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Problem statement



Energy consumption one-week forecast for each hour

Time series
Forecast
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The periodic components of the multivariate time series

The time series:

> energy price,
» consumption,
» daytime,
» temperature,
» humidity,

» wind force,

» holiday schedule.

Periods:

> one year seasons
(temperature,
daytime),

> one week,

» one day (working

day, week-end), AP v
> a holiday, VS 7w S B

/M Iy‘ v‘\

» aperiodic events. |




The autoregressive matrix, five week-ends
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The autoregressive matrix and the linear model
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In a nutshell,

In terms of linear regression:

y = Xw,

T,T
Ym+1 = ST =W Xp1q.



Model generation

Introduce a set of the primitive functions & = {g1,...,g},
for example g1 = 1, g2 = /X, g3 = x, g4 = x /X, etc.

The generated set of features X =
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Kolmogorov-Gabor polynomial as a variant for model generation
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where the coefficients

W = (Wo, Wi, Wij, ..oy Wi...z)iJ,...,z:l,...,n-



The one-day forecast (an example)
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The function y = f(x,w) could be a linear model, neural network,

deep NN, SVN, ...



lll-conditioned matrix, or curse of dimensionality

Assume we have hourly data on price/consumption for three years.

Then the matrix X* is
(m—+1)x(n+1)

156 x 168, in details: 52w - 3y x 24h - 7d;

» for 6 time series the matrix X is 156 x 1008,
» for 4 primitive functions it is 156 x 4032,

m << n.

The autoregressive matrix could be considered as ill-conditioned
and multi-correlated. The model selection procedure is required.



How many parameters must be used to forecast?

The color shows the value of a parameter for each hour.
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Estimate parameters w(7) = (XTX)1XTy, then calculate the
sample s(7) = W' (7)Xmy1 for each 7 of the next (m+ 1-th) period.



Ways to model selection: brief list of algorithms

Exhaustive search and modifications
1. Exhaustive search of 2P models
2. Genetic algorithms
3. Add/Del (append/delete a feature), P(P — 1)/2 models
4. Add-del or stepwise regression, ~ P2 models

Parameter space analysis
1. Least angle regression, Lasso, Stagewise, Elastic net

2. Optimal brain damage/surgery



Selection of a stable set of features of restricted size

The sample contains multicollinear x7, x> and noisy xs, X features,
columns of the design matrix X. We want to select two features from six.

Stability and accuracy for a fixed complexity

The solution: X3, X4is an orthogonal set of features minimizing the
error function.

Algorithms: GMDH, Stepwise, Ridge, Lasso, Stagewise, FOS, LARS, Genetics, ...



Model parameter values with regularization

Vector-function f = f(w, X) = [f(w,x1),...,f(w,xy,)]" € Y™.
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Multiscale data

Consider a large set of time series ® = {s(?)| g=1...,Q}.

Each real-valued time series s

s=1[s1,-.,Siy...,sT], si=s(ti), 0<t;i < tmax

is a sequence of observations of some real-valued signal s(t).

Each time series s(9) has its own sampling rate 7(9).
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Resampling time series



Resampling time series

Suppose that the observations s; = s(t;) of the signal s(t) are
sampled unevenly:

tr —t1

G={ty,...,t t; £
{17 7T}7 ?él T -1

To obtain evenly spaced observations:
1) select a new sampling rate 7s,

2) form the new grid
GS:{tl7'-'aTrS}7 ti:t1+(i_1)'Trs

3) and approximate unobserved evenly-spaced values §; = s(t;),
ti € Gs using the sampled observations s; = s(t;), t; € G.



Resampling: special case

1. The initial sampling rate is approximately even, but distortions
are possible:

ti=1i-7+0;, |0 <g

In this case the number T of resampled observations equals
the initial number of observations T.

distortion
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Resampling: special case

2. The sampling rate is even, but some values are missing:
|t,‘+1 - t," =nr,n €N.

Here 75 = 7 and missing values are the only ones that one
needs to approximate.

missing values
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Resampling: special case

3. Time series s comprises a finite number of intervals s, each sampled
from s(t) at fixed sampling rate:

s = [S(Tl),...,S(TlT;[), (T17'1-|-7'2 (Z Tka>

where >, T = T. Here we select the maximum sampling rate
fs = maxy T—lk and upsample the rest time series, using piecewise
constant approximation.
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Resampling details

Suppose that the signal s(t) is bandlimited with frequency f,.

