Выбор моделей в машинном обучении

В. В. Стрижов, А. А. Адуенко, О. Ю. Бахтеев, Р. В. Исаченко, О. В. Грабовой

> Московский физико-технический институт Кафедра интеллектуальных систем

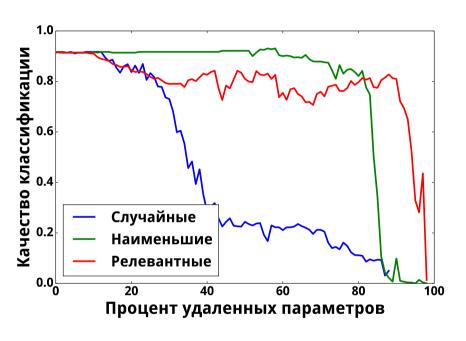
> > 2019

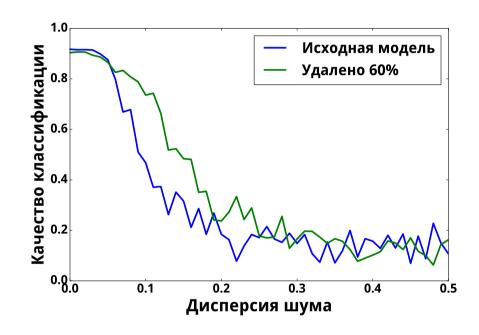
Значительное повышение сложности и скромный прирост точности

	train	test	Number of parameters
Логистическая регрессия	53,08%	55,18%	= 12
Нейронная сеть	59,85%	57,04%	~ 240
Случайный лес	61,85%	57,01%	> 1000
Градиентный бустинг	63,58%	58,31%	7 10 000

^{...} это был скоринг

Правдоподобие моделей с избыточным числом параметров не изменяется значимо при их удалении





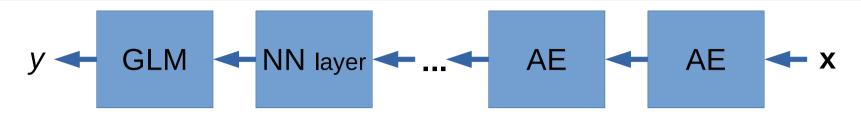
Избыточность параметров модели

Устойчивость модели

Глубокое обучение предполагает оптимизацию моделей с заведомо избыточной сложностью.

Bakhteev, Strijov. 2019. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Annals of Operations Research

Линейная модель, (глубокая) нейросеть и автоэнкодер



$$f = \sigma_k \circ \mathbf{w}_k^\mathsf{T} \boldsymbol{\sigma}_{k-1} \circ \mathbf{W}_{k-1} \boldsymbol{\sigma}_{k-2} \circ \cdots \circ \mathbf{W}_2 \boldsymbol{\sigma}_1 \circ \mathbf{W}_1 \underset{n_2 \times 1}{\mathbf{x}} \underset{n_1 \times n}{\mathbf{x}} n_{1} \times 1$$

$$S = \sum_{(\mathbf{x}_i, y_i) \in \mathfrak{D}} (y_i - f(\mathbf{x}_i))^2 \qquad E_{\mathbf{x}} = \sum_{\mathbf{x}_i \in \mathfrak{D}} \|\mathbf{x}_i - \mathbf{r}(\mathbf{x}_i)\|_2^2$$

Варианты

 $E_{\rm x}$ — ошибка реконструкции автоэнкодера

метод главных компонент: $\mathbf{W}^\mathsf{T}\mathbf{W} = \mathbf{I}_n$

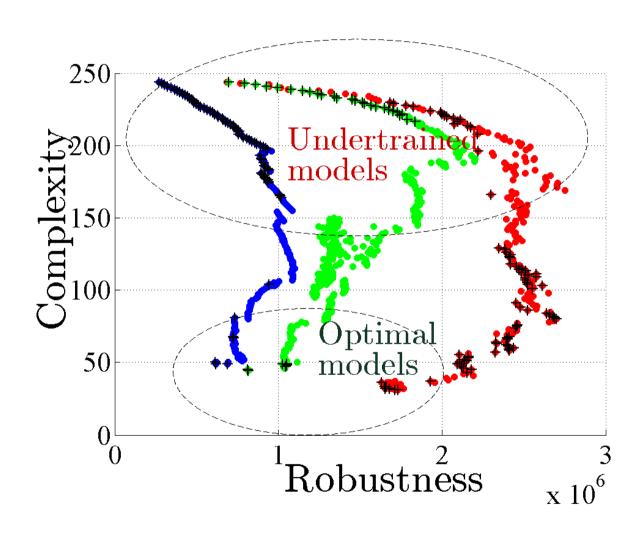
нет блока: $\mathbf{W} = \mathbf{I}_n$, $\sigma = \mathrm{id}$

классификация: $\sigma = \left(1 + \exp(-\cdot)\right)^{-1}$

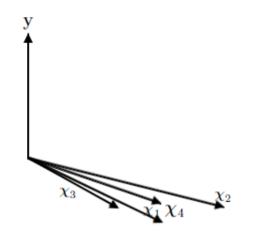
 $+\mathbf{b}$

Последовательный выбор моделей:

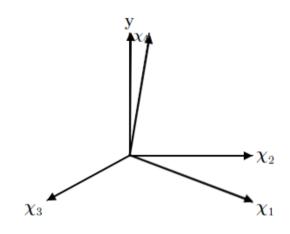
точность, сложность, устойчивость



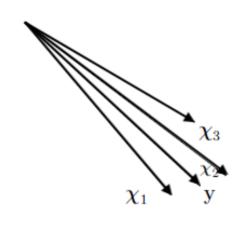
Конфигурации признакового пространства



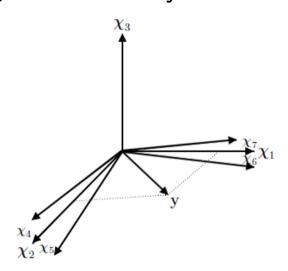
Неадекватный коррелированный



Адекватный случайный



Адекватный избыточный

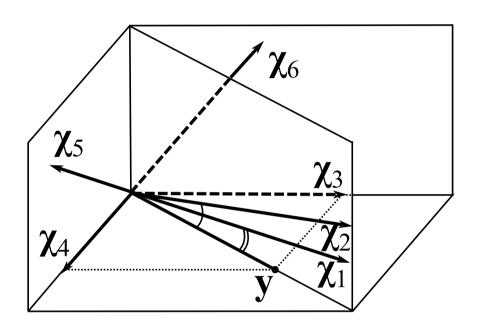


Адекватный коррелированный

Katrutsa, Strijov. 2017. Comprehensive study of feature selection methods to solve multicollinearity problem // Expert Systems with Applications

Выбор устойчивого и точного набора признаков

Признаки χ_1,\dots,χ_6 — столбцы матрицы плана ${f X} {3 imes 6}$.

