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NONPARAME TRIC STATISTICS A 
SIDNE Y SIEGEL 

The Pennsylvania State University 1 

In the development of modern techniques of statistical 
inference, the first tests to gain prominence and wide use 
were those which make a good many assumptions, and 
rather stringent ones, about the nature of the population 
from which the observations were drawn. The title of 
these tests parametric-suggests the central importance 
of the population, or its parameters, in their use and 
interpretation. These tests also use the operations of arith- 
metic in the manipulation of the scores on which the in- 
ference is to be based, and therefore they are useful only 
with observations which are numerical. The t and F tests 
are the most familiar and widely used of the parametric 
tests, and the Pearson product-moment correlation coeffi- 
cient and its associated significance test are the most 
familiar parametric approaches to assessing association. 

More recently, nonparametric or "distribution-free" 
statistical tests have gained prominence. As their title 
suggests, these tests do not make numerous or stringent 
assumptions about the population. In addition, most non- 
parametric tests may be used with non-numerical data, 
and it is for this reason that many of them are often 
referred to as "ranking tests" or "order tests." Many 
nonparametric tests use as their data the ranks of the 
observations, while others are useful with data for 
which even ordering is impossible, i.e., classificatory 
data. 

Some nonparametric methods, such as the X2 tests, the 
Fisher exact probability test, and the Spearman rank 
correlation, have long been among the standard tools of 
the statisticians. Others are relatively new, and therefore 
have not yet gained such widespread use. At present, 
however, nonparametric tests are available for all the 
common experimental designs. 

The purpose of the present paper is not to discuss the 
rationale and application of the various nonparametric 
tests. That has been done, at various levels of sophistica- 
tion and with varying degrees of comprehensiveness, in 
other sources (2, Chap. 17; 3; 6, Chap. 16; 7; 8; 9; 
10; 11; 13). Rather, the purpose is to discuss, at a 
non-technical level, certain issues which have arisen in 
connection with the use of nonparametric tests. In par- 
ticular, issues are discussed which are relevant to the 
choice among alternative tests, parametric and non- 
parametric, applicable to the same experimental design. 

Power 
When alternative statistical tests are available to treat 

data from a given research design, as is very often the 
case, it is necessary for the researcher to employ some 
rationale in choosing among them. The criterion most 
often suggested is that the researcher should choose the 
most powerful test. 

The power of a test is defined as the probability that 
the test will reject the null hypothesis when in fact it is 
false and should be rejected. That is, 

Power -1 -- probability of a Type II error 
Thus, a statistical test is considered a good one if it has 
small probability of rejecting Ho the null hypothesis 
when Ho is true, but a large probability of rejecting 
Ho when Ho is false. 

However, there are considerations other than power 
which enter into the choice of a statistical test. One must 
consider the nature of the population from which the 
sample was drawn, and the kind of measurement which 
was employed in the operational definitions of the 
variables of the research. These matters also enter into 
determining which statistical test is optimal for analyz-- 
ing a particular set of data. 

It is suggested here that the choice among statistical 
tests which might be used with a given research design 
should be based on these three criteria: 

1. The statistical model of the test should fit the con- 
ditions of the research. 

2. The measurement requirement of the test should be 
met by the measures used in the research. 

3. From among those tests with appropriate statistical 
models and appropriate measurement requirements, that 
test should be chosen which has greatest power-efficiency. 

The Statistical Model 
When we have asserted the nature of the population 

and the manner of sampling in the research, we have 
established a statistical model on the basis of which we 
may conduct a statistical test. The validity of the con- 
clusion based on the statistical test depends on whether 
or not the conditions of the statistical model underlying 
the test are met. That is, the conclusion based on a 
statistical test carries a qualifier: "If the model used was 
correct, then we may conclude that . 

Sometimes the researcher is able to determine whether 
the conditions of a particular statistical model are met 
in his research, but more often he simply has to assume 
that they are met. Thus the conditions of a statistical 

R EDITOR's NOTE: Articles of an expository, nontechnical nature 
similar to this one are desired in the "newer" fields in statistics 
for possible publication in The Almerican Statistician. 