Nyquist—Shannon sampling condition: it is sufficient to sample
the signal s(t) with frequency

i=/’;>2fb

Trs

to be able to fully reconstruct the signal from its discretely sampled
observations s(t;) = s(iTs).

Discrete signals are never bandlimited = the time series have to be
low-pass filtered to satisfy the Nyquist condition.



Upsampling procedure

Let Gs be the desired grid, G C Gs. To obtain s(Gs):
1. Approximate s(Gs \ G) using piecewise linear approximation.
2. Find s's FFT coefficients a;, b; for j =1, .. ., 2lloga T,
3. Set a; =0, b; =0, for j > 2llog2 TI-1,
4. Reconstruct the time series, using inverse FFT.
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Testing procedure



Time series forecasting
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Regression problem

Now we are able to state the regression problem as follows:

§ = f(x, W), W= argmin S(w|f(w,x),y). (1)

Here the error function S(w|f(w,x),y) averages forecasting errors
of [x;|yi] over all segments i =1,..., m in the test set:

S(w|f(w,x),y) = éz I(yi, f(xi, w)).
i=1

Let & denote residual vector
e=le1,...,&]=y—9

for the forecast y = f(w, x) of y.



Types of forecasting errors

» scale-dependent metrics: mean absolute error
r
1
MAE = =" |5,
r-
Jj=1

> percentage-error metric5' (symmetric) mean absolute percent error
r

’51| 2|5J|
MAPE = sMAPE =
Z il Z 9 + vl

> relative-error metrics (to residues e* of 2 benchmark method):

|5J|
MRAE =
Lyl

b
c*
j=1 J
» and scale-free error metrics:

1 role
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Rolling validation

nOW
/ end of history
l,-""”{”-|-"“u—r‘---r--"‘* S— LR | /

g ] >
g

f’i tQ f’l \ tO t

validation



Rolling validation

1) construct the validation vector x, , for time series of the
length At, as the first row of the design matrix Z,

2) construct the rest rows of the design matrix Z for the time
after t, and present it as

Xval,k
1xn
xtrain,k

Mmin XN

Yval, k
1xr

Ytrain,k

Mmin X1

I,

3) optimize model parameters w using Xerain k; Ytrain k-

4) compute residues 4 = yyai k — f(Xyal,, W) and MAPE,

5) increment k and repeat.



Feature generation



Generating extra features

To augment feature description, consider the following types of
features:

1) the local history of all time series themselves,

2) transformations (non-parametric and parametric) of local
history,

3) parameters of the local models,

4) distances to the centroids of local clusters.



Functional transforms

The procedure of generating new features ¢ requires:
> the original features x = {x1,...,xq},
» the set of primitive functions G = {g(b,x)},

g :x—¢;

» the generation rules: G O G, where the superposition
gk © g1 € G w.r.t. numbers and types of the input and output
arguments;

» the simplification rules: g, is not in G, if there exist a rule

rogur— gy €g.

The result is
the set of the features x = {x1,...,xQ,P1,..., On}-



Examples of nonparametric transformation functions

Formula | Output dimension
VX 1
%

X

» Univariate

arctan x

In x

el

xInx

Plus X1 + Xo

Minus X1 — X2
Product | x1 - x»
Division S

X2
X14/X2

x1 In xo

» Bivariate




Nonparametric transformations: sample statistics

Nonparametric transformations include basic data statistics:

» Sum or average value of each row x;, i=1,..., m:
n n
, 1
(l),-:E x,-j,or(b,-:;g Xij .
=1 =1

» Min and max values: ¢; = min; x;j, ¢ = max; x;;.
» Standard deviation:

1
n—1

;=

Z(X;j — mean(x;))?.
=1
» Data quantiles: ¢; = [X1, ..., Xk], where

n
Z[Xk_l <Xij§Xk]:%7 forkzl,...,K.
j=1



Nonparametric transformations: Haar's transform

Applying Haar's transform produces multiscale representations of the
same data.