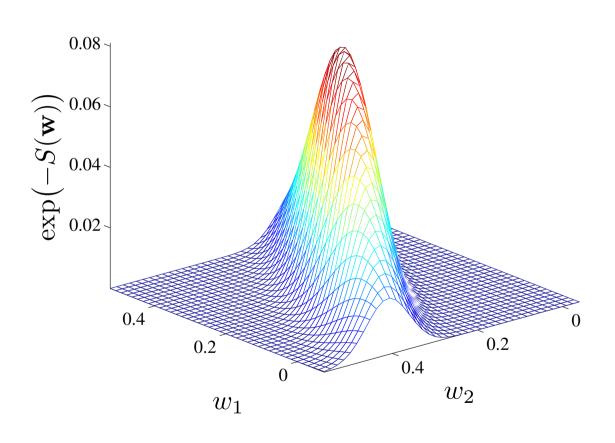


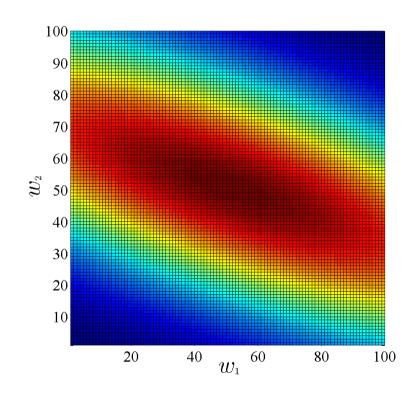
Решение: χ_3, χ_4 ортогональны, их комбинация приближает **у**, минимизируя ошибку.

Katrutsa, Strijov. 2015. Stress-test procedure for feature selection // Chemometrics

Эмпирическое распределение параметров модели

Значение функции ошибки $S(\mathbf{w}|\mathfrak{D},f)$ зависит от параметров.





Kuznetsov, Tokmakova, Strijov. 2016. Analytic methods of structure parameter // Informatica

Байесовский вывод, первый уровень

$$p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B}) = \frac{p(\mathfrak{D}|\mathbf{w}, \mathbf{B})p(\mathbf{w}|\mathbf{A})}{p(\mathfrak{D}|\mathbf{A}, \mathbf{B})}.$$

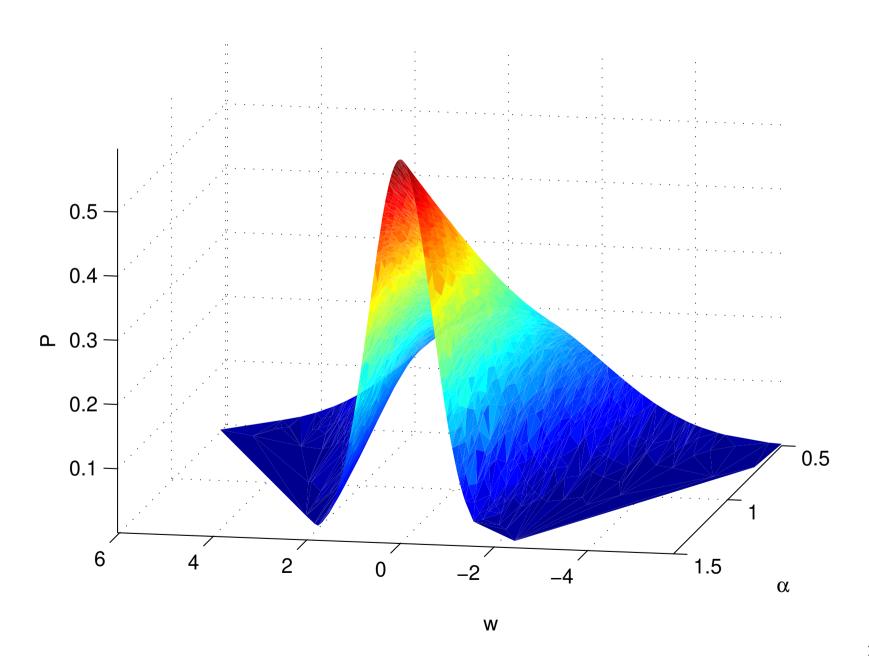
Элементы этого выражения и соответствующие им параметры:

- $ightharpoonup p(\mathbf{w}|\mathfrak{D}, \mathbf{A}, \mathbf{B})$ апостериорное распределение параметров,
- $ightharpoonup p(\mathfrak{D}|\mathbf{w},\mathbf{B}) функция правдоподобия данных,$
- $ightharpoonup p(\mathbf{w}|\mathbf{A})$ априорное распределение параметров,
- $ightharpoonup p(\mathfrak{D}|\mathbf{A},\mathbf{B})$ функция правдоподобия модели (обоснованность).

