‖xi − xj‖ − ‖yi − yj‖)2 → min
Y

relative di�erence (more attention to small distances)

∑
i,j

(‖xi − xj‖ − ‖yi − yj‖)2

‖xi − xj‖2
→ min

Y
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Global methods

Example
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Global methods

Analysis

Issue: small ‖xi − xj‖ should not always imply small ‖yi − yj‖.
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Global methods

Solution

Isomap: Map x → y preserving correspondence between distance

in target space and geodesic distance along the surface in original

space.
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Global methods

Isomap

Isomap algorithm

1 Geodesic distance calculation:

1 for each xn �nd its K nearest neighbours
2 build the pairwise distance matrix, �lling distance between

samples and their nearest neighbours.
3 calculate all pairwise distances using shortest-path algorithm of

Dijkstra or Floyd.

2 Apply MDS to match ‖xi − xj‖G and ‖yi − yj‖, where ‖·‖G is

geodesic distance.
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Global methods

Issues of Isomap

Noisy observations between distant parts of surfaces may make

distant parts close

Solutions:

remove observations with large total �ows through them
remove nearest neighbours that violate local linearity

Selection of K:

if too small, then poor approximation of geodesic distance
if too large, then increases chance of �short-circuiting� through
noisy observations.
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Global methods

Example of ISOMAP
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Global methods

Example of ISOMAP1

1Picture source.
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https://cnx.org/contents/9cMfjngH@6.3:Av9d0v4w@10/Dimensionality-Reduction-Metho


Nonlinear dimensionality reduction - Victor Kitov

Global methods

Maximum variance unfolding

Idea of MVU - maximally unfold the transformations, preserving

local geometry of data.

initialize neighbourhood graph G with nodes being
the samples x1, x2, ...xN

for each xn:
for k = 1, 2, ...K :

find k-th nearest neighbour xnk to xn
add a link to G between xn and xnk

solve the optimization problem:∑
i,j ||yi − yj ||2 → max subject to: ||yi − yj ||2 = ||xi − xj ||2 ∀(i , j) ∈ G

noise sample may add redundant constraint, which may

prevent manifold unfolding.

||yi − yj ||2 = ||xi − xj ||2 ∀(i , j) ∈ G - may have no solutions!

So we can try to keep it small.
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Global methods

Visualization2

Unfolding, when nearest neighbours are tied �rmly to each other:

2Picture source.
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http://ravitejav.weebly.com/uploads/2/4/7/2/24725306/mvu.pdf
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Global methods

Kernel PCA

Like PCA, but input space is expanded with kernels

Easy computation of projections of new points

Issue: kernel selection.

linear (reduces to ordinary PCA)
Gaussian
polynomial
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Global methods

Di�usion maps

1 Construct proximity graph

nodes: observations
edge weight between xi and xj :

wij = e−
‖xi−xj‖2

2σ2

2 for each xi outgoing probabilities set to normalized weights:

p
(1)
ij =

wij∑
k wik

(1)

3 random walk with probabilities p
(1)
ij stored in matrix P(1) is

assumed.
4 based on random walk assumption, the probability of walking

from xi to xj after T steps is:

p
(T )
ij = {P(1) × ...× P(1)︸ ︷︷ ︸

T times

}ij
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Global methods

Di�usion maps

Finally MDS is applied to match ‖yi − yj‖ to di�usion

distance:

DT (xi , xj) =

√√√√∑
k

(p
(T )
ik − p

(T )
jk )2

pk

where [p1, p2, ...pN ] is stationary distribution for Markov

process with matrix P(1).

pi measures the probability to be at object i after big �xed

number of trials.

High pk means that object k is central, connected to many

objects.

Normalization by pk : connection to distant isolated objects is

more important.
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Global methods

Discussion

Bene�t: distance between points is based on multiple paths

through the graph - more robust to noise.

Selection of T is important:

too small: method from global becomes local, matching
distances between neighbouring points
too big: all points become equally similar

Example: 3 clusters with transition probabilities set with (1),
color indicates p(i |j) after t steps.

Link to picture source
20/32

http://ac.els-cdn.com/S1063520306000546/1-s2.0-S1063520306000546-main.pdf?_tid=fca39c22-0743-11e6-ad16-00000aacb35e&acdnat=1461190106_8ce58a767c70de4e6929edb596e78537
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Global methods

Autoencoders
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Global methods

Autoencoders

feed-forward neural network, tranined to reproduce input with

MSE loss.

