

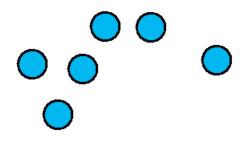
#### Что такое среднее?



# Проблема выбросов Проблема «виртуальных точек»

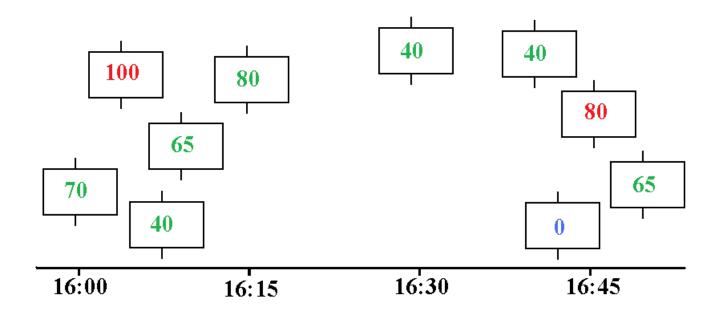


#### Проблема среднего в пространстве





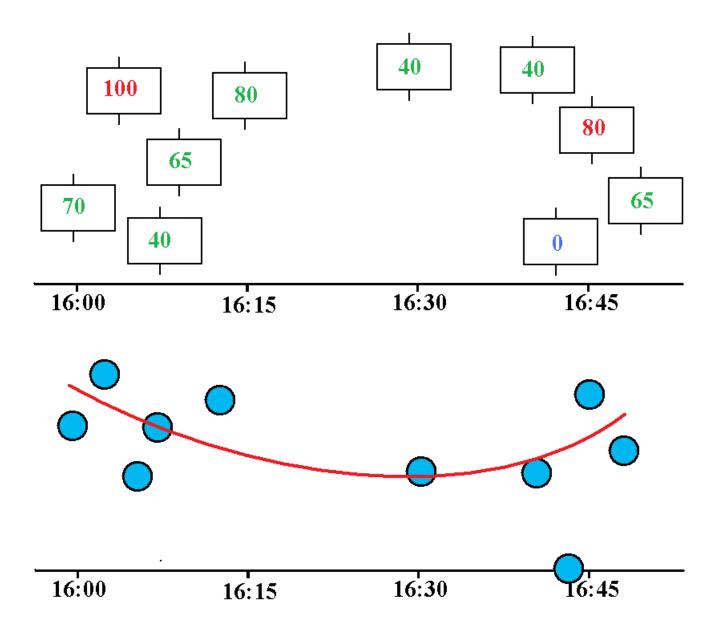
#### Пример: задача о пробках



Нужно знать «среднюю» скорость на дороге в каждый момент времени

т.е. + требование непрерывности

# «Существенно двухмерное» усреднение



#### Стандартный способ

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

#### Алгоритм Шурыгина

- 1. Если  $m \le 2$ , то пользуемся формулой (\*). Выход.
- 2. Пусть  $x^1 \le ... \le x^m$  (без ограничения общности).
- 3. Если  $\frac{x^1 + x^m}{2} \le x^2$ , то удаляем из выборки  $x^1$ . Переходим к п.1
- (с соответствующей перенумерацией объектов).
- 4. Если  $\frac{x^1 + x^m}{2} \ge x^{m-1}$ , то удаляем из выборки  $x^m$ . Переходим к п.1
- (с соответствующей перенумерацией объектов).
- 5. Исключаем из выборки  $x^1$ ,  $x^m$ , но добавляем в неё  $\frac{x^1 + x^m}{2}$ .

# Практика: часто забываем о выбросах

#### Что минимизирует «среднее»

$$\sum_{i=1}^{m} (x^i - \mu)^2$$

$$\sum_{i=1}^{m} |x^i - \mu|$$

$$\sum_{i=1}^{m} |x^i - \mu|$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

медиана

### Для минимизации можно выбрать «что угодно»

$$\sum_{i=1}^{m} f(x^{i}, \mu)$$

 $\mu$  – оценка минимального контраста

#### Оценка минимального контраста

Если после дифференцирования (здесь рассматриваем одномерный случай)

$$\sum_{i=1}^{m} \psi(x^{i} - \mu) = \sum_{i=1}^{m} (x^{i} - \mu) \xi(x^{i} - \mu) = 0,$$

для некоторых функций  $\psi$  (оценочная функция) и  $\xi$  (весовая функция), то часто успешно применяется итеративный способ вычисления параметра  $\mu$  по формуле

$$\mu = \frac{\sum_{i=1}^{m} x^{i} \xi(x^{i} - \mu)}{\sum_{i=1}^{m} \xi(x^{i} - \mu)}.$$

Оценка среднего, вероятности, плотности

# Принстонский эксперимент 1972 года подбор различных функций

Мешалкин Л.Д. (1977) предлагал  $\psi(y) = ye^{-\lambda y^2/2}$ , т.е.  $\xi(y) = e^{-\lambda y^2/2}$ .