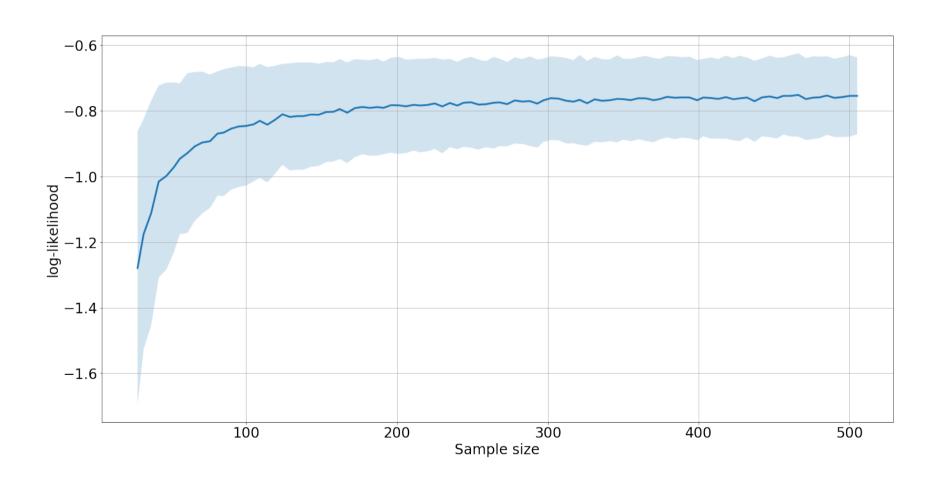
Функция ошибки $S=E_{\mathbf{w}}+E_{\mathfrak{D}}$, пример для регрессии

$$S(\mathbf{w}) = \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\mathsf{T} \mathbf{A} (\mathbf{w} - \mathbf{w}_0) + \frac{1}{2}(\mathbf{y} - \mathbf{f})^\mathsf{T} \mathbf{B} (\mathbf{y} - \mathbf{f}),$$

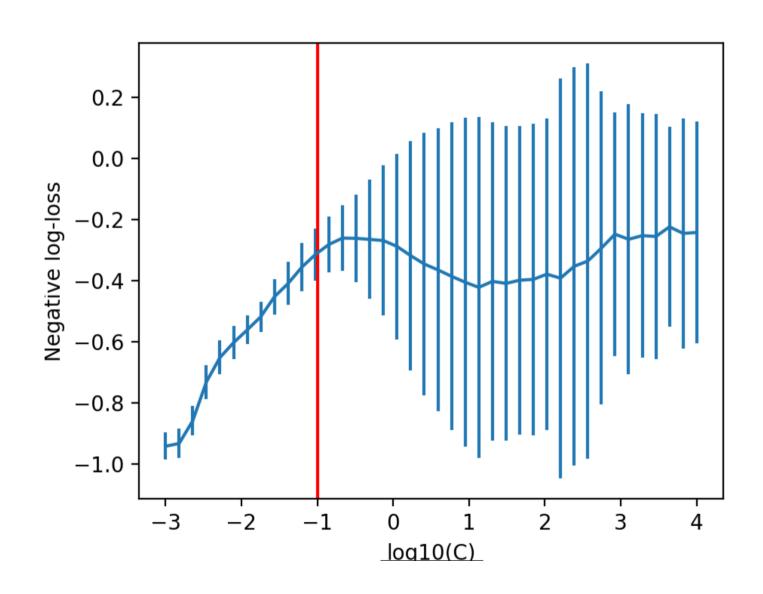
Точность или устойчивость



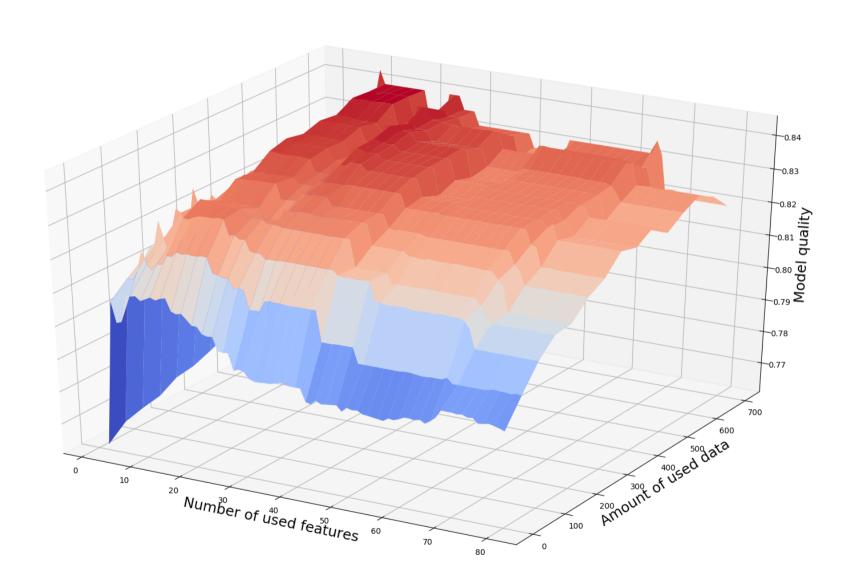
– Ошибка и её дисперсия при пополнении выборки



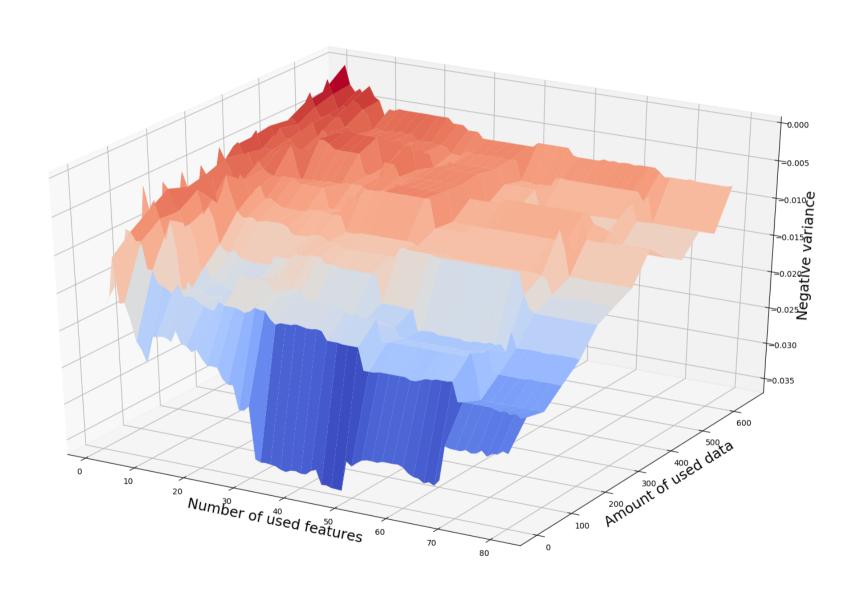
Дисперсия ошибки при повышении сложности модели



– Ошибка при различных объемах выборки



– Дисперсия ошибки при различных объемах выборки



Модель глубокого обучения

Определение

Моделью $f(\mathbf{w}, \mathbf{x})$ назовем дифференцируемую по параметрам \mathbf{w} функцию из множества признаковых описаний объекта во множество меток:

$$\mathbf{f}: \mathbb{X} \times \mathbb{W} \to \mathbb{Y}$$
,

где \mathbb{W} — пространство параметров функции \mathbf{f} .

