Feature selection for clustering

Victor Kitov

Feature selection for clustering

Problem statement

Select subset of features in which training objects break into distinct clusters in most explicit way.

- Its data mining, not machine learning with exact criterion optimization.
- Categorization of feature selection methods:
 - Filter methods: do not rely on particular clustering algorithm
 - generally faster
 - more universal
 - fit less well with exact method
 - Wrapper methods: tied to particular clustering algorithm
 - work better for given algorithm

Filter methods

Table of Contents

2 Wrapper methods

Features and objects similarity

- Intuition: features good for clustering can individually predict well the similarity of objects.
- For 2 randomly chose objects x, x' they should be similar <=> xⁱ, x'ⁱ are similar.
 - need to define similarity
- Example: news clustering, features-indicators of words:
 - president (indicative for politics cluster)
 - competition (indicative for sports cluster)
 - exhibition (indicative for arts cluster)

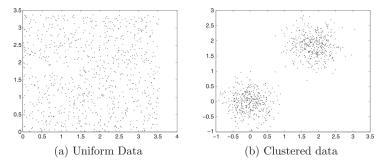
Features and objects similarity

- xⁱ-real feature :
 - $corr(\rho(x, x'), |x_i x'_i|)$
 - $corr(\mathbb{I}[x \text{ and } x' \text{ are not similar}], |x_i x'_i|)$
- xⁱ-binary feature:
 - $corr(\rho(x, x'), \mathbb{I}[x_i = x'_i])$
 - $corr(\mathbb{I}[x \text{ and } x' \text{ are not similar}], \mathbb{I}[x_i = x'_i])$
 - $p(x'_i = 1 | x_i = 1)$ for any x' similar to x.
- Comment: features should have equal scale.

Filter methods

Predictive attribute dependence

• for good clustering feature should be predicted well with other features:



- score of feature *i*: accuracy of predicting x^i using $\{x^i\}_{j \neq i}$
- K-NN prediction is preferred due to its geometric intuition

Filter methods

Pairwise distance distribution

- Estimate distribution of $\rho(x, x')$ for random x, x'
- Good clustering should give multimodal distribution



Pairwise distance distribution

- Consider object representation with features $I:F_I(x) = \{x^i\}_{i \in I}$
- Possible quality of feature subset I: $Entropy[\rho(F_I(x), F_I(x'))]$ for random x, x'.
- Feature subset selection using backwards suboptimal search:
 - start from full set of features
 - recurrently remove least significant feature, according to $\Delta Entropy$.

Hopkins statistic

Define:

- T training dataset ($T = \{x_1, ..., x_N\}$)
- R set of real objects $x'_1, ... x'_K$
 - $\bullet\,$ each object is selected randomly from $\,{\cal T}\,$

•
$$\alpha_i := \rho(\tilde{x}_i, T)$$

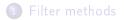
- S set of synthetic objects $ilde{x}_1, ... ilde{x}_K$
 - each feature generated randomly independently of others in its domain
 - define $\beta_i := \rho(\tilde{x}_i, T)$
- Hopkins statistic

$$H = \frac{\sum_{i=1}^{K} \beta_i}{\sum_{i=1}^{K} \alpha_i + \beta_i}$$

• $H \in [0.5, 1]$, higher valuer are better

Wrapper methods

Table of Contents



Wrapper methods

Wrapper methods

- Filter methods, considered before, do not consider what clustering method will be used
- Wrapper methods do feature selection for particular choice of clustering method.
- Approaches:
 - feature selection with backward search
 - classifier feature selection
- Comments:
 - wrapper methods are tied to final clustering algorithm
 - but filter methods are faster, than wrapper
 - we can use filtering methods to generate candidate feature subsets for wrapper methods.
 - better efficiency

Wrapper methods

Feature selection with backward search

- Select some cluster evaluation criterion $J(\cdot)$
- Algorithm:

```
Init F = \{f^1, ..., f^D\} to contain all features

WHILE clustering quality J(F')-J(F) continues to improve:

F=F'

f' = \arg \max_f J(F \setminus \{f\})

set F' = F \setminus \{f'\}

RETURN F
```

Wrapper methods

Classifier method

- Classifier method:
 - **1** Perform clustering on $x_1, \dots x_N$, obtain cluster labels $c_1, \dots c_N$
 - **2** Use any supervised feature selection for $(x_1, c_1), ...(x_N, c_N)$.

Modifications:

- apply classifier method iteratively
- not discard removed features but decrease their weight