# Система уравнений для их поиска оценок среднего и матрицы ковариации для многомерного распределения:

$$\sum_{i=1}^{m} (x^{i} - \mu) e^{-\lambda \cdot q_{i}/2} = 0, 
\sum_{i=1}^{m} \left( (x^{i} - \mu) (x^{i} - \mu)^{\mathrm{T}} - \frac{1}{1+\lambda} C \right) \cdot e^{-\lambda \cdot q_{i}/2} = 0,$$

$$q_i = (x^i - \mu)^{\mathrm{T}} C^{-1} (x^i - \mu)$$

#### Обобщение медианы на многомерный случай

$$\mu = \frac{\sum_{i=1}^{m} \frac{x^i}{\sqrt{q_i}}}{\sum_{i=1}^{m} \frac{1}{\sqrt{q_i}}}.$$

#### итерационный алгоритм

[см. Шурыгин]

#### Ещё пример функционала для минимизации

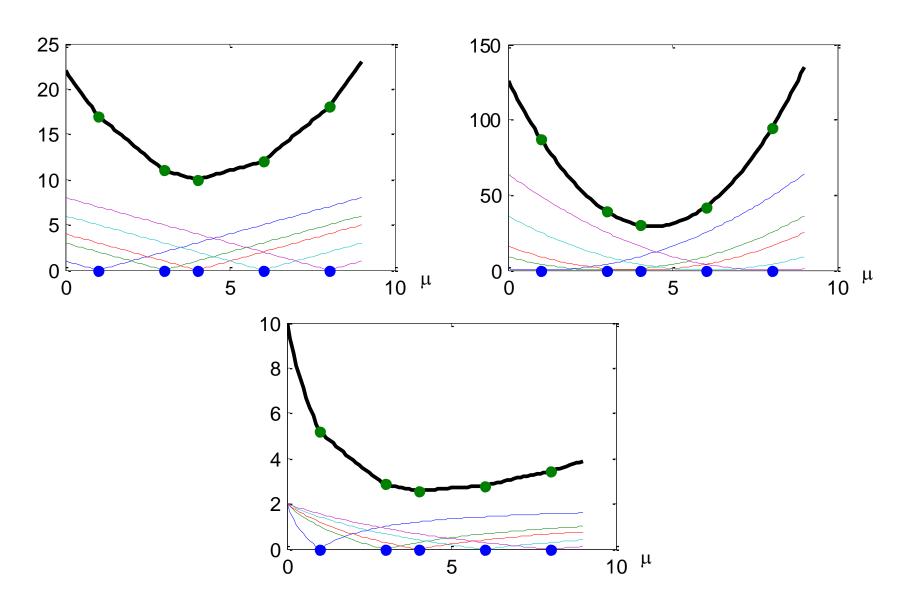
$$\mu = \frac{2}{q} \sum_{i=1}^{q} \frac{|y(x^{i}) - A(x^{i})|}{y(x^{i}) + A(x^{i})},$$

#### Symmetric mean absolute percentage error (SMAPE or sMAPE)

Начальники не знают, что такое проценты...

Применение SMAPE – прогноз временных рядов

### Вопрос: что это за графики?



#### Практика: придумывать не функционал, а среднее

#### Среднее по А.Н.Колмогорову

$$\varphi^{-1}\left(\frac{\varphi(x_1)+\ldots+\varphi(x_n)}{n}\right)$$

среднее арифметическое  $\varphi(x) = x$ 

среднее геометрическое  $\varphi(x) = \log x$ 

среднее гармоническое  $\varphi(x) = x^{-1}$ 

среднее квадратическое  $\varphi(x) = x^2$ 

где медиана и мода?

что такое среднее по Коши?

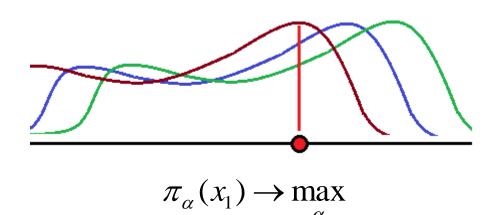
#### Оценивание вероятности

#### тоже, в некотором смысле, усреднение

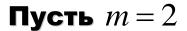
#### Метод максимального правдоподобия

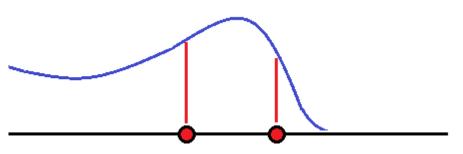
Есть выборка  $x_1, \ldots, x_n$  какое распределение  $\pi_{\alpha}(x)$ ?

Пусть m = 1,  $\pi_{\alpha}(x) = \pi(x - \alpha)$  какое распределение выбрать?



#### Метод максимального правдоподобия





$$\pi_{\alpha}(x_1) \cdot \pi_{\alpha}(x_2) \to \max_{\alpha}$$

#### Общий случай:

$$\prod_{i=1}^{m} \pi_{\alpha}(x_i) \to \max_{\alpha}$$

Как максимизируют?

