Автоматическое выделение именованных сущностей в коллекциях текстовых документов

Хайруллин Ринат

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В.А. Серебряков

Москва, 2018 г.

Задача выделение именованных сущностей

Что такое именованная сущность?

Именованная сущность – n-грамма в тексте, для которой определен класс. Классы:

- Новостная тематика: имена персон, названия организаций и геолокаций ...
- Биологическая тематика: названия протеинов, клеток ...

[Barack Obama] arrived this afternoon in [Washington, D.C.]. [President Obama]'s wife [Michelle] accompanied him

PERSON LOCATION

[TNF alpha] is produced chiefly by activated [macrophages]

PROTEIN CELL

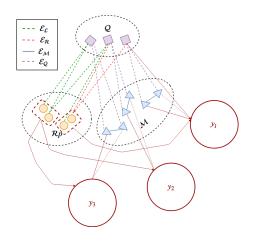
Подзадачи

- Выделение п-грамм в тексте.
- ② Определение класса $y \in Y$ для каждой выделенной n-граммы. Y некоторое заданное конечное множество классов.

Постановка задачи

Требуется

Предложить алгоритм автоматического распознавания именованных сущностей в корпусе текстов.


Проблемы сущетсвующих алгоритмов

- Требуется большой объем обучающей выборки.
- Допускается лексическая многозначность именованных сущностей.

Предлагается

- построить словарь n-грамм Q,
- моделировать классы $y \in Y = \{$ **Персон**а, **Организация**, **Геолокация** $\}$, только для вхождений элементов словаря $\mathcal Q$ в текст (множество $\mathcal M$),
- зная метки классов на некотором подмножестве $\mathcal{M}_0 \subset \mathcal{M}$, построить алгоритм получения меток классов на неразмеченной части множества $\{m \in \mathcal{M} \setminus \mathcal{M}_0\}$.

Получение меток классов на неразмеченной части выборки

Построение словаря п-грамм

 $Y = \{$ Персона, Организация, Геолокация $\}$

Можество \mathcal{Q} : все n-граммы удовлетворяющие следующим свойствам:

- символьное представление:
 - все слова n-граммы начинаются с заглавной буквы,
 - кроме не более 2 слов подряд, длинной не более 3 символов,
- ② $\rho(\{w_{d,k_1},\ldots,w_{d,k_t}\}) > \alpha$, $\rho(\cdot)$ значимость N-граммы.
- опоследовательность частей речи соответствует виду ([причастие] $\{0,1\}$ [прилагательное] $\{0,2\}$ [существительное]+)

Примеры:

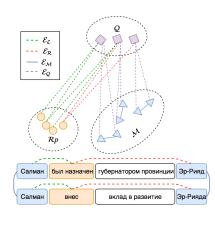
Салман ибн Абдул-Азиз Аль Сауд, Объединенные арабские эмираты.

Precicion	Recall	F1
0.87	0.92	0.88

Связью r - будем называть n-грамму, последовательность частей речи, которой соответствует виду ([предлог]|[глагол] + [предлог] $\{0,1\}$) **Можество** $\mathcal{R}p$: все *связи* r.

Примеры: был назначен на, происходит в.

Представление корпуса текста в виде графа


- Q множество выделенных n-грамм,
- $\mathcal{R}p$ множество связей,
- \mathcal{M} множество словопозиций в тексте \mathbf{n} -грамм из \mathcal{Q} .
- двудольные графы:

•
$$\mathcal{G}_{\mathcal{Q}} = (\mathcal{M} \sqcup \mathcal{Q}, \mathcal{E}_{\mathcal{Q}})$$

•
$$\mathcal{G}_L = (\mathcal{M} \sqcup \mathcal{R}p, \mathcal{E}_{left})$$

•
$$\mathcal{G}_R = (\mathcal{M} \sqcup \mathcal{R}p, \mathcal{E}_{right})$$

- Knn-граф: $\mathcal{W}_{\mathcal{M}} = (\mathcal{M}, \mathcal{E}_{\mathcal{M}}, f)$
- $m{egin{align*} \bullet }$ двудольные графы: $m{\mathcal{W}}_{\{L,R\}} = (\mathcal{Q} \sqcup \mathcal{R}p, \mathcal{E}_{\{\mathcal{L},\mathcal{R}\}},
 u). \ m{\mathcal{W}}_{\{L,R\}} = m{\mathcal{G}}_{\mathcal{O}}^{\mathsf{T}} m{\mathcal{G}}_{\{L,R\}}. \end{aligned}}$

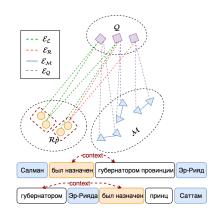
Задача распознавания именованных сущностей