. 0 /(0 .
Assume that n = 2K and init ¢>_,(-’J-) = (;’),.(J) =xjforj=1,....n
To obtain coarse-graining and fine-graining of the input feature vector
x;, for k=1,... K repeat:

» data averaging step

(K (k1)
(k) ¢/21 1+¢12j =1 n
¢,’J_ 2 y J= 7'”’2_/(’
» and data differencing step
/(k—1) /(k—1)
¢/(k) _ Bioj "~ Pinj1 1 n
= 5 o J=L o
The resulting multiscale feature vectors are ¢; = [qbgl), ey ¢§K)] and

o =D, o).



Parametric transformations

Optimization of the transformation function parameters b is
iterative:

1. Fix the vector b, collected over all the primitive functions {g},
which generate features ¢:

W = argmin S(w|f(w,x),y), where o(b,s) C x.

2. Optimize transformation parameters b given model
parameters w

b = arg min S(b|f(W,x),y).

Repeat these steps until vectors w, b converge.



Examples of parametric transformation functions

Function Formula Output | Num.| Num.

name dim. of of
args | pars

Add constant X+ w 1 1 1

Quadratic Wox? 4+ wix + wo 1 1 3

Cubic w3x3 + wox® 4+ wix + wo 1 1 4

Logarithmic 1/(wo + exp(—wix)) 1 1 2

sigmoid

Exponent exp X 1 1

Normal Wnl/% exp <%> 1 1

Multiply by X W 1 1

constant

Monomial wy x"2 1 1 2

Weibull-2 wiwox"2 L exp —wq x"2 1 1 2

Weibull-3 wiwox"2 Lexp —wi(x — w3)"2 | 1 1 3




Monotone functions

» By grow rate
Function name

Formula

Constraints

Linear

wiX + wy

Exponential rate exp(wix + wp) wy >0

Polynomial rate exp(wy Inx + wp) wy > 1

Sublinear exp(wilnx+wp) | 0<wy <1

polynomial rate

Logarithmic rate wy Inx + wy wi >0

Slow convergence wp + wy /x wy #0

Fast convergence wo + wy - exp(—x) wy # 0
» Other

Soft ReLu In(1+ e¥)

Sigmoid 1/(wo + exp(—wix)) | wg >0

Softmax 1/(1 4 exp(—x))

Hiberbolic tangent

tanh(x)

softsign

[x]
1+[x]




Parameters of the local models

Other options:
» Parameters of SSA approximation of the time series x(9).
» Parameters of the FFT of each x(9).

» Parameters of polynomial/spline approximation of each x(9).



Parameters of the local models: SSA

For the time series s construct the Hankel matrix with a period k

and shift p, so that for s = [sy,..., s7] the matrix
ST e ST—k+1
H* = : - : , where 1 > p > k.
5k+p e S]_+p
Sk ce S1

Reconstruct the regression to the first column of the
matrix H* = [h, H] and denote its least square parameters as the
feature vector

#(s) = arg min ||h — Ho|[3.

For the orignal feature vector x = [x(1), x(?)] use the parameters
d(x(9), g=1,...,Q as the features.



Metric features: distances to the centroids of local clusters

Apply kernel trick to the time series.

1. For given local feature vector ng), g=1,...,Q compute
k-means centroids cE,m), p=1,...,P.
2. With the selected k-means distance function p construct the

feature vector

o = [p(c? ), ..., p(el?. X)) € R

The procedure may be applied to each x(@) or directly to the
x =[x, ..., x(Q)], resulting in only P additional features instead

of @ P



Mixture of experts



Gating function

Suppose that each linear model f(x,wy), k =1,..., K generates a
sample (x, y) with some probability p(k|x).

Gating function m(x,v) maps X — [0, 1]

exp(vyx)

K .
Zk’:l eXp(VZ/X)

(X, vg) =

Gating function

Expert

Mixture of Experts is a mixture models with weights modeled
through gating functions m(x, v).
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Mixture of two experts (2nd
degree polynoms), synthetic data.



Mixture of Experts

Model likelihood p(y|x, @) is given by

K

K
plylx,0) = 3" pklx, 0)p(y|k,x,8) = > 7(x, vi)N (y|w,x, B),

k=1 k=1

where @ denotes the concatenated vector of parameters:
0= [le" .,Wk,Vl,...,Vk,B]T,

and B = jl,, is the covariance matrix for y.



Parameter estimation

To obtain maximum likelihood estimates of

6 = argmaxIn p(y|6),
0

introduce hidden indicator variables Z = [z3,...,zp]|, 2z € {0,1},
such that
zik = 1 & yi ~ N(wix;, B).