Особенность задачи выбора модели *глубокого обучения* — значительное число параметров моделей приводит к неприменимости ряда методов оптимизации и выбора структуры модели (AIC, BIC, кросс-валидация).

Модель определяется параметрами ${f W}$ и структурой ${f \Gamma}.$

Структура задает набор суперпозиций, входящих в модель и выбирается согласно статистическим критериям сложности модели.

Эмпирические оценки статистической сложности модели:

- число параметров;
- 2 число суперпозиций, из которых состоит модель.

Выбор структуры: двуслойная нейросеть

Модель ${f f}$ задана **структурой** ${f \Gamma}=[\gamma^{0,1},\gamma^{1,2}].$

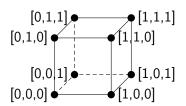
Модель:
$$\mathbf{f}(\mathbf{x}) = \mathbf{softmax}\left((\mathbf{w}_0^{1,2})^\mathsf{T} \mathbf{f}_1(\mathbf{x})\right), \quad \mathbf{f}(\mathbf{x}) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$

$$\mathbf{f}_1(\mathbf{x}) = \gamma_0^{0,1} \mathbf{g}_0^{0,1}(\mathbf{x}) + \gamma_1^{0,1} \mathbf{g}_1^{0,1}(\mathbf{x}),$$

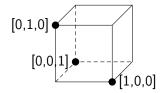
где $\mathbf{w} = [\mathbf{w}_0^{0,1}, \mathbf{w}_1^{0,1}, \mathbf{w}_0^{1,2}]^\mathsf{T}$ — матрицы параметров, $\{\mathbf{g}_{0,1}^0, \mathbf{g}_{0,1}^1, \mathbf{g}_{0,2}^0\}$ — обобщенно-линейные функции скрытых слоев нейросети.

Ограничения на структурные параметры

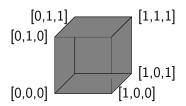
Примеры ограничений для одного структурного параметра $\gamma, |\gamma|=3.$



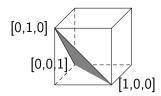
На вершинах куба



На вершинах симплекса



Внутри куба

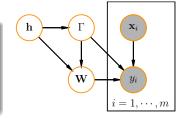


Внутри симплекса

Априорное распределение параметров

Определение

Априорным распределением параметров \mathbf{w} и структуры $\mathbf{\Gamma}$ модели \mathbf{f} назовем вероятностное распределение $\mathbf{p}(\mathbf{W},\mathbf{\Gamma}|\mathbf{h},\mathbf{f}): \mathbb{W} \times \mathbb{\Gamma} \times \mathbb{H} \to \mathbb{R}^+,$ где \mathbb{W} — множество значений параметров модели, $\mathbb{\Gamma}$ — множество значений структуры модели.



Определение

Гиперпараметрами $\mathbf{h} \in \mathbb{H}$ модели назовем параметры распределения $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \mathbf{f})$ (параметры распределения параметров модели \mathbf{f}).

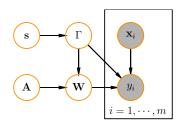
Модель f задается следующими величинами:

- lacktriangled Параметры lacktriangled Задают суперпозиции $f_{
 u}$, из которых состоит модель f.
- ullet Структурные параметры $oldsymbol{\Gamma} = \{\gamma^{j,k}\}_{(j,k)\in E} \in \mathbb{F}$ задают вклад суперпозиций $oldsymbol{f}_v$ в модель $oldsymbol{f}$.
- ullet Гиперпараметры ${f h} \in \mathbb{H}$ задают распределение параметров и структурных параметров модели.
- lacktriangle **Метапараметры** $oldsymbol{\lambda} \in \mathbb{A}$ задают вид оптимизации модели.

Байесовский выбор модели

Базовая модель:

- параметры модели $\mathbf{w} \sim \mathcal{N}(0, \alpha^{-1}),$
- гиперпараметры модели $h = [\alpha]$.



Предлагаемая модель:

- параметры модели $\mathbf{w}_r^{j,k} \sim \mathcal{N}(0, (\gamma_r^{j,k})^2 (\mathbf{A}_r^{j,k})^{-1}), \, \mathbf{A}_r^{j,k}$ диагональная матрица параметров, соответствующих базовых функций $\mathbf{g}_r^{j,k}, \ (\mathbf{A}_r^{j,k})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$
- структурные параметры модели $\Gamma = \{ \gamma^{j,k}, (j,k) \in E \},$ $\gamma^{j,k} \sim \mathsf{GS}(\mathsf{s}^{j,k}, \lambda_{\mathsf{temp}}),$
- гиперпараметры модели
 h = [diag(A), s],
- ullet метапараметры $\lambda_1, \lambda_2, \lambda_{\mathsf{temp}}.$

Вариационная нижняя оценка обоснованности

Интеграл обоснованности невычислим аналитически.

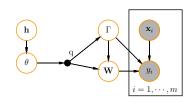
Обоснованность модели:

$$p(\mathbf{y}|\mathbf{X}, \lambda_{\mathsf{temp}}, \mathbf{f}) = \iint_{\mathbf{w}, \Gamma} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f}) p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) d\mathbf{w} d\mathbf{\Gamma}.$$

Определение

Вариационными параметрами модели $\theta \in \mathbb{R}^u$ назовем параметры распределения q, приближающие апостериорное распределение параметров и структуры $p(\mathbf{w}, \Gamma | \mathbf{X}, \mathbf{y}, \mathbf{h}, \mathbf{f}, \lambda_{\text{temp}})$:

$$q \approx \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f})p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f})}{\iint\limits_{\mathbf{w}', \mathbf{\Gamma}'} p(\mathbf{y}|\mathbf{X}, \mathbf{w}', \mathbf{\Gamma}', \mathbf{f})p(\mathbf{w}', \mathbf{\Gamma}'|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f})d\mathbf{w}'d\mathbf{\Gamma}'}$$