Дано:

$$\mathcal{M}_0=\{(m,y)\}, y\in Y, |Y|=T$$

$$\mathcal{G}_Q, \mathcal{G}_L, \mathcal{G}_R, \mathcal{W}_M, \mathcal{W}_L, \mathcal{W}_R$$

 $oldsymbol{3}$ адача: Для каждого $m \in \mathcal{M} \setminus \mathcal{M}_0$ определить тип $y \in Y$


Индикаторы классов на множестве вершин графа:

$$\mathcal{M}: \mathbf{\mathcal{Y}} \in \mathbb{R}^{m \times T},$$

$$\mathcal{Q}: \mathbf{\mathcal{C}} \in \mathbb{R}^{n \times T},$$

$$\mathcal{R}p: \mathbf{\mathcal{P}}_{\{\mathcal{L},\mathcal{R}\}} \in \mathbb{R}^{\ell \times T}$$

Решение: $y(m_i) = \operatorname{argmax}_i \mathcal{Y}_i$

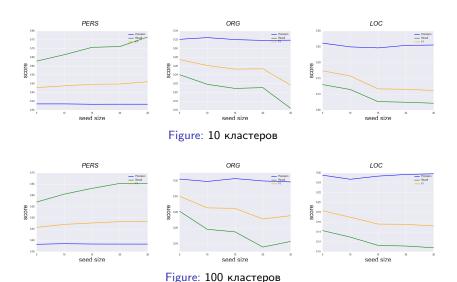
$$\mathcal{O} = \underbrace{\Omega_{\gamma,\mu} \left(\boldsymbol{\mathcal{Y}}, \boldsymbol{\mathcal{Y}}_{0}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{P}}_{\{\mathcal{L},\mathcal{R}\}} \right)}_{\text{веса индикаторных матриц}} + \underbrace{\mathcal{L}_{\alpha} \left(\left\{ \boldsymbol{\mathsf{F}}_{v}, \boldsymbol{\mathsf{U}}_{v}, \boldsymbol{\mathsf{V}}_{v}, \beta_{v} \right\}, \boldsymbol{\mathsf{U}}^{*} \right)}_{\boldsymbol{\mathsf{K}}, \boldsymbol{\mathsf{L}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{P}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{T}}, \boldsymbol{\mathsf{T$$

Эксперимент

Цели эксперимента:

- Изучение зависимости качества распознавания от размера начальной разметки.
- **③** Изучение зависимости качества распознавания от числа кластеров на множестве связей $\mathcal{R}p$.

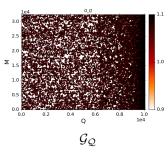
Данные:

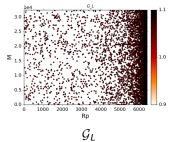

- Размеченные корпусы текстов FactRuEval¹ и LABINFORM², классы Персона, Организация, Геолокация.
 - размер корпуса ~ 300000 слов,
 - словарь именованных сущностей:
 - Персоны: ~ 6000 n-грамм, Организации: ~ 4000 n-грамм, Геолокации: ~ 2000 n-грамм,
 - именованных сущностей в корпусе:
 - Персоны: ~ 12630 n-грамм, Организации: ~ 10514 n-грамм, Геолокации: ~ 8078 n-грамм,

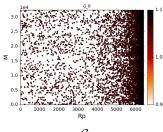
Метрики качества: Precicsion, Recall, F1 score.

¹https://github.com/dialogue-evaluation/factRuEval-2016

²http://labinform.ru/pub/named_entities/descr_ne.htm


Зависимость качества распознавания, от размера начальной выборки




Хайруллин Ринат

Page Rank 9/14

Матрицы графов

Результаты эксперимента

Результаты на корпусе FactRuEval и LABINFORM

Алгоритм	Person		Location			Organization			
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
CLUS	0.38	0.65	0.48	0.25	0.10	0.15	0.32	0.24	0.27
NOCLUS	0.39	0.54	0.45	0.25	0.16	0.2	0.32	0.32	0.32

Заключение

- Предложен и реализован алгоритм для решения задачи автоматического распознавания именованных сущностей.
- Проведен эксперимент на размеченном корпусе на русском языке:
 - Алгоритм показывает низкое качество распознавания на корпусе текстов малого объема.

План дальнейших работ

- Провести эксперименты на расширенном корпусе текстов.
- Исследовать динамику изменения качества при увеличении выборки.
- Сравнить работу алгоритма с существующими решениями для русского языка.
- Попытаться обобщить алгоритм для использования на корпусах текстов других тематик.