' At the Center for Advanced Study in the Behavioral Sciences, 
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model of a test are often called the "assumptions" of the 
test. 

The model underlying the common parametric tests, 
the t and F tests, imposes these conditions: (a) the 
observations must be independent, (b) the observations 
must be drawn from normally distributed populations, 
(c) these populations must have the same variance, or, in 
special cases, they must have a known ratio of variances, 
and (d) in the case of the analysis of variance, the 
means of these normal and homoscedastic populations 
must be linear combinations of effects due to columns 
and/or rows-the effects must be additive. In addition, 
as we shall note further below, the nature of the t and F 
tests also imposes a measurement requirement: a test on 
the means imposes the requirement that the measures 
must be additive, i.e., numerical. 

As we have already noted in the discussion of their 
title, the nonparametric tests are not based on a statis- 
tical model which specifies such restrictive conditions. 
In addition to assuming that the observations are inde- 
pendent, some nonparametric tests assume that the 
-variable under study has underlying continuity. More- 
over, the measurement requirement of nonparametric 
tests is weaker; as will be shown, most nonparametric 
tests require either ranking or classificatory measure- 
ment. 

Compared to the models underlying parametric tests, 
the models underlying nonparametric tests are far less 
restrictive, and therefore the conclusions based on non- 
parametric inference are more general. When a para- 
inetric test, say the t test, is used for inference, we must 
preface our conclusions with a statement like "If the 
observations are truly numerical, and are drawn from 
normally distributed populations which are equal in 
variance, then we may conclude that . . .", whereas when 

a nonparametric test is used for inference, we may say, 
"Regardless of the nature of the underlying populations, 
we may conclude- that . . .99 

By the criterion of generality, then, the nonparametric 
tests are preferable to the parametric. By the single cri- 
terion of power, however, the parametric tests are su- 
perior, precisely because of the strength of their as- 
sumptions; with data for which the strong and extensive 
assumptions and requirements associated with the para- 
metric tests are valid, these tests are most likely of all 
tests to reject Ho when Ho is false. 

Attracted by the power of parametric tests, and 
seeking to justify their use of these tests with their data, 
researchers have developed certain approaches in an 
attempt to determine whether the assumptions of the 
parametric tests are valid for their data. 

For example, in connection with the assumption that 
the scores are drawn from a normally distributed popu- 
lation, it is common practice to test the normality of the 
distribution of the scores in the sample by use of say the 

x2 goodness of fit test. If this test does not lead to the 
rejection of Ho, the researcher concludes that he may 
safely use tests whose statistical models pose the condi- 
tion that the population must be normally distributed. 
At least two objections to this procedure may be raised: 
(a) it involves an attempt to "prove" the null hypothesis 
that the sample is from a normally distributed popula- 
tion-the statistical test is employed in order to enable 
the researcher to accept that Ho, and (b) ambiguous and 
difficult situations arise when the obtained probability of 
deviations from normality as large as those observed in 
the sample is close to the arbitrarily set significance 
level. 

Similar objections may be raised to comparable at- 
tempts to justify the homoscedasticity assumption by 
attempting to "prove" the null hypothesis that the vari- 
ances of the two or more samples do not differ. 

When the investigator's test of his data indicates that 
the obtained sample of scores could well have been 
drawn from a population which is not normal, his earnest 
wish to justify the use of the most powerful test leads 
him to alter the distribution of scores. By a mathematical 
.operation on the original scores, he "transforms" them 
so that the normality assumption becomes tenable. The 
question which must be raised in connection with such 
an attempt is this: Will the process of "normalizing" the 
distribution by altering the numerical values of the 
'scores cause a distortion of the experimental effect under 
investigation? This is a question which the investigator 
may or may not be able to answer. If the process of 
transforming the scores has the effect of diminishing the 
experimental effect, then the investigator has placed him- 
self in a paradoxical situation. The steps he has taken in 
order to justify the use of a statistical test which has 
maximum capacity to reject Ho when it should be re- 
jected are steps which have reduced the sensitivity of the 
measurement and have thereby reduced the likelihood 
that Ho will be rejected when it should be. That is, his 
efforts to gain power paradoxically result in a loss of 
power. 