#### Случай биномиального распределения

$$\pi_p(x) = \begin{cases} p, & x = 1, \\ 1 - p, & x = 0. \end{cases}$$

$$\Pi = \prod_{i=1}^n \pi_p(x_i) = p^m (1 - p)^{n - m} \sim$$

$$m \log p + (n-m) \log(1-p)$$

$$(\log \Pi)' = \frac{m}{p} - \frac{(n-m)}{1-p} = 0$$

$$p = \frac{m}{n}$$

#### Самый очевидный ответ для оценки вероятности!

наблюдения 2/6 О О О О О О О О Эксперименты

#### Оценивание вероятности

#### тоже, в некотором смысле, усреднение



#### на практике есть априорная вероятность

$$\frac{m+\lambda\cdot p}{n+\lambda}$$

#### Вторая особенность практики

#### Не все эксперименты равнозначны!



#### Весовая схема

$$\frac{w_{i_1} + \ldots + w_{i_m}}{w_1 + \ldots + w_n}$$

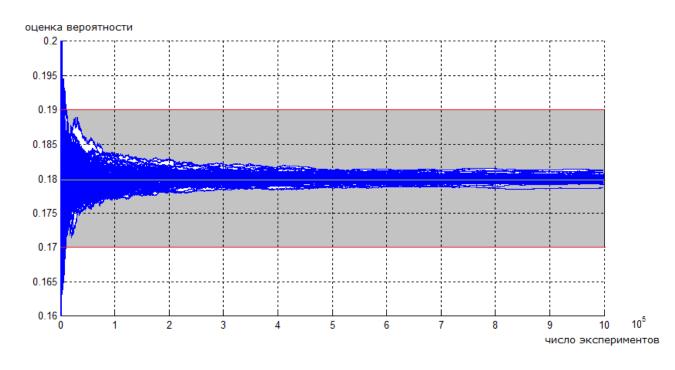
#### Веса (доверие) возникают даже, где нет эксперта

- есть временная ось
- есть «такие же условия»
- есть кластеры (и схожесть вообще)

#### Что ещё нужно знать про вероятности

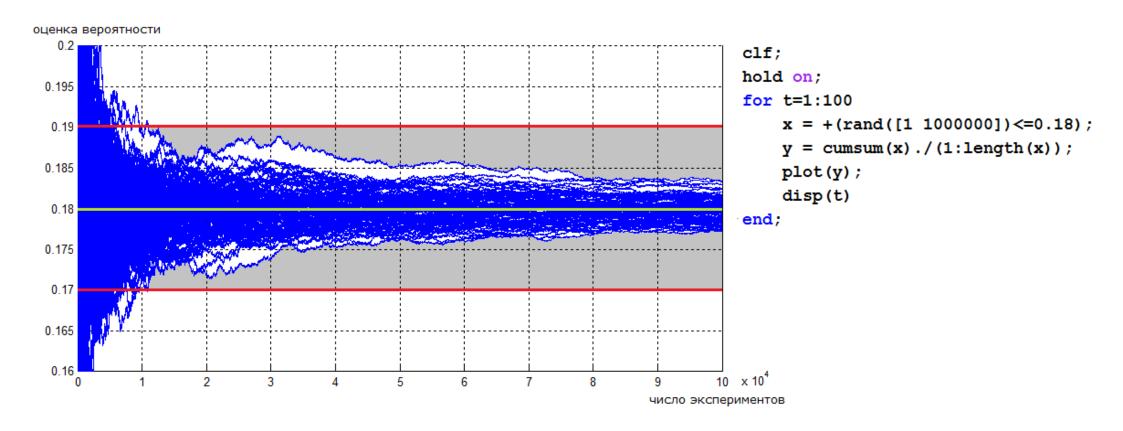
#### Объёмы выборок

#### Оцениваем вероятность в схеме Бернулли (неизвестная р=0.18)



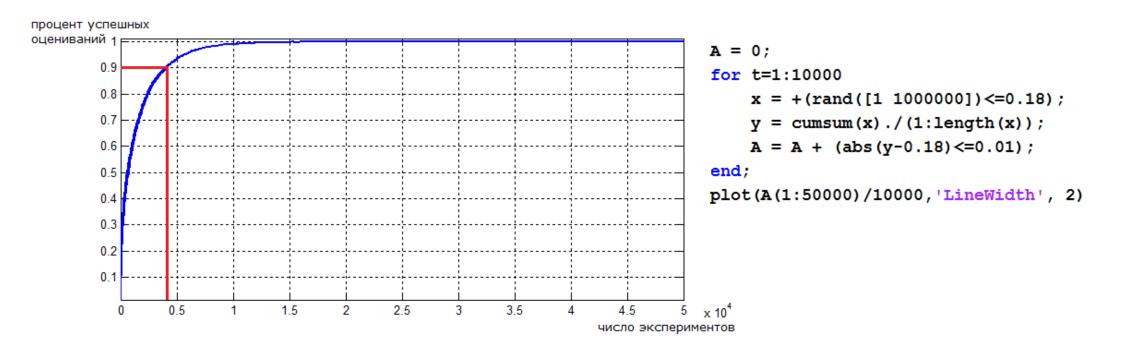
```
clf;
hold on;
for t=1:100
    x = +(rand([1 1000000])<=0.18);
    y = cumsum(x)./(1:length(x));
    plot(y);
    disp(t)
end;
```

