
Minding the Gaps for
Block Frank-Wolfe

Optimization of
Structured SVMs

Anton Osokin* Jean-Baptiste Alayrac*

Isabella Lukasewitz Puneet K. Dokania

Simon Lacoste-Julien

Bayesian Methods Research Group seminar
Moscow State University – June 9th 2016

* equal contribution

Outline

 Structured Support Vector Machine

 Frank-Wolfe optimization

 Block-Coordinate Frank-Wolfe

 Improving BC-FW:
 Gap sampling

 Caching

 Pairwise and away steps

 Regularization path for SSVM

 structured prediction:

 learn linear classifier:

 structured SVM objective (primal):

Structured SVM

decoding

vs. binary hinge loss:

structured hinge loss:

 structured prediction:

 learn linear classifier:

 structured SVM objective (primal):

 structured SVM dual:

 primal-dual pair:

Structured SVM

decoding

loss-augmented decoding

-> exponential number of variables!

Structured SVM optimization

 popular approaches:
 stochastic subgradient method

 pros: online!
 cons: sensitive to step-size; don’t know when to stop

 cutting plane method (SVMstruct)
 pros: automatic step-size; duality gap
 cons: batch! -> slow for large n

 block-coordinate Frank-Wolfe on dual

-> combines best of both worlds:
 online
 automatic step-size via analytic line search
 duality gap
 rates also hold for approximate oracles

suboptimality
after K passes
through data:

[Ratliff et al. 07,
Shalev-Shwartz et al. 10]

[Tsochantaridis et al. 05,
Joachims et al. 09]

[Lacoste-Julien et al. 13]

 FW algorithm – repeat:

convex & cts. differentiable

convex & compact

 constrained optimization:

(aka conditional gradient)

where:

1) Find a good feasible direction by
minimizing linearization of :

2) Take a convex step in the direction:

 Properties: O(1/T) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately

Frank-Wolfe algorithm [Frank, Wolfe 1956]

 FW algorithm – repeat:

 FW gap is free:

1) Find a good feasible direction by
minimizing linearization of :

2) Take a convex step in the direction:

Frank-Wolfe gap

 Properties: O(1/T) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately

 FW algorithm – repeat:

 structured SVM dual:

2) Take a convex step in the direction:

use primal-dual link:

key insight:

becomes a batch subgradient step:

choose by analytic line search on quadratic dual

Frank-Wolfe for SSVM [Lacoste-Julien et al., 2013]

1) Find good feasible direction by
minimizing linearization of :

loss-augmented decoding
on each example

Block-Coordinate Frank-Wolfe

 for constrained optimization over compact product domain:

 pick i at random; update only block i with a FW step:

 same O(1/T) rate as batch FW

-> each step n times cheaper though

-> constant can be the same (SVM e.g.)

 Properties: O(1/T) rate
 sparse iterates
 get duality gap guarantees
 affine invariant
 rate holds even if linear

subproblem solved
approximately

[Lacoste-Julien et al. 13]

Block-Coordinate Frank-Wolfe

 for constrained optimization over compact product domain:

 pick i at random; update only block i with a FW step:

loss-augmented decoding

structured SVM:

 same O(1/T) rate as batch FW

-> each step n times cheaper though

-> constant can be the same (SVM e.g.)

[Lacoste-Julien et al. 13]

Key insight: separable FW gap

 Frank-Wolfe gap

can be written as a sum of block gaps

where

 block gap represents suboptimality at one block

 can use block gaps to adaptively adjust the algorithm

Contributions

 Improving BC-FW:

 Gap sampling

 Caching

 Pairwise and away steps

 Regularization path for SSVM

Gap sampling (new!)

 We can use block gaps to adaptively pick an object for the next
iteration

 Multiple schemes possible:

 pick the object with largest gap (deterministic)

 sampling with probabilities proportional to block gaps (or
squares?)