When the research involves the comparison of scores 
in two or more samples and when a test of their 
variances renders the homoscedasticity assumption ques- 
tionable, the procedure of transforming scores in order 
to justify that assumption is open to the same 
objection. 

When we have reason to believe that the conditions 
of the parametric model are met in the data under 
analysis, then we should certainly choose a parametric 
statistical test, such as a t or F test, for analyzing 
those data, because of the power of parametric tests. 
But if the assumptions of the test are not met, then it 
is difficult if not impossible to say what is really the 
power of the parametric test. It is even difficult to es- 
timate the extent to which a probability statement 
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about the hypothesis is meaningful when that prob- 
ability statement results from the inappropriate ap- 
)lication of the test. Although some empirical evidence 
has been gathered to show that slight deviations in 
meeting the assumptions underlying parametric tests 
may niot have radical effects on the obtained probability 
figure, there is as yet no general agreement as to what 
constitutes a "slight" deviation. 

Measurement 
The computation of any statistic involves performing 

certain manipulations of the research data. To com- 
pute a mean, for example, we perform the arithmetic 
manipulations of addition and division on the scores. 

The manipulations to which observations may mean- 
inigfully be subjected depend on the sort of measurement 
which the observations represent. For example, if the 
observations represent non-numerical measurement, the 
computation of a mean to represent the central tendency 
of the observations introduces distortion. 

Different statistical tests require different kinds of 
imianipulations of the research observations, and there- 
fore different statistical tests are useful in iiaking in- 
ferences from data representing measurement of differ- 
emit strengths or levels. 

Levels of measurement. In general, we can clearly 
define at least four distinct levels at which measurement 
iiay be achieved (12), when measurement is under- 
stood to mean the process of assigning symbols to 
observations in some consistent manner. 

Measurement is weakest when the objects in the 
universe are simply partitioned into mutually exclu- 
sive classes. This system of classes constitutes a nominal 
or classificatory scale. Each class may be represented 
l)y a letter, a name, a number, or some other symbol. 
The only relation which holds in the nominal scale is 
the relation of equivalence, which holds between en- 
tities in the same class. We use nominal scaling in 
identifying the fields of scholarly endeavor: we assign 
a scholar to a class in a nomninal scale when we 
say he is a "physicist," "linguist," "biochemist," or 
"historian." Often numbers are used as the symbols in 
nominal scaling. The numbers on automobile plates 
and postal zone numbers are examples. 

When the objects in the various classes of a scale 
stand in some kind of relation to one another, the scale 
is an ordinal or ranking scale. The fundamental dif- 
ference between a nominal and an ordinal scale is that 
the ordinal scale incorporates not only the relation of 
equivalence ( ) but also the relation "greater than" 
( > ) - Given a group of equivalence classes, if the 
relation > holds between some but not all pairs of 
classes, we have a partially ordered scale. If the re- 
lation > holds for all pairs of classes so that a comi- 

plete rank ordering of classes arises, we have an 
ordinal scale. In the academic world, professorial posi- 

tions stand in an ordinal relation to one another: pro- 
fessor > associate professor > assistant professor > 
instructor. The use of numbers to represent an ordinal 
relation is illustrated by Civil Service job classifications 
(GS12 > GSII > GS1O) and by street addresses. 

When the distances between any two classes on a scale 
are known numerically, the classes fall on an interval 
scale. An interval scale has all the characteristics of an 
ordinal scale, and in addition has a common and con- 
stant unit of measurement which assigns a real number 
to all pairs of objects in the ordered set. On an inter- 
val scale, the ratio of any two intervals is independent 
of the unit of measurement and of the zero point, both 
of which are arbitrary. Our two scales to measure 
temperature, the Fahrenheit and centigrade scales, are 
both examples of interval scales. 