#### Объём выборки



Выборки 10000 достаточно, но это чтобы оценить с точность ±0.01

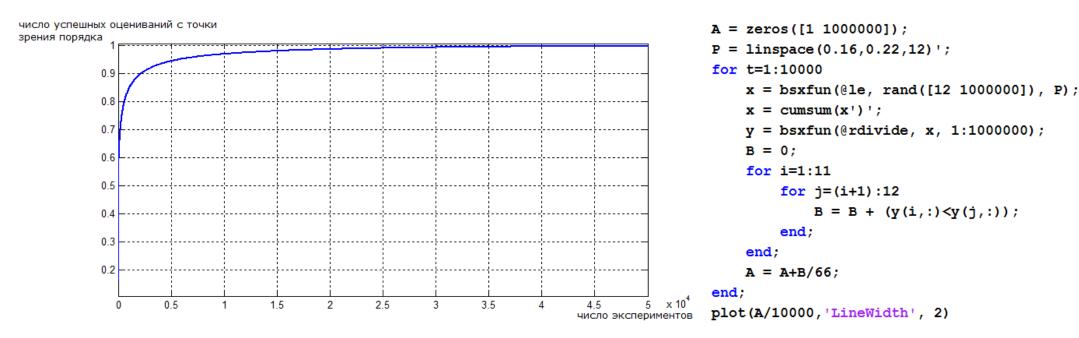
#### Объём выборки



# Классика статистики: есть точность, а есть вероятность того, что мы оценили с этой точностью

# Это её график

#### Объём выборки



#### Эксперименты в задаче со знаками зодиака

# Задача

# **Прогнозирование визитов покупателей супермаркетов и сумм их покупок**

http://www.kaggle.com/c/dunnhumbychallenge/

# Международное соревнование «dunnhumby's Shopper Challenge»

#### Опишем лучший алгоритм из 287

| # Team Name     | \$10,000 • 279 teams        | Score 2    | Entries |
|-----------------|-----------------------------|------------|---------|
| 1 D'yakonov Ale | exander (MSU, Moscow, Russi | a) * 18.83 | 68      |
| 2 NSchneider *  |                             | 18.67      | 20      |
| 3 Ben Hamner *  |                             | 18.57      | 19      |
| 4 William Cukie | rski                        | 18.44      | 75      |



Дано: статистика визитов

Предсказать: день первого визита + сумму покупки с точностью до 10 \$

покупатель, дата визита, сумма

56, 2011-06-30, 35.01

56, 2011-06-08, 35.17

56, 2011-07-10, 24.12

56, 2011-07-12, 7.73

57, 2011-05-13, 29.38

57, 2011-05-19, 41.00

---

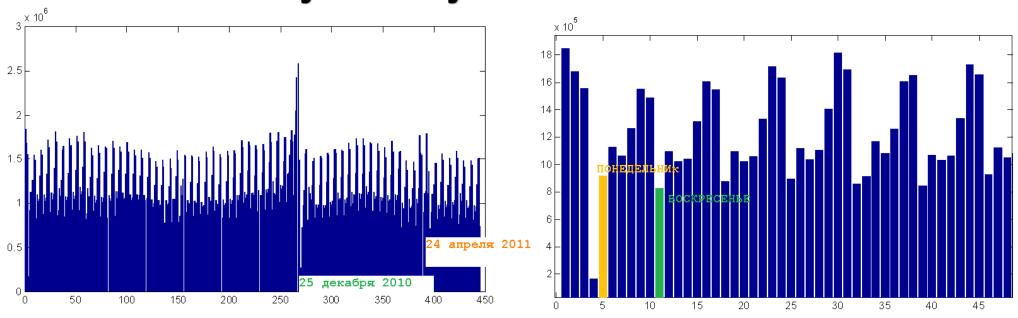
>100000 клиентов customers

Т = 1 год

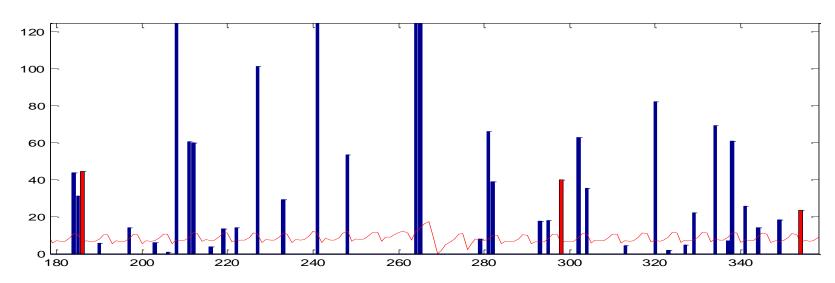
#### Статистика визитов одного клиента:

| PT  | Март | Март | Март | Март | Март | <b>Март</b> | Март | Март | Март | Март | Апрель | Апрель | Апр( |
|-----|------|------|------|------|------|-------------|------|------|------|------|--------|--------|------|
|     | 22   | 23   | 24   | 25   | 26   | 27          | 28   | 29   | 30   | 31   | 1      | 2      | 3    |
| 5\$ |      | 45\$ | 5\$  |      |      |             | 35\$ |      | 60\$ |      | ?      | ?      | ?    |