Then the loglikelihood function p(y, Z| X, ) takes the form

m K
pyIX, Z,0) => > zi (Inmi + In N (yilwixi, B))

i=1 k=1

EM-algorithm: instead of p(y|X,8) maximize the expected
loglikelihood Ez[p(y, Z|X, 8)] of the observed data.



EM-algorithm for mixture of experts

E-step: Compute expectations, according to Bayes' rule

T (xi, Vi) N (yilxf wi, B7)
ZkK’:l 7T/(’(Xl'a Vk’ )N(yi|x;'rwzla /Br)

it = E(zi) = p(k|x;, 07) =

M-step: Recompute parameter estimates:

’H = argmax g 'yr+1|n7rk (xi,v),

;H = arg max [ 27'+1 — WX )2] ,

BrH = arg;nax [nlnﬁ — % (y — X W;—H) ] .



Computational experiments



Goals

» Demonstrate that the proposed framework yields adequate
forecasting quality.

» Analyze performance of feature generations strategies
discussed above.



1. Original Polish electricity load time series, 1999-2004, including:

> hourly energy time series (total of 52512 observations),

» six daily weather time series from Warsaw (2188 observations): Max
Temperature, Min Temperature, Precipitation, Wind, Relative
Humidity, Solar.

2-5. Data sets with artificial inserted missing values, 1, 3, 5 and 10%
missing.
6. Data set with artificially varied sampling rate.
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Target variables. The design matrix.



Models and features

Models:

»

>

Baseline method: §; = s;_;.

Multivariate linear regression (MLR) with /-regularization.
Regularization coefficient: 2

SVR with multiple output. Kernel type: RBF, p1: 2, pp: 0, v: 0.5, A: 4.
Feed-forward ANN with single hidden layer, size: 25

Random forest (RF). Number of trees: 25 , number of variables for
each decision split: 48.

Feature combinations:

>

| 2

>

History: the standard regression-based forecast with no additional
features.

SSA, Cubic, Conv, Centroids, NW: history + a particular feature.

All: all of the above, with no feature selection.

» PCA and NPCA: all generation strategies with feature selection.



Forecasting errors, SMAPE

Data ‘ Energy ‘ Max T. ‘ Min T. ‘ Precip. ‘ Wind ‘ Humid. ‘ Solar
Test

orig 0.111 0.127 0.111 1.222 | 0.396 | 0.201 | 0.495

0.01 0.230 | 0.185 | 0.129 | 1.028 | 0.397 | 0.254 | 0.577

0.03 0.231 | 0.191 0.137 | 1.026 | 0.396 | 0.253 | 0.591

0.05 0.230 0.200 0.141 1.017 | 0.390 | 0.250 | 0.592

0.1 0.247 0.198 0.151 1.192 | 0.381 | 0.225 | 0.562
varying| 0.124 0.139 0.102 1.232 | 0.395 | 0.219 | 0.489
Train

orig 0.031 0.073 0.057 | 0.848 | 0.111 | 0.051 | 0.267
0.01 0.034 0.055 0.040 | 0.595 | 0.111 | 0.055 | 0.253
0.03 0.034 0.057 0.042 | 0.595 | 0.110 | 0.055 | 0.249
0.05 0.034 0.060 0.043 | 0.592 | 0.109 | 0.054 | 0.246
0.1 0.031 0.081 0.063 | 0.743 | 0.102 | 0.051 | 0.272
varying| 0.027 0.057 0.044 | 0.888 | 0.112 | 0.055 | 0.272




Feature analysis
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Best models, train/test residues
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Best models, standard deviations (train/test residues)
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Best models, train/test SMAPE
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Validation of multiple forecast approach

Additional loss functions: mean residues (test/train), standard
deviation of residues (test/train) — 6 loss functions.

trainRes
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Ratio of datasets, where best forecasts outperformed baseline
according to a particular error function.



Conclusion

» The framework for multiscale time series forecast employs
“multiple forecast” approach: all time series are forecasted
simultaneously.

» For better discrimination between experts apply feature
generation strategies.

» Even for such naive approach the results are still better then
those of the baseline method.

Stresstest procedure for feature selection algorithms.

A.M. Katrutsa, V.V. Strijov | Chemometrics and Intelligent
Laboratory Systems 2015.
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