When a scale has all the characteristics of an in- 
terval scale and in addition has a true zero point as 
its origin, it is called a ratio scale. On a ratio scale, 
the ratio of any two scale points is independent of the 
unit of measurement. We measure mass or weight in 
a ratio scale. The scale of ounces and pounds has 
a true zero point, as does the scale of grams. The 
ratio between any two weights is independent of the 
unit of measurement. For example, if we should de- 
termine the weights of two different objects not only 
in pounds but also in grams, we would find that the 
ratio of the two pound weights would be identical 
to the ratio of the two gram weights. 

Permissible operations and appropriate statistics. The 
purpose of the preceding discussion of levels of meas- 
urement is to remind the reader that at different times 
we use typographically identical numbers to represent 
observations and coding procedures of widely varying 
strengths. The manipulations which may meaningfully 
be performed on a set of numbers depend on the 
strength of measurement which the numbers represent. 
It is clear, for example, that while it is certainly 
meaningful to add two weights (when we combine the 
contents of a two-pound box of candy with the con- 
tents of a one-pound box we will indeed have three 
pounds of candy), there is no comparable simple or 
useful meaning to the sum of two automobile license 
numbers or the sum of two street addresses. 

Each of the four levels of measurement has certain 
appropriate manipulations associated with it. In order 
to be able to make certain operations with numbers 
that have been assigned to operations, the structure of 
our method of mapping numbers (assigning scores) 
must be isomorphic to some numerical structure which 
includes these operations. If two systems are isomor- 
phic, their structures are the same in the relations and 
operations they allow. 

In a nominal scale, the information may be equally 
well repsresented by any set of symbols, as long as the 
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equivalence relation is preserved. That is, the nominal 
scale is unique up to a one-to-one transformation: the 
symbols designating the various classes in the scale 
may be changed or even exchanged, if this is done con- 
sistently and completely. Thus, a postal area may be 
rezoned, with blocks formerly in zone 5 now falling 
in zone 12, and those formerly in zone 8 now falling 
in zone 5, etc., and no information will be lost in 
the rezoning if it is accomplished consistently and 
throughly. With nominal data, the meaningful statis- 
tics are those whose information would be unchanged 
by a one-to-one transformation: frequency counts, the 
mode, etc. Under certain conditions, we can test hypoth- 
eses regarding the distribution of cases among 
classes by using statistical tests which use frequencies 
in unordered categories, i.e., enumerative data. The 
x2 tests are of this type. The most common measure 
of association for classificatory data is the contingency 
coefficient. All of these are nonparametric statistics. 

The information in an ordinal scale may be equally 
well represented by any ordered set of symbols. That 
is, the ordinal scale is unique up to a monotonic trans- 
formation-any order-preserving transformation does 
not diminish the information it encodes. At present, 
a corporal wears two stripes and a sergeant wears three. 
These insignia denote that sergeant > corporal. This 
relation would be as well expressed if the corporal 
wore four stripes and sergeant wore seven. The statis- 
tic most appropriate for describing the central tendency 
of scores in an ordinal scale is the median, for the 
median is not affected by changes of any scores which 
are above or below it as long as the number of scores 
above and below remains the same. With ordinal data, 
hypotheses can be tested by using that large group 
of nonparametric statistical tests which are sometimes 
called "order tests" or "ranking tests." Correlation 
coefficients based on rankings, e.g., those of Spearman 
and Kendall, are appropriate. 

Some ranking tests assume that there is a continuum 
underlying the observed ranks. Such an assumption 
is frequently quite tenable even though the grossness of 
our measuring devices obscures the underlying con- 
tinuity. For example, although we may classify college 
students at the end of their college careers in only 
three ranks-graduating with honors, graduating, and 
failing to graduate-underlying this ranking is a con- 
tinuum of achievement in college. Data based on such 
a ranking could appropriately be subjected to a test 
which carried the assumption of underlying continuity. 

If a variate is truly continuously distributed, then 
the probability of a tie- between two observations is 
zero. However, tied ranks and tied scores frequently 
occur in research data. Tied scores are almost invari- 
ably a reflection of the lack of sensitivity of our 
measuring instruments, which fail to distinguish small 

differences which in fact do exist between the tied 
observations they "exist" in the sense that a more 
sensitive measuring instrument would distinguish them. 
Therefore, even when ties are observed it may not 
be unreasonable to assume that a continuous distribu- 
tion underlies the observations. Most nonparametric 
techniques incorporate a correction for tied observations. 