#### Суммы покупок всех клиентов



#### Покупки одного клиента

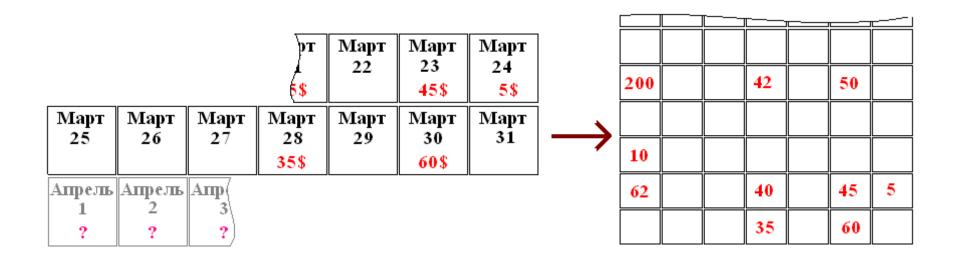


#### Предположение:

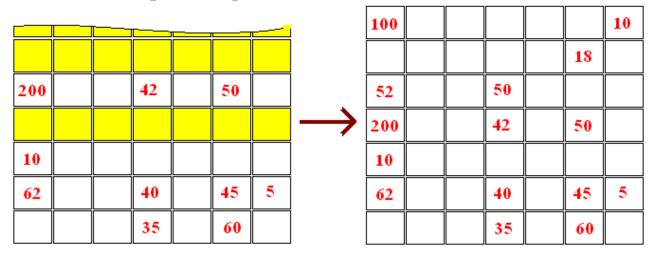
# Все клиенты независимы Будем анализировать каждого клиента отдельно

#### Разбиение на недели:

| <b>рт</b><br>5 <b>\$</b><br>неде | <b>Март</b> 22 | Март<br>23<br>45\$ | Март<br>24<br>5\$ | Март<br>25 | Март<br>26 | <b>Март</b><br>27 | Март<br>28<br>35\$ | Март<br>29 | Март<br>30<br>60\$ | Март<br>31 | Апрель<br>1<br>? | Апрель<br>2<br><b>?</b> | Апр(<br>3\<br>? |
|----------------------------------|----------------|--------------------|-------------------|------------|------------|-------------------|--------------------|------------|--------------------|------------|------------------|-------------------------|-----------------|
|                                  | неделя         |                    |                   |            |            |                   |                    |            |                    |            |                  |                         |                 |



#### Матрица разбивки по неделям:



Сработало устранение пустых недель...

#### Вероятностная модель поведения клиента

Матрица затрат:  $S = \mid\mid s_{ij}\mid\mid_{d \times 7}$ 

Матрица визитов:  $V = ||v_{ij}||_{d \times 7}$ ,  $v_{ij} = 1 \iff s_{ij} > 0$ .

### Вероятности визитов

 $p_1$ 

 $p_7$ 

#### оценки вероятностей...

#### 10 100 18 50 52 42 50 200 10 45 40 62 35 60 0 4/N 0 5/N 4/N 2/N вероятности визитов $5/N ((N-5)/N) \cdot 0 = 0$ $((N-5)/N) \cdot 1 \cdot 0 = 0$ $((N-5)/N) \cdot 1 \cdot 1 \cdot (4/N)$ вероятности первых визитов

#### первых визитов

$$\widetilde{p}_1 = p_1$$

$$p_2 \qquad \qquad \widetilde{p}_2 = (1 - p_1) p_2$$

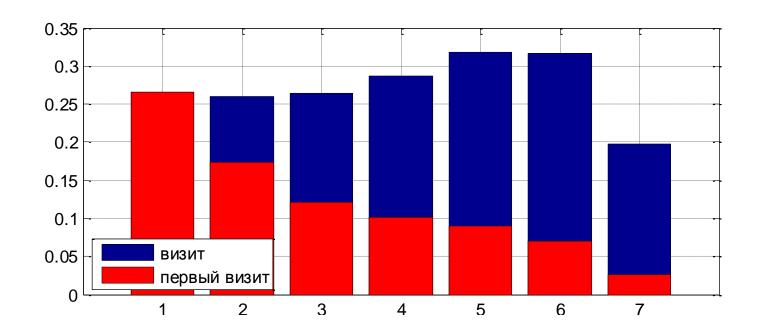
• • •

$$\widetilde{p}_7 = \prod_{i=1}^6 (1 - p_i) p_7$$

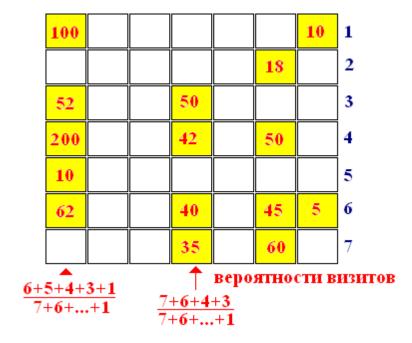
### Находим максимум вероятностей!

Предположение: Каждый клиент обязательно посетит магазин в течение следующей недели.

#### Процент визитов и первых визитов на неделе



### «Более свежие» данные о клиенте важнее устаревших!



Весовые схемы!