Получим нижнюю оценку $\log \hat{p}(\mathbf{y}|\mathbf{X},\lambda_{\mathsf{temp}},\mathbf{f})$ интеграла

$$\log p(\mathbf{y}|\mathbf{X}, \lambda_{\text{temp}}, \mathbf{f}) \ge \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f}) - \mathsf{D}_{KL}(q(\mathbf{w}, \mathbf{\Gamma})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})).$$

Она совпадает с интегралом обоснованности при

$$D_{\mathsf{KL}}(q(\mathsf{w}, \mathsf{\Gamma})|p(\mathsf{w}, \mathsf{\Gamma}|\mathsf{y}, \mathsf{X}, \lambda_{\mathsf{temp}}, \mathsf{f})) = 0.$$

Задача выбора модели

Зададим вариационное распределение $q=q_{\mathbf{w}}q_{\Gamma}$ с параметрами $\boldsymbol{\theta}$, приближающие апостериорное распределение $p(\mathbf{w},\Gamma|\mathbf{X},\mathbf{y},\mathbf{h},\mathbf{f})$ параметров и структуры.

Определение

 Φ ункцией потерь $L(\theta|\mathbf{h},\mathbf{X},\mathbf{y},\mathbf{f})$ назовем дифференцируемую функцию, качество модели на обучающей выборки при параметрах θ распределения q.

 Φ ункцией валидации $Q(\mathbf{h}|\theta,\mathbf{X},\mathbf{y},\mathbf{f})$ назовем дифференцируемую функцию, качество модели при векторе heta, заданном неявно.

 $\it 3$ адачей выбора модели $\it f$ назовем двухуровневую задачу оптимизации:

$$\mathbf{h}^* = rg\max_{\mathbf{h} \in \mathbb{H}} Q(\mathbf{h}|oldsymbol{ heta}^*, \mathbf{X}, \mathbf{y}, \mathbf{f}),$$

где $heta^*$ — решение задачи оптимизации

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta} \in \mathbb{U}} \mathit{L}(oldsymbol{ heta} | \mathbf{h}, \mathbf{X}, \mathbf{y}, \mathbf{f}).$$

Обобщающая задача

Задачу выбора модели $\mathbf{h}^*, \boldsymbol{\theta}^*$ назовем обобщающей на множестве $U_{\boldsymbol{\theta}} \times U_{\boldsymbol{h}} \times U_{\boldsymbol{\lambda}} \subset \mathbb{R}^u \times \mathbb{H} \times \mathbb{A}$, если выполнены условия:

- Область параметров, гиперпараметров и метапараметров не является пустым или точкой.
- $oldsymbol{2}$ Для каждого $oldsymbol{\mathsf{h}} \in U_h$ и каждого $oldsymbol{\lambda} \in U_\lambda$ решение $oldsymbol{ heta}^*$ определено однозначно.
- **3 Критерий непрерывности:** h^*, θ^* непрерывны по метапараметрам.
- **④** Критерий перехода между структурами: существует константа $K_3 > 0$, такая, что существует хотя бы одна пара гиперпараметров $\mathbf{h}_1, \mathbf{h}_2$, и набор метапараметров $\boldsymbol{\lambda}$, такие, что для произвольных локальных оптимумов $\mathbf{h}_1, \mathbf{h}_2$ задачи оптимизации Q, полученных при метапараметрах $\boldsymbol{\lambda}$ и удовлетворяющих неравенствам

$$D_{\mathsf{KL}}\left(p(\mathbf{\Gamma}|\mathbf{h}_1, \lambda) | p(\mathbf{\Gamma}|\mathbf{h}_1, \lambda) \right) > \mathcal{K}_3, D_{\mathsf{KL}}\left(p(\mathbf{\Gamma}|\mathbf{h}_1, \lambda) | p(\mathbf{\Gamma}|\mathbf{h}_2, \lambda) \right) > \mathcal{K}_3,$$

$$Q(\mathbf{h}_1|\lambda) > Q(\mathbf{h}_2|\lambda),$$

существует значение метапараметров $oldsymbol{\lambda}'
eq oldsymbol{\lambda}$, такое, что

- ① соответствие между вариационными параметрами $\theta^*(\mathbf{h}_1), \theta^*(\mathbf{h}_2)$ сохраняется при λ' ,
- $oldsymbol{2}$ выполняется неравенство $Q(oldsymbol{\mathsf{h}}_1|oldsymbol{\lambda}') < Q(oldsymbol{\mathsf{h}}_2|oldsymbol{\lambda}')$.

Обобщающая задача

Задачу выбора модели $\mathbf{h}^*, \boldsymbol{\theta}^*$ назовем обобщающей на множестве $U_{\theta} \times U_{h} \times U_{\lambda} \subset \mathbb{R}^u \times \mathbb{H} \times \mathbb{A}$, если выполнены условия:

- **⑤** Критерий максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $h_1, h_2 \in U_h, Q(h_1) Q(h_2) > K_1$: выполнено: $E_a \log p(y|X, \theta^*(h_1), \lambda_{temp}, f) > \log E_a p(y|X, \theta^*(h_2), \lambda_{temp}, f)$.
- **6** Критерий минимизации параметрической сложности модели: существует $\lambda \in U_{\lambda}$ и $K_2 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $h_1, h_2 \in U_h, Q(h_1) Q(h_2) > K_2$, $E_q \log p(y|\theta_1, \lambda_{\mathsf{temp}}, \mathbf{f}) = \log E_q \ p(y|\theta_2, \lambda_{\mathsf{temp}}, \mathbf{f})$, сложность первой модели меньше, чем второй.
- **(7) Критерий максимизации обоснованности модели:** существует значение гиперпараметров λ , такое что оптимизация задачи эквивалента оптимизации вариационной оценки обоснованности модели:
 - $\mathbf{h}^* \propto \arg\max p(\mathbf{y}|\mathbf{X},\mathbf{h},\lambda_{\mathsf{temp}},\mathbf{f})p(\mathbf{h}|\boldsymbol{\lambda}), \quad \boldsymbol{\theta}^* = \arg\min D_{\mathsf{KL}}(q|p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{y},\mathbf{X},\lambda_{\mathsf{temp}},\mathbf{f})).$

Анализ задач выбора моделей

Теорема [Бахтеев, 2019]