In the case of an interval scale, any change in the 
numbers associated with the positions of the objects 
on the scale must preserve not only the ordering of 
the objects but also the relative differences between 
them. That is, an interval scale is unique up to a linear 
transformation. For example, although for a given heat 
the readings on our two temperature scales, centigrade 
and Fahrenheit, would differ, both scales contain the 
same amount and the same kind of information they 
are linearly related. Although the two scales have a 
different zero point and a different unit of measurement, 
a reading on one scale can be transformed to the 
equivalent reading on the other by the linear trans- 
formation F = 9/5 C + 32, where F - number of 
degrees on the Fahrenheit scale and C number of 
degrees on the centigrade scale. It can be shown that 
the ratios of temperature differences (intervals) are 
independent of the unit of measurement and of the zero 
point. Some readings of the same heat on the two 
scales are: 

Centigrade 0 10 30 100 
Fahrenheit 32 50 86 212 

Notice that the ratio of the differences between tem- 
perature readings on one scale is equal to the ratio 
between the equivalent differences on the other scale. 
For example, on the centigrade scale the ratio of 
the differences between 30 and 10, and 10 and 0, is 
30 - 10/10 - 0 2. For the comparable readings on 
the Fahrenheit scale, the ratio is 86 - 50/50 - 32 2. 

The interval scale is a quantitative (numerical) 
scale and statistics which are obtained by treating 
scores as numbers (such as the mean, the standard 
deviation, the Pearson product-moment correlation co- 
efficient, etc.) may appropriately be used to represent 
data based on interval scaling. Most parametric statis- 
tical tests, including the t and F tests, are applicable to 
such data. 

A ratio scale is unique up to mnultiplication by a 
positive constant. That is, the ratios between any two 
numerical observations on the scale are preserved when 
the scale values are all multiplied by a positive constant, 
and thus such a transformation does not alter the 
information encoded in the scale. Any statistical test 
is usable when ratio measurement has been achieved. 
In addition to those statistics previously mentioned as 
being appropriate for data in an interval scale, with a 
ratio scale one may meaningfully use such statistics as 
the geometric mean and the coefficient of variation- 
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Table 1-Four Levels of Measurement and the Statistics Appropriate to Each Level 

Defining Examples of Appropriate 
Scale Relations Appropriate Statistics Tests 

. . _~~~~~~~~~~~~~~~~~~~~et 
Mode 

Nominal (1) Equivalence Frequency 
Contingency coefficient 

Nonparametric 
Median statistical 
Percentile tests 

Ordinal (1) Equivalence Spearman r, 
(2) Order Kendall T 

Kendall W 

(1) Equivalence Mean 

Interval (2) Order Standard deviation 
(3) Ratio of Pearson product-moment correlation 

intervals Multiple product-moment correlation Nonparametric 
and parametric 

(1) Equivalence statistical 
(2) Order tests 

Ratio (3) Ratio of Geometric mean 
intervals Coefficient of variation 

(4) Ratio of 
values 

statistics which require knowledge of the true zero 
point. 

Table 1 summarizes the discussion which has been 
presented concerning the relation between the strength 
of measurement represented by the data and the statis- 
tics and statistical tests which are appropriate. Of 
course this presumes that the assumptions of the tests' 
statistical models are satisfied. 

Power-Efficiency 
The researcher may find that the test which suits 

the level of measurement he has achieved and whose 
statistical model is appropriate to the conditions of 
his research is not the most powerful test available. 
Confronted by the dilemma posed by the contradictory 
outcomes of the criteria of power and appropriateness, 
the researcher may resolve the conflict by choosing 
the more appropriate test and then enlarging his sample 
in order to increase the power of that test. The asser- 
tion that a test with greater generality is usually weaker 
in the test of Ho than is a test restricted by many as- 
sumptions is generally true for any given sample size. 
But it may very well not be true in a comparison of 
two statistical tests which are applied to two samples of 
unequal size. That is, with samples of say 30, test A 
may be more powerful than test B. But test B may be more 
powerful with a sample of 30 than test A is with a 
sample of 20. 