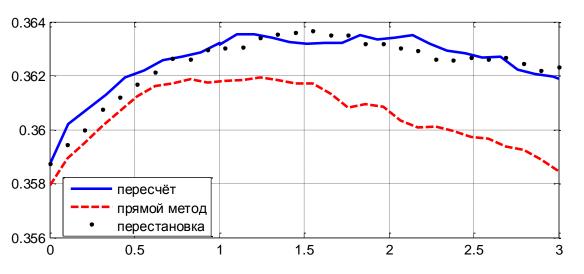
#### Взвешенная схема оценки вероятности:

$$p_j = \sum_{i=1}^d w_i v_{ij} \,,$$
 
$$w_1 \ge w_2 \ge \ldots \ge w_d \ge 0 \,, \ \sum_{i=1}^d w_i = 1 \,.$$

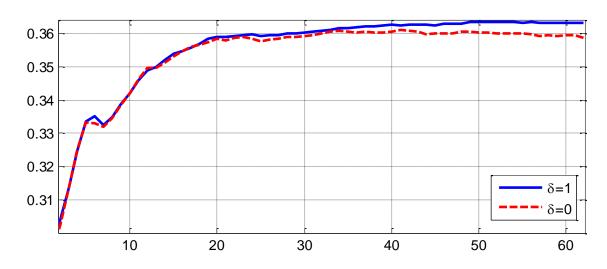
#### Способы

Параметр  $\delta \in [0,+\infty)$ .

#### Веса – от равномерных к «агрессивным»

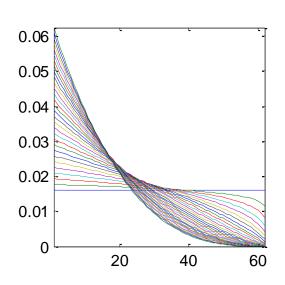


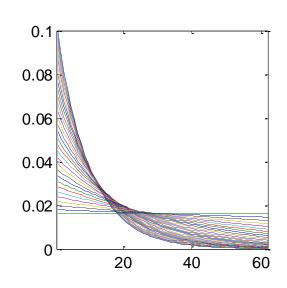
# Зависимость качества прогноза от степени $\delta$

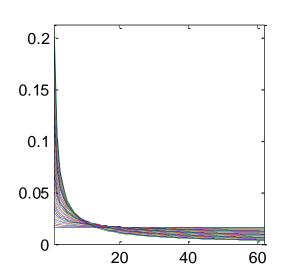


#### Зависимость качества прогноза от числа учитываемых недель

#### Три разные весовые схемы







#### вес недели в зависимости от её номера

$$w_i^{N} = \left(\frac{d - i + 1}{d}\right)^{\delta}$$

$$\delta \in [0,+\infty)$$

$$w_i^{\mathrm{N}} = \lambda^i$$

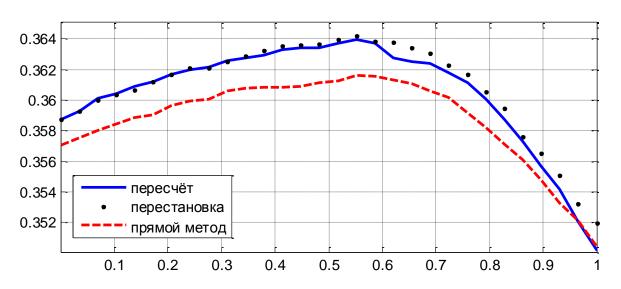
$$\lambda \in (0,1]$$

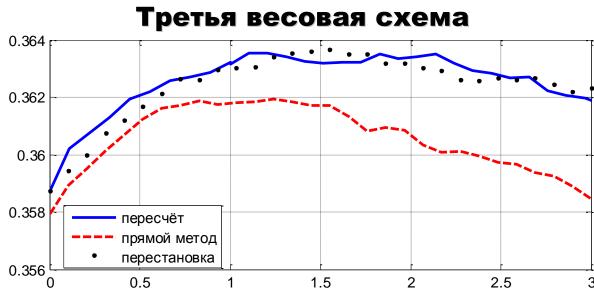
$$w_i^{\mathrm{N}} = \frac{1}{i^{\gamma}}$$

$$\gamma \in [0,+\infty)$$

Вопрос: какие ещё?

#### Принципиально всё одинаково...





Первая весовая схема

# Два способа оценки вероятности первого визита

#### Прямой метод

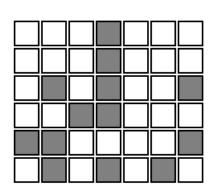
$$\tilde{p}_{j}^{2} = \frac{1}{d} | \{ i \in \{1, 2, \dots, d\} : v_{i1} = \dots = v_{i, j-1} = 0, v_{ij} = 1 \} |$$

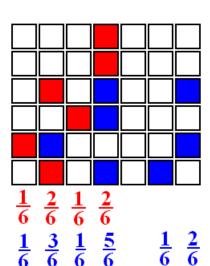
#### Более естественный, но хуже!