Следующие задачи выбора модели не являются обобщающими:

- ① критерий максимума правдоподобия: $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathbf{y} | \mathbf{X}, \theta, \lambda_{\mathsf{temp}}, \mathbf{f});$
- $\mathbf{2}$ критерий максимума апостериорной вероятности $\max_{\boldsymbol{\theta}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}, \mathbf{f}) p(\boldsymbol{\theta}|\mathbf{h}, \lambda_{\mathsf{temp}});$
- $egin{align*} \mathbf{3} & \mathsf{метод} & \mathsf{максимума} & \mathsf{вариационной} & \mathsf{оценки} & \mathsf{обоснованности} & \mathsf{модели} \\ & \mathsf{max}_{\mathsf{h}} & \mathsf{max}_{\boldsymbol{\theta}} & \mathsf{E}_q \mathsf{log} & p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma},\mathbf{f}) \mathsf{D}_{\mathit{KL}} \big(q(\mathbf{w},\mathbf{\Gamma}) || p(\mathbf{w},\mathbf{\Gamma},\lambda_{\mathsf{temp}}) \big) + \mathsf{log} & p(\mathbf{h}|\mathbf{f}); \\ & \mathsf{hom}_{\mathsf{hom}} & \mathsf$
- $m{\Phi}$ кросс-валидация $\max_{\mathbf{h}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}_{\mathsf{valid}} | \mathbf{X}_{\mathsf{valid}}, m{\theta}^*, \lambda_{\mathsf{temp}}, \mathbf{f}),$ $m{\theta}^* = \arg\max_{m{\theta}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}_{\mathsf{train}} | \mathbf{X}_{\mathsf{train}}, m{\theta}, \lambda_{\mathsf{temp}}, \mathbf{f}) p(m{\theta} | \mathbf{h}).$
- **®** BIC: $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\mathsf{temp}}, \mathbf{f}) \frac{1}{2} \mathsf{log}(|\mathbb{W}||\theta_i : \mathsf{D}_{\mathsf{KL}}\left(q(w_i)|p(w_i|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) < \lambda|;\right)$
- \overline{Q} перебор структуры модели: $\max \Gamma' \max_{\theta} \mathbb{E}_q \log p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\text{temp}}, \mathbf{f}) \mathbb{I}(q(\Gamma \Gamma = p'), \Gamma)$, где p' распределение на структуре.

Предлагаемая задача оптимизации

Теорема [Бахтеев, 2018]

Пусть функции потерь и валидации L,Q являются непрерывно-дифференцируемыми на компакте U. Тогда следующая задача является обобщающей на U.

$$\begin{split} \mathbf{h}^* &= \arg\max_{\mathbf{h}} Q = \\ &= \lambda_{\mathsf{likelihood}}^{\mathsf{Q}} \mathsf{E}_{q^*} \mathsf{log} \ p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) - \\ &- \mathsf{prior}_{\mathsf{Q}} \mathsf{D}_{\mathit{KL}} \big(q^*(\mathbf{w}, \mathbf{\Gamma}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) \big) - \\ &- \sum_{p' \in \mathfrak{P}, \lambda \in \lambda_{\mathsf{Q}}^{\mathsf{struct}}} \lambda \mathsf{D}_{\mathit{KL}} (\mathbf{\Gamma}|p') + \mathsf{log} p(\mathbf{h}|\mathbf{f}), \end{split}$$

где

$$\begin{split} q^* &= \arg\max_{q} L = \mathbb{E}_q \log \ p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma},\mathbf{h},\lambda_{\text{temp}},\mathbf{f}) \\ &- \mathbb{I}_{L}^{\text{prior}} \mathbb{D}_{KL} \big(q^*(\mathbf{w},\boldsymbol{\Gamma}) || p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\lambda_{\text{temp}},\mathbf{f}) \big). \end{split}$$

Оптимизационная задача обобщает алгоритмы оптимизации: оптимизация правдоподобия и обоснованности, последовательное увеличение и снижение сложности модели, полный перебор структуры.

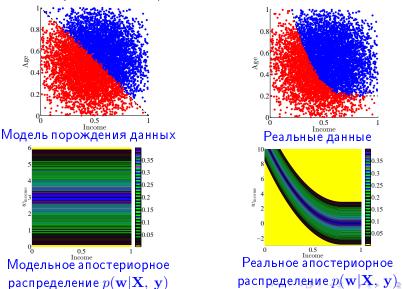
$$\lambda_{ ext{struct}}^{Q} = [0; 0; 0]$$

$$\lambda_{\mathsf{struct}}^Q = [1; 0; 0].$$

$$oldsymbol{\lambda}_{\mathsf{struct}}^{Q} = [1;1;0].$$

Мультимоделирование в задачах классификации

Проблема: выборка $\mathfrak{D}=\{(\mathbf{x}_i,y_i)\},\ i\in\mathcal{I}=\overline{1,m},\ \mathbf{x}_i\in\mathbb{X},\ y_i\in\mathbb{Y}$ не соответствует гипотезе порождения данных из одиночной модели.



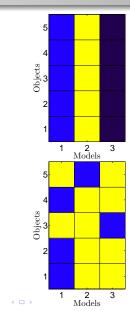
Мультимодели: Смеси моделей и многоуровневые модели

Определение 1. Смесь регрессионных моделей — регрессионная модель вида

$$f = \sum_{k=1}^{N} \pi_k f_k(\mathbf{w}_k)$$
, где

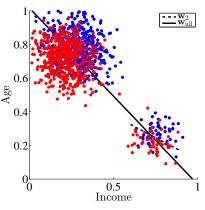
$$\sum_{k=1}^{K} \pi_k = 1, \ \pi_k \ge 0.$$

Определение 2. Многоуровневая регрессионная модель — набор регрессионных моделей f_k , $k=1,\ldots,K$ такой, что при разбиении множества индексов объектов $\mathcal{I}=\sqcup_{k=1}^K \mathcal{I}_k$ для всех объектов с индексами из \mathcal{I}_k используется модель f_k .

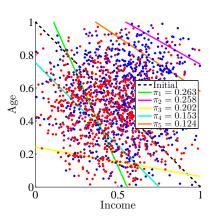


Близость моделей в мультимодели

Проблема: большое число близких или совпадающих моделей ведет к неинтерпретируемости и низкому качеству прогноза.