D input and D output nodes

d nodes in the central layer

x ∈ RD is transformed to y ∈ Rd .

User-de�ned number of layers and nodes

Advantages:

can transform arbitrary x to lower-dimensional space

Disadvantages:

slow convergence

may train layer by layer, then �netune all.

optimization gets stuck in local optima
many parameters (weights)

especially for big D and several layers.
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Local methods

Table of Contents

1 Global methods

2 Local methods
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Local methods

Local linear embedding

Local linear embedding

Method preserves reconstruction weights of objects through their

nearest neighbors.

INPUT:
training sample x1, x2, ...xN
number of neighbours K

ALGORITHM:
for each xi:

find its K nearest neighbours: xi(1), xi(2), ...xi(K)

find weights to reconstruct xi using its neighbours:

xi ≈
∑K

k=1 wikxi(k)

solve optimization problem:
∑N

n=1(yi −
∑K

k=1 wikyik)
2 → minY

OUTPUT: reduced space representation: y1, y2, ...yN.
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Local methods

Weights

For i = 1, 2...N:{∥∥wikxi(k) − xi
∥∥2 → minwi1,...wiK∑K

j=1 wij = 1
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Local methods

Laplacian eigenmaps

Laplacian eigenmaps

Forces distances of points with nearest neighbours to be smaller.

INPUT:
training sample x1, x2, ...xN
number of neighbours K

ALGORITHM:
for each xi:

find its K nearest neighbours: xi(1), xi(2), ...xi(K)

for each nearest neighbour j=i(1), i(2), ...i(K):

calculate distance-based weights: wij = e−
‖xi−xj‖2

2σ2

solve optimization problem:∑N
i=1

∑
j∈{i(1),...i(K)} wij(yi − yj)

2 → minY

OUTPUT: reduced space representation: y1, y2, ...yN.26/32
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Local methods

Comments on local methods

short-circuiting a�ects only local points in space

local method, relying on K-NN => prone to curse of

dimensionality

prone to over�tting on outliers (when they become nearest

neighbors)
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Local methods

Properties

Technique Convex Parameters Computational Memory

PCA yes none O(D3) O(D2)

MDS yes none O(N3) O(N2)

Isomap yes K O(N3) O(N2)

MVU yes K O((NK )3) O((NK )3)

Kernel PCA yes kernel O(N3) O(N2)

Di�usion maps yes σ,T O(N3) O(N2)

Autoencoders no network shape O(INW ) O(W )

LLE yes K O(pN2) O(pN2)

Laplacian eigenmaps yes K , σ O(pN2) O(pN2)

D - input dimension, N - sample size, K - number of nearest neighbors, σ -

smoothing parameter of Gaussian kernel, W number of weights in neural

network, I - number of epochs (passes through whole training set), p - the

fraction of non-zero entries in the weight matrix.

Comment: PCA is the most e�cient, then come local methods (italic) and

�nally global methods.
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Local methods

Global vs. local methods

Global methods try to preserve the whole geometry of data

less e�cient
�nd �overall picture�
noise points can spoil whole picture

Local methods try to preserve only local data geometry

more e�cient
�nd �locally correct pictures�, then join them
locally a�ected by noise points
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Local methods

Comments

Problem of transforming new previously unobserved

samples.

direct for PCA, Kernel PCA, autoencoders
only approximations possible for other methods.

suppose for new x its nearest neightbours form training set
are: xi(1), ...xi(K)

x ≈
∑K

k=1 wkxi(k), so y(x) ≈
∑K

k=1 wky(xi(k))

Selection of target dimensionality d :

Cross-validation of the original task (e.g. classi�cation)
How many components of local PCA explain most of the
variance?
The growth rate of number of objects falling inside a growing
hypersphere with center x :#{xi : ‖xi − x‖ ≤ R}

for d-dimensional manifold it should grow ∝ Rd .

etc.
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Local methods

Experiment

L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik.

Dimensionality Reduction:A Comparative Review. Working

paper. 2008.

Extensive comparison of di�erent dimensionality reduction
methods

accuracy of 1 nearest neighbour in reduced space.

Non-linear techniques perform better than PCA on simulated
data
PCA wins most of the time on real data
Problems:

global methods: short-circuiting
nearest neighbours based methods: curse of dimensionality,
over�tting to outliers
unstable optimization for local methods: they reduce to
eigenproblems, frequently λmax/λmin � 1.
suboptimal local optima for autoencoders.
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Local methods

Dangers of dimensionality reduction
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