The concept of power-efficiency is concerned with the 
amount of increase in sample size which is necessary 
to make test B as powerful as is test A with a given 
sample size. If test A is the most powerful known test 
of its type (when used with data which meet the 
conditions of its statistical model) and if test B is an- 
other test suitable for the same research design which 
is just as powerful with N1, cases as test A is with N, 
cases, then 

Na 

Power-efficiency of test B 100 - per cent 
N1, 

For example, if test B requires a sample of Nb- 30 
cases to have the same power that test A has with Na 

27 cases, then test B has power-efficiency of (100) 
27/30 percent, i.e., its power-efficiency is 90 per cent. 
This means that in order to equate the power of test 
A with the power of test B (when all the conditions of 
both tests are met by the data, and when test A is the more 
powerful), we need to draw 10 cases for test B for every 
9 cases drawn for test A. 

Relative to the t and F test, the nonparametric tests 
suitable for testing hypotheses analogous to those tested 
by the t and F tests vary in power-efficiency from 63 
percent to 100 per cent. The weaker ones are the tests 
which use classificatory data-for example, if scores 
suitable for treatment by the t test were split at their 
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median and tested for differences in location by the 
median test, the power-efficiency of that test would be 
about 63 per cent. Many tests which use ranked data 
have power-efficiency around 95 per cent. The randomi- 
zation tests, which are used when the scores have 
numerical meaning, have 100 per cent power-efficiency. 

In considering these values, the reader is cautioned 
to remember that they compare the power of parametric 
and nonparametric tests when used with data for which 
the parametric tests are appropriate, i.e., when used 
with data which meet the assumptions and requirements 
of the statistical model for parametric tests. That is, 
when we say, for example, that the Mann-Whitney test 
has power-efficiency of about 95 per cent, we mean that 
when the Mann-Whitney test is used on two samples 
of scores which were independently drawn, from nor- 
mally distributed populations of equal variance, then 
with N - 40 it will reject Ho at the same level of 
significance that the t test will with N = 38. But if the 
two tests were both used with data from non-normal 
populations or with data from populations differing 
in variance, the Mann-Whitney test might very well 
reject Ho at a more stringent significance level than 
would a t test. Whitney (14) has shown that for some 
population distributions a nonparametric statistical test 
is clearly superior in power to a parametric one. With 
such data, we must rely on the inference based on the 
nonparametric test, for with such data a t test is inappro- 
priate and therefore yields less meaningful results. 

Advantages of Nonparametric Tests 
At present, for a great many research designs, both 

parametric and nonparametric statistical tests are avail- 
able. We have suggested that the choice between the 
alternative tests suitable for a given research design 
should be based on three criteria: (a) the applicability 
of the statistical models on which the tests are based 
to the data of the research, (b) the level of measurement 
achieved in the research, and (c) the power-efficiency 
of each alternative test. In terms of these criteria, non- 
parametric tests have certain merits. The enumeration 
of these may serve as a sumrmary of the arguments 
presented above, and will introduce certain additional 
considerations as well. 

1. Probability statements obtained from most non- 
parametric statistical tests are exact probabilities (except 
in the case of large samples, for which excellent approxi- 
mations are available), regardless of the shape of the 
population distribution from which the random sample 
was drawn. That is, a conclusion based on a nonpara- 
metric test does not carry stringent qualifiers, as does a 
conclusion based on a parametric test. 

2. If samples as small as 6 are used, there is no alter- 
native to using a nonparametric statistical test unless the 
nature of the population distribultion is known exactly. 

This is an advantage in pilot testing and in research with 
populations whose nature precludes the use of large 
samples (e.g., populations of persons having a rare 
form of illness). 

3. There are suitable nonpara metric statistical tests 
for treating samples made up of observations from sev- 
eral different populations. None of the parametric tests 
can handle such data unless seemingly unrealistic as- 
sumptions are made. 