Неадекватная многоуровневая модель



Неадекватная смесь моделей

Определение 3. Мультимодель с совместным распределением $p(\mathbf{y},\ \mathbf{w}_1,\ \dots,\ \mathbf{w}_K,\ (\pi)|\mathbf{X},\ \mathbf{A}_1,\ \dots,\ \mathbf{A}_K,\ (\mu))$ называется $(s,\ \alpha)$ -адекватной, если модели, ее составляющие, являются попарно статистически различимыми с помощью функции сходства s на уровне значимости α .

Обучение мультимодели

$$[\mathbf{w}_{1}^{*},...,\mathbf{w}_{K}^{*},(\boldsymbol{\pi}^{*})] = \underset{\mathbf{w}_{1},...,\mathbf{w}_{K},(\boldsymbol{\pi})}{\operatorname{arg max}} p(\mathbf{w}_{1},...,\mathbf{w}_{K},(\boldsymbol{\pi})|\mathbf{X}, \mathbf{y}, \mathbf{A}_{1},...,\mathbf{A}_{K},(\mu)).$$

Определение 4. Мультимодель называется **оптимальной**, если она обладает наибольшей обоснованностью

$$\begin{split} [\mathbf{A}_{1}^{*},...,\,\mathbf{A}_{K}^{*},\,(\mu^{*})] &= \mathop{\arg\max}_{\mathbf{A}_{1},...,\,\mathbf{A}_{K},\,(\mu)} p\big(\mathbf{y}|\mathbf{X},\,\mathbf{A}_{1},...,\,\mathbf{A}_{K},\,(\mu)\big) = \\ \mathop{\arg\max}_{\mathbf{A}_{1},...,\mathbf{A}_{K},(\mu)} \int p\big(\mathbf{y},\mathbf{w}_{1},...,\mathbf{w}_{K},(\pi)|\mathbf{X},\mathbf{A}_{1},...,\mathbf{A}_{K},(\mu)\big) d\mathbf{w}_{1}...d\mathbf{w}_{K}(d\pi), \\ \text{где } \mathbf{A}_{1} \in Q_{\mathbf{A}_{1}},\,\ldots,\,\mathbf{A}_{K} \in Q_{\mathbf{A}_{K}},\,(\mu \in Q_{\mu}). \end{split}$$

Постановка задачи сравнения моделей

Проблема

Несмотря на прореживание мультимодели, она может не являться (s, α) – адекватной, то есть может содержать похожие модели.

Дано

- lacksquare Две модели f_1 и f_2 , векторы параметров моделей ${f w}_1,\,{f w}_2.$
- lacksquare Выборки $(\mathbf{X}_1,\ \mathbf{y}_1)$ и $(\mathbf{X}_2,\ \mathbf{y}_2)$, $y_{1,i}=f_1(\mathbf{x}_{1,i},\ \mathbf{w}_1)$, $y_{2,i}=f_2(\mathbf{x}_{2,i},\ \mathbf{w}_2)$.
- **■** Априорные распределения параметров моделей $\mathbf{w}_1 \sim p_1(\mathbf{w}), \ \mathbf{w}_2 \sim p_2(\mathbf{w}).$
- lacktriangle Апостериорные распределения $p(\mathbf{w}_1|\mathbf{X}_1,\ \mathbf{y}_1)$ и $p(\mathbf{w}_2|\mathbf{X}_2,\ \mathbf{y}_2)$, обозначаемые далее $g_1(\mathbf{w})$ и $g_2(\mathbf{w})$.

Требуется: построить функцию сходства, определенную на паре распределений $g_1(\mathbf{w})$ и $g_2(\mathbf{w})$, удовлетворяющую ряду требований.

Требования к функции сходства s

Корректная функция сходства s должна быть

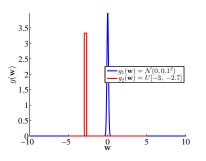
- 1 определена в случае несовпадения носителей,
- $s(g_1, g_2) \leq s(g_1, g_1),$
- $s \in [0, 1],$
- $s(g_1, g_1) = 1,$
- **5** близка к 1, если $g_2(\mathbf{w})$ малоинформативное распределение,
- **6** симметрична, $s(g_1, g_2) = s(g_2, g_1)$.

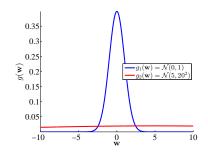
Теорема 3 (Адуенко, 2014)

Функции сходства, порожденные расстояниями Кульбака-Лейблера, Дженсона-Шеннона, Хеллингера, Бхаттачарайа, не являются корректными.

Иллюстрация требований к функции сходства

Важно, чтобы значение функции s было близко к 1, если $g_2(\mathbf{w})$ — малоинформативное распределение.





Теорема 4 (Адуенко, 2014)

Функции сходства, порожденные дивергенциями Брегмана, симметризованными дивергенциями Брегмана и f-дивергенциями, не являются корректными.

Предлагаемая функция сходства

В качестве меры сходства распределения предлагается мера сходства s-score:

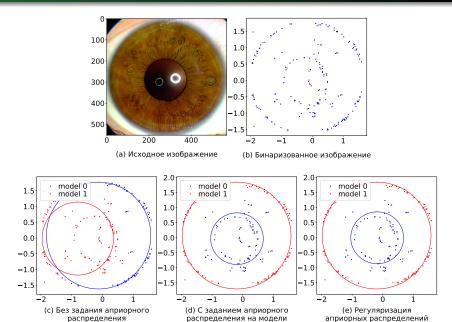
$$s(g_1, g_2) = \frac{\int_{\mathbf{w}} g_1(\mathbf{w}) g_2(\mathbf{w}) d\mathbf{w}}{\max_{\mathbf{b}} \int_{\mathbf{w}} g_1(\mathbf{w} - \mathbf{b}) g_2(\mathbf{w}) d\mathbf{w}}.$$

Теорема 5 (Адуенко, 2014). Предлагаемая функция сходства является корректной.