Функция потерь

$$\begin{split} \mathbf{D}_{\mathcal{M},i,i} &= \sum_{j}^{|\mathcal{M}|} W_{\mathcal{M},i,j}, \quad \mathbf{D}_{\mathcal{Z},i,i}^{\mathcal{Q}} = \sum_{j}^{|\mathcal{R}_{P}|} W_{\mathcal{Z},i,j}, \quad \mathbf{D}_{\mathcal{Z},j,j}^{\mathcal{R}_{P}} = \sum_{i}^{|\mathcal{Q}|} W_{\mathcal{Z},i,j} \\ \Omega_{\gamma,\mu} \left(\boldsymbol{\mathcal{Y}}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{P}}_{L}, \boldsymbol{\mathcal{P}}_{R} \right) = \| \boldsymbol{\mathcal{Y}} - (\boldsymbol{\mathcal{G}}_{Q} \boldsymbol{\mathcal{C}} + \boldsymbol{\mathcal{G}}_{L} \boldsymbol{\mathcal{P}}_{L} + \boldsymbol{\mathcal{G}}_{R} \boldsymbol{\mathcal{P}}_{R}) \|_{F}^{2} + \mu \| \boldsymbol{\mathcal{Y}} - \boldsymbol{\mathcal{Y}}_{0} \|_{F}^{2} \\ &+ \frac{\gamma}{2} \sum_{i,j}^{|\mathcal{M}|} W_{\mathcal{M},i,j} \| \frac{\boldsymbol{\mathcal{Y}}_{i}}{\sqrt{\mathbf{D}_{\mathcal{M},i,i}}} - \frac{\boldsymbol{\mathcal{Y}}_{i}}{\sqrt{\mathbf{D}_{\mathcal{M},j,j}}} \|_{2}^{2} \\ &+ \sum_{Z \in \{L,R\}} \sum_{i}^{|\mathcal{Q}|} \sum_{j}^{|\mathcal{R}_{P}|} W_{Z,i,j} \| \frac{\boldsymbol{\mathcal{C}}_{i}}{\sqrt{\mathbf{D}_{Z,i,i}^{\mathcal{Q}}}} - \frac{\boldsymbol{\mathcal{P}}_{Z,j}}{\sqrt{\mathbf{D}_{Z,i,i}^{\mathcal{R}_{P}}}} \|^{2} \end{split}$$

$$extsf{F}_{v} \in \{ extsf{\mathcal{P}}_{\{ extsf{\mathcal{L}}, \mathcal{R}\}}, extsf{F}_{context}, extsf{F}_{characters}\}$$

$$\mathcal{L}_{\alpha}\left(\{\mathbf{F}_{v},\mathbf{U}_{v},\mathbf{V}_{v},\beta_{v}\},\mathbf{U}^{*}\right)=\sum_{v}\left(\beta_{v}\|\mathbf{F}_{v}-\mathbf{U}_{v}\mathbf{V}_{v}^{T}\|_{F}^{2}+\alpha\|\mathbf{U}_{v}\mathbf{H}_{v}-\mathbf{U}^{*}\|_{F}^{2}\right)$$

Задача минимизации

$$\min_{\boldsymbol{\mathcal{Y}}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{P}}_{\{\mathcal{L}, \mathcal{R}\}}, \{\boldsymbol{\mathsf{U}}_{\boldsymbol{\mathsf{V}}}, \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{V}}}, \boldsymbol{\mathsf{V}}^*\}, \boldsymbol{\mathsf{V}}^*} \underbrace{\frac{\Omega_{\gamma, \mu} \left(\boldsymbol{\mathcal{Y}}, \boldsymbol{\mathcal{Y}}_{0}, \boldsymbol{\mathcal{C}}, \boldsymbol{\mathcal{P}}_{\{\mathcal{L}, \mathcal{R}\}}\right)}{\text{веса индикаторных матриц}}}_{\mathbf{\mathsf{B}} + \mathbf{\mathsf{E}}, \mathbf{\mathsf{E}}, \mathbf{\mathsf{C}}, \boldsymbol{\mathsf{V}}^*\}, \boldsymbol{\mathsf{V}}^*} \underbrace{\frac{\mathcal{L}_{\alpha} \left(\{\boldsymbol{\mathsf{F}}_{\boldsymbol{\mathsf{V}}}, \boldsymbol{\mathsf{U}}_{\boldsymbol{\mathsf{V}}}, \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{V}}}, \boldsymbol{\mathsf{V}}^*\right)}{\text{кластеризация связей как MultiNMF задача}}}_{\mathbf{\mathsf{E}}, \mathbf{\mathsf{E}}, \mathbf{\mathsf{E}}, \mathbf{\mathsf{V}}^*}$$