#### матрица первых визитов

$$V' = \mid\mid v'_{ij}\mid\mid_{d \times 7}$$

$$\widetilde{p}_j^2 = \sum_{i=1}^d w_i v'_{ij}$$





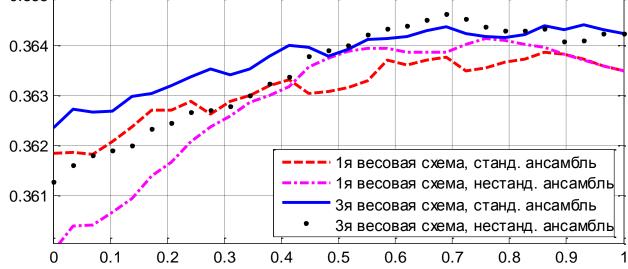
#### **Ансамблирование**

#### «Стандартный ансамбль» – взять выпуклую комбинацию:

$$\widetilde{p}_j = \alpha \widetilde{p}_j^1 + (1 - \alpha) \widetilde{p}_j^2$$
,  $\alpha \in [0, 1]$ .

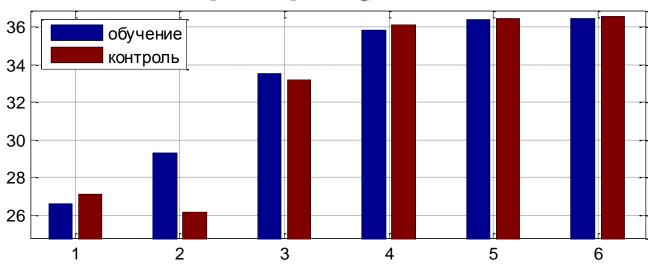
#### «Нестандартный ансамбль»

$$\alpha p_{j} + (1 - \alpha) \tilde{p}_{j}^{2} = \alpha \sum_{i=1}^{d} w_{i} v_{ij} + (1 - \alpha) \sum_{i=1}^{d} w_{i} v'_{ij} = \sum_{i=1}^{d} w_{i} (\alpha v_{ij} + (1 - \alpha) v'_{ij})$$
0.365



Качество ансамблирования от параметра  $\alpha \in [0,1]$ 

### Про переобучение

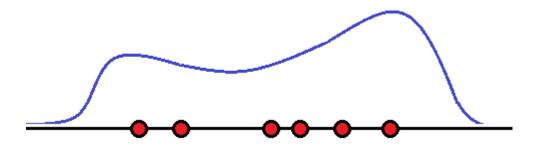


Качество на обучении и отложенном контроле для шести алгоритмов

- 1. Константный («клиент придёт на следующий день»),
  - 2. Визит клиента как на прошлой неделе,
  - 3. Вероятности (\*) оценены по последним 5 неделям,
    - 4. Вероятности оценены по всем неделям,
      - 5. Оптимальные значения весов,
    - 6. Оптимальное нестандартное ансамблирование.

Не усложнение, а сглаживание!

#### Восстановление плотности



Какие методы знаете?

#### Восстановление плотности

#### 1. Параметрические

Плотность известна с точностью до параметров

#### 2. Непараметрические

Вид плотности не известен

#### 3. Восстановление смесей

Плотность = сумме плотностей

## Непараметрические методы восстановления плотности

## Метод окон Парзена:

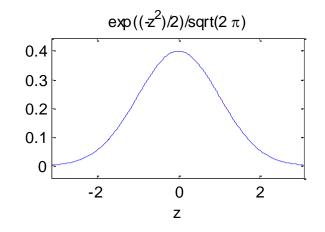
Выборка  $x^1,...,x^m$  в пространстве  $\mathbf{R}^d$ 

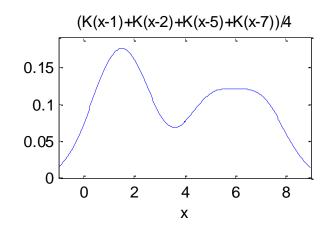
$$\frac{1}{mh}\sum_{i=1}^{m}K\left(\frac{x-x^{i}}{h}\right),$$

где K(x) – функция окна.

$$K((z_1,...,z_d)) = \begin{cases} 1, & \forall j \in \{1,2,...,d\} \mid z_i \leq 0.5 \\ 0, & \text{иначе.} \end{cases}$$

$$K(\widetilde{z}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\widetilde{z}^{\mathsf{T}}\widetilde{z}}{2}\right)$$





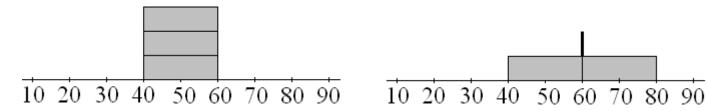
## Предсказание суммы покупки

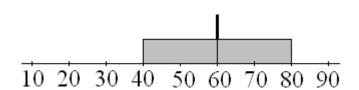
#### = непараметрическое восстановление плотности по Парзену