 More adaptive than sampling proportional to Lipschitz constants

[Nesterov, 2012; Needell et al., 2014; Zhao & Zhang, 2015]

 We are aware of only one adaptive sampling method:

[Csiba et al. (2015)] in the context of SDCA

Exploitation vs. staleness trade-off

 When selecting objects all the other gaps become outdated (stale)

 If using very stale gaps, the gap estimates become bad

 To compensate, we can recomputed the true gap after every X
passes over the dataset

Illustrative experiment on OCR dataset:

Gap sampling: theoretical result

 If we sample objects proportional to the exact block gaps

then convergence rate is multiplied by a constant depending on

the non-uniformity of the gaps and the non-uniformity of the

(unknown) curvature constants.

 In the best case (curvature constants are uniform, gaps are non-
uniform), gap sampling is times faster

 In the worst case (curvature constants are non-uniform, gaps are
uniform), gap sampling is times slower

 If gaps are moderately non-uniform gap sampling is always faster

 Open problem: how to analyze the staleness effect?

Caching oracle calls (new!)

 The oracle might be the bottleneck of the algorithm

 We can cache the output of the oracle and reuse them

same idea was used in 1-slack cutting plane [Joachims et al. 09]

 Instead of the oracle we call a cache oracle

 If the cache corner can give enough improvement use it

 Adaptive criterion for cache hit:

Caching oracle calls (new!)

 Cache regimes:

 With global cache criterion we can prove convergence

 Open problem: convergence rate based on the local criterion

Slow convergence of Frank-Wolfe...

Pairwise and away steps (new!)

standard FW

zig-zagging problem for FW

away step
fix

away-step FW

see [Lacoste-Julien & Jaggi 15]

Variants with linear convergence

away-step FW pairwise FW

 fully-corrective FW (FC-FW): re-optimize over convex hull of
previously found vertices (correction polytope)

see [Lacoste-Julien & Jaggi 15]

Block-Coordinate versions (new!)

 We propose Pairwise and Away variants for BC-FW

 Algorithm BC-PFW (pairwise steps)

 Pick FW corner

 Pick Away corner

 Analytic line search

 Move mass from Away corner to FW corner

 Catch: need to maintain dual variables, but similar to cache

 Bad news: do not have satisfying theoretical results

 Good news: observe linear convergence in some cases

Comparing different variants

 8 methods:
 gap sampling / uniform sampling

 caching / no caching

 BC-FW / BC-PFW (pairwise steps)

 4 structured prediction datasets:
 OCR – character recognition

 CoNLL – text chunking

 HorseSeg (3 sizes) – binary image segmentation

 LSP – human pose estimation

 3 values of regularization parameter: good, too big, too small

 2 pages of plots

Comparing different variants

Comparing different variants

Conclusion 1: gap sampling always helps! (solid vs. dashed)

Comparing different variants

Conclusion 2: caching always helps in the number of oracle calls
(blue vs. yellow). If oracle is fast, caching can even hurt because of
overheads. If oracle is slow, caching is a must!

Comparing different variants

Conclusion 3: pairwise steps help reaching high accuracy.
The effect is stronger if the problem is more strongly convex.

Comparing different variants

Recommendation: use (a) BC-PFW + gap sampling + caching or
(b) BC-FW + gap sampling

Regularization path (new!)

 Regularization path = solving the problem for all possible values of
regularization parameter

 Better than the grid search, but usually expensive

 Exact paths are unstable and often intractable

 We construct an ε-approximate regularization path

 We use piecewise constant approximation except the first piece

 Algorithm:
1. Initialization: construct the largest breakpoint

2. At a breakpoint, construct the next one such that the gap is smaller than ε

3. Optimize with any solver to get gap of κε, κ < 1 (to make a step)

4. Repeat steps 2 and 3 until convergence

Regularization path: results

 We can compute the full path for smaller datasets:

HorseSeg-small and OCR-small

 For larger datasets both grid search and paths exceed time limits

Contributions

 Improvements over BCFW:

 adaptive non-uniform sampling of the training objects

 gap-based criterion for caching the oracle calls

 pairwise and away steps in the block-coordinate setting

 Regularization path for SSVM.

Key insight: adaptivity via using the gaps