Примеры:

	$g_1(\mathbf{w})$	$g_2(\mathbf{w})$	$s(g_1, g_2)$
• •	U[0, 1]	U[0.5, 1.5]	0.5
	U[0, 1]	U[0, 1]	1
	$\mathcal{N}(0, 1)$	$\mathcal{N}(10, 10^{10})$	1

Результаты на реальных данных



Универсальная модель-ансамбль: смесь экспертов

Задана выборка:

$$\mathbf{X} \in \mathbb{R}^{N \times n}$$
,

где N — число объектов в выборке, а n — размерность признакового пространства.

Definition

Смесь экспертов — мультимодель, определяющая правдоподобие веса π_k каждой локальной модели \mathbf{f}_k на признаковом описании объекта \mathbf{x} .

$$\hat{\mathbf{f}} = \sum_{k=1}^{K} \pi_k \mathbf{f}_k, \qquad \pi_k \left(\mathbf{x}, \mathbf{V} \right) : \mathbb{R}^{n \times |\mathbf{V}|} \to [0, 1], \qquad \sum_{k=1}^{K} \pi_k \left(\mathbf{x}, \mathbf{V} \right) = 1,$$

где $\hat{\mathbf{f}}$ — мультимодель, а \mathbf{f}_k является локальной моделью, π_k — шлюзовая функция, \mathbf{w}_k — параметры k-й локальной модели, \mathbf{V} — параметры шлюзовой функции.

В качестве локальных моделей \mathbf{f}_k и шлюзовой функции π рассматриваются следующие функции:

$$\mathbf{f}_{k}\left(\mathbf{x}\right) = \mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}, \quad \boldsymbol{\pi}\left(\mathbf{x}, \mathbf{V}\right) = \operatorname{softmax}\left(\mathbf{V}_{1}^{\mathsf{T}}\boldsymbol{\sigma}\left(\mathbf{V}_{2}^{\mathsf{T}}\mathbf{x}\right)\right),$$

где $\mathbf{V} = \{\mathbf{V}_1, \mathbf{V}_2\}$ — параметры шлюзовой функции.

Оптимизация параметров

Параметры локальных моделей оптимизируются согласно принципу максимального правдоподобия модели:

$$p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}) = \prod_{k=1}^{K} p^{k}(\mathbf{w}_{k}) \prod_{i=1}^{N} \left(\sum_{k=1}^{K} \pi_{k} p_{k}(y_{i} | \mathbf{w}_{k}, \mathbf{x}_{i}) \right),$$

где $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_K]^\mathsf{T}$.

Задача оптимизации параметров локальных моделей и параметров смеси:

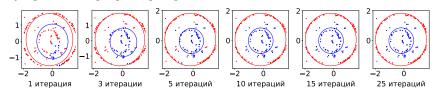
$$\hat{\mathbf{W}}, \hat{\mathbf{V}} = \arg \max_{\mathbf{W}, \mathbf{V}} p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}).$$

Рассматривается вероятностная постановка задачи:

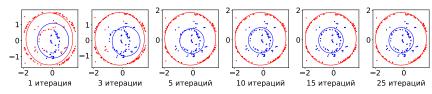
- 1) правдоподобие выборки $p_k\left(y_i|\mathbf{w}_k,\mathbf{x}_i\right) = \mathcal{N}\left(y_i|\mathbf{w}_k^\mathsf{T}\mathbf{x}_i,\beta^{-1}\right)$, где β уровень шума,
- 2) априорное распределение параметров $p^k\left(\mathbf{w}_k\right) = \mathcal{N}\left(\mathbf{w}_k|\mathbf{w}_k^0,\mathbf{A}_k\right)$, где \mathbf{w}_k^0 вектор размера $n\times 1$, \mathbf{A}_k ковариационная матрица параметров,
- 3) регуляризация априорного распределения $p\left(\boldsymbol{\varepsilon}_{k,k'}|\boldsymbol{\alpha}\right) = \mathcal{N}\left(\boldsymbol{\varepsilon}_{k,k'}|\mathbf{0},\mathbf{\Xi}\right)$, где $\mathbf{\Xi}$ ковариационная матрица общего вида, $\boldsymbol{\varepsilon}_{k,k'} = \mathbf{w}_k^0 \mathbf{w}_{k'}^0$.

Обучения на реальных данных

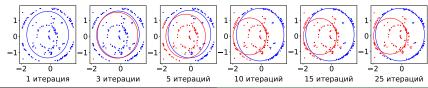
Регуляризация априорных распределений



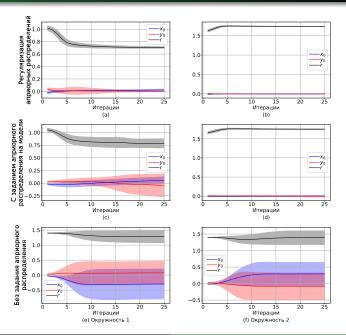
С заданием априорного распределения на модели



Без задания априорного распределения

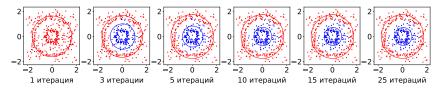


Параметры локальных моделей в процессе обучения

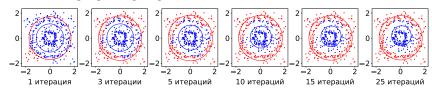


Обучения на синтетических данных

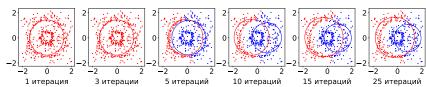
Регуляризация априорных распределений



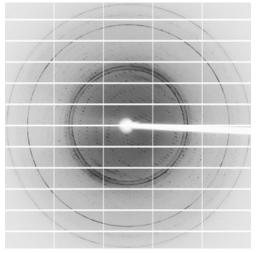
С заданием априорного распределения на модели



Без задания априорного распределения



Планы: смесь локальных моделей в кристаллографии



Crystal structure of a SusD homolog at 2.00 Å resolution

Выбор моделей и мультимоделирование

- Обобщен ряд методов выбора моделей с использованием байесовского подхода.
- Построена смесь моделей с разородными носителями функции распределения параметров.
- Построена смесь экспертов с пространствами параметров малой размерности.

Планируется развивать методы байесовского выбора разнородных моделей в задачах теоретической физики

Спасибо преподавателям Кафедры интеллектуальных систем МФТИ: А.А. Адуенко, О.Ю. Бахтееву, Р.В. Исаченко, О.В. Грабовому