«Суммы ступенек» при покупках

50, 50, 50

50, 70



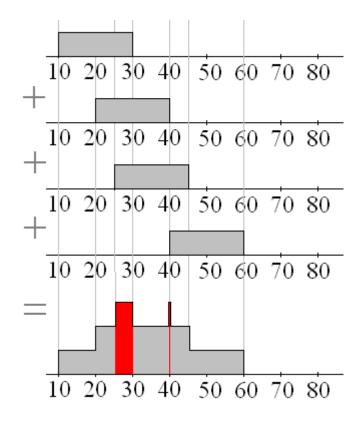


# Наилучшая стратегия предсказания суммы при условии, что пользователь ведёт себя как раньше

т.е. это оценка среднего

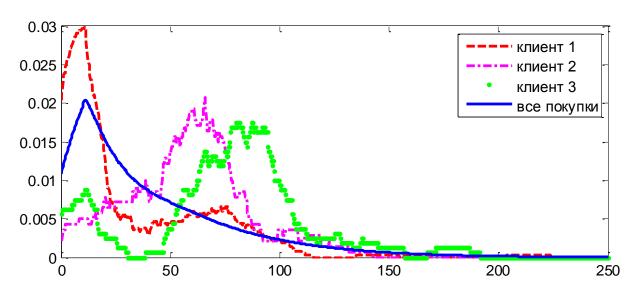
#### Прогноз с помощью моды

#### «Суммы ступенек» при покупках 20, 30, 35, 50 -

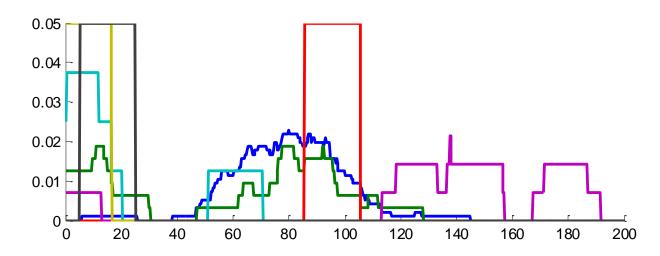


максимум достигается на отрезке [25, 30] и в точке 40.

#### Как выглядят плотности



## Плотности распределения покупок



# Плотности покупок одного пользователя в разные дни недели

#### И здесь сделаем весовую схему!

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} K(|s_i - x|)$$

$$2\int_{0}^{+\infty}K(x)\,dx=1.$$

$$K(|s-x|) = \begin{cases} 1/2\varepsilon, & |s-x| \le \varepsilon, \\ 0, & |s-x| > \varepsilon. \end{cases}$$

#### Весовая схема:

$$f(x) = \sum_{i=1}^{m} w_i K(|s_i - x|)$$

# Весовая схема учёт времени, дня недели

44 слайд из 66

Пусть  $S_1, \ldots, S_m$  – все упорядоченные покупки пользователя,  $S_1', \ldots, S_{m'}'$  – покупки, сделанные в этот день недели.

## Плотность будем восстанавливать для расширенного набора

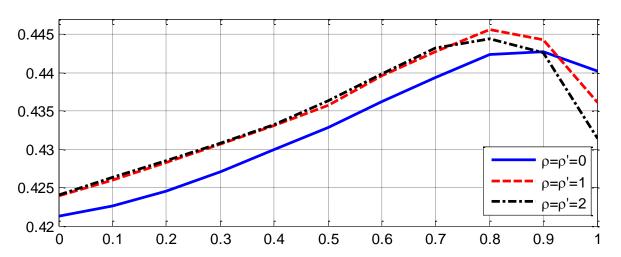
$$S_1',\ldots,S_{m'}',S_1,\ldots,S_m$$

#### Beca:

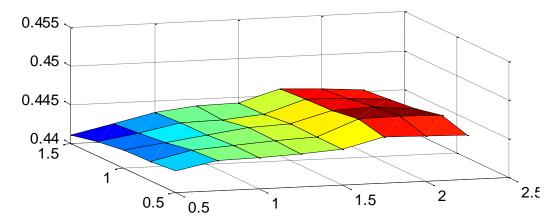
$$s'_i \leftrightarrow \beta \frac{(m'-i+1)^{\rho'}}{\sum_{j=1}^{m'} j^{\rho'}}$$

$$s_i \leftrightarrow (1-\beta) \frac{(m-i+1)^{\rho}}{\sum_{i=1}^{m} j^{\rho}}$$

#### Весовая схема



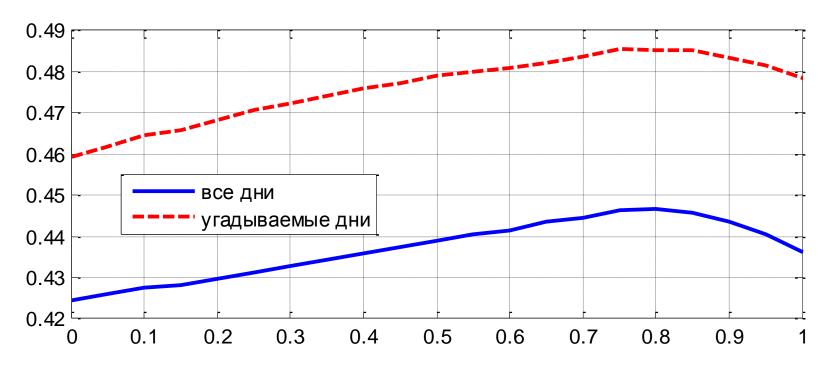
Качество прогноза суммы покупок от