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Introduction

� Key Observation:Key Observation:Key Observation:Key Observation: If two people have similar preferences for a 

subset of the items in a given collection, then they are likely 

to have similar preferences for other items in the same 

collection.

� Collaborative filtering (CF) methods work by analyzing the � Collaborative filtering (CF) methods work by analyzing the 

observed preferences of a group of people in order to make 

predictions about each person’s unobserved preferences. 

� These preferences can be implicitly collected observations 

like the number of times a user accessed an internet site, or 

explicit quantifications of preference like the rating assigned 

by the user to a movie.
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Problem statement
� Let: 

• U - set of users; R - set of items 

• RUru
l

iii
×∈

=1
},{ - given  sample of  

co-occurrence observations. 

� The goal is to induce similarity functions on  � The goal is to induce similarity functions on  

• users )',( uu
U

ρ  

• items )',( rr
R

ρ . 

� The final goals: personal recommendation, 

prediction of user behavior, items 

cathegorization, similarity search, etc. 
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Collaborative filtering methods

� Memory based

� Relevance Models

� Clients Environment Analysis (CEA)

� Latent Class Models
• Latent Semantic Analysis (LSA)• Latent Semantic Analysis (LSA)

• Probabilistic LSA (pLSA) or аspect model

� Matrix Factorization

� Clustering

� Transitive Associations

� Trust Inference

� Perception-based
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Clients Environment Analysis (CEA)

� The final applications are: 

• recommender systems 

• direct marketing 

• personalized advertising 

• similarity search • similarity search 

• similar minded people search in social networks.

� The main idea of CEA is to use the consistent 
similarity measures:

• items are similar if they are used by similar users 

• users are similar if they use similar items.
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Probabilistic LSA, latent profiles

� Suppose each user Uu ∈  is interested in a subset 

of topics from the set of topics T. 

� Latent profile of the user - a  vector of 

conditional probabilities: 
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� Latent profile of the item -  a vector of 

conditional probabilities: 
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Bayesian model of data

� The probability of co-occurrence  can be alternatively 

represented by two different generative models: 

∑
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� Sample of co-occurrence observations: l
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� Maximization of the log-likelihood: 
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The symmetric EM algorithm

Repeat until profiles converge: 

� Optimize 
tu

p  for fixed 
tr

q : 

• E-step: ∑=
s

sututr
srqptrqpuH )|()|()(  - hidden variables 

• M-step: ∑∑= trtu uHp 1)(  - latent profiles • M-step: ∑∑
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Experiments 

� Log file of clicks on documents returned by the search 
machine Yandex:

• 1024 most visited web sites as items 

• 7292 most active users 

• The latent profile size has been fixed as T=12 

• The meaning of topics has not been fixed a priory.• The meaning of topics has not been fixed a priory.

� Classified subsample:

• 400 web sites classified into 12 classes.

� The profile quality criterion:

• a number of labeled sites such that the position of the
maximum in their profile coincides with the most
frequent position of the maximum over the class.
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Optimization of parameters
The dependence of the number (in percents) of correctly reconstructed 

item profiles on three parameters of the algorithm
77%
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Comparison with other algorithms
The dependence of the number (in percents) of misclassified items on 

the parameter k in kNN algorithm for three types of metrics
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Similarity map 
(the result of Multidimensional Scaling)
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Conclusions

� The robust Euclidean distance between profiles is a much 

more adequate distance measure between items if compared 

with standard techniques.

� The meaning of topics has not been fixed a priory. 

Nevertheless the latent profiles estimated by the algorithm 
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Nevertheless the latent profiles estimated by the algorithm 

turned out to be well interpretable. 

� MDS groups web sites of similar subject matter into clusters. 

The sites belonging to the same cluster usually have the 

maximal profile component in the same position.

� Excessive optimization is redundant and can lead to 

overfitting.
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