4. Nonparametric statistical tests are available to 
treat data which are inherently in ranks as well as scores 
which have merely the strength of ranks. In many fields 
of investigation, ordinal measurement is the strongest 
that usually can be achieved. Tnis is the case, for ex- 
ample, in the behavioral science:,. Such data, as well 
as those for which only gross ordering (plus or minus, 
for example) can be achieved, can be treated by non- 
parametric methods, whereas they cannot be treated 
by parametric methods unless precarious, untestable, 
and perhaps unrealistic assumptions are made about the 
underlying distributions. 

5. Nonparametric methods are available to treat classi- 
ficatory data. No parametric technique applies to such 
data. 

6. Nonparametric statistical tests are typically much 
easier to learn and to apply than are parametric tests. 

The advantage which parametric tests hold over their 
nonparametric counterpart is, of course, that if all the 
assumptions of the parametric statistical tnodel are in 
fact met in the research and if the measurement is of 
the required strength, then nonparametric statistical tests 
are wasteful of data. The degree of wastefulness in such 
cases is expressed by the power-efficiency of the nonpara- 
metric tests. 

Table 2 indicates the variety of nonparametric tests 
which are now available, and shows the research design 
and the level of measurement for which each is useful. 
This list is by no means exhaustive, but an attempt has 
been made to include a diversity of tests and measures 
of association and to include those which are most com- 
monly used. 

To save space, citations for all tests are not given in 
this article. In most cases, Table 2 gives the names of 
the authors of the tests, and the reader may turn to (9) 
or (10) for references for these tests. The randomiza- 
tion tests were originated by Fisher; early work on 
their development was presented by Pitman and Welch, 
and more recently Kempthorne (4, 5) has made impor- 
tant contributions to them. Included in Table 2 are cita- 
tions for the two most recent tests. 

The inclusion of several tests in the same category in 
Table 2 does not imply that the several tests are equiv- 
alent or interchangeable. For e xample, five tests are 
listed for use with k independent samples when ordinal 
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Table 2-Nonparametric Statistical Tests and Measures of Correlation 

for Various Designs and Various Levels of Measurement 

NONPARAMETRIC STATISTICAL TEST 

LEVEL Two-Sample Case k-Sample Case NONPARA- 
OF METRIC 

MEASURE- One-Sample Case Inde d Related Samples or MEASURE OF 
MENT Sameplesdn Randomized Independent CORRELATION 

Related Samples Samples Blocks Samples 

Nominal Binomial test McNemar test Fisher exact prob- Bowker test -Contingency 
x2 test ability test x2 test coefficient 

x2 test Cochran Q test 
Festinger test Cureton biserial 

rank correlation 
Kolmogorov- Extension of the (1) 

Smirnov test median test 
Kendall rank cor- 

Mann-Whitney Jonckheere test relation coef- 
U test ficient 

Kolmogorov- Kxuskal-Wallis 
Ordinal Smirnov test Sign test Median test test Kendall partial 

Friedman test rank correlation 
Runs test Wilcoxon test Moses test of ex- Mood runs test coefficient 

treme reactions Wilson test (15) 
Mosteller slippage Kendall coefficient 

Wald-Wolfowitz test of concordance 
runs test 

Whitney extension Moran multiple 
White test of the U test rank correlation 

Spearman rank 
Wilcoxon test correlation co- 

efficient 

Olmstead-Tukey 
Walsh test Walsh test corner test 

Interval Randomization Randomization Randomization 
Randomization Randomization test test test Randomization 

test test test 

measurement has been achieved. Each of these has a 
different application. The extension of the median test 
is useful when only incomplett ordering has been 
achieved, so that any observation may be classed either 
above or below the common median. The Kruskal-Wallis 
test is a more general test for data in which complete 
ordering has been achieved, and thus it is more power- 
ful than the extension of the median test. Whitney's 
extension of the U test is not an analogue of the analysis 
of variance, as is the Kruskal-Wallis test, being a signifi- 
cance test for only three samples which tests the predic- 
tion that the three averages will occur in a specific or- 
der. The Jonckheere test is a test against ordered alterna- 
tives; the Mosteller technique tests whether one group 
has slipped significantly to the right of the others; and 
the k-sample runs test is sensitive to any sorts of dif- 
ferences among groups, not just differences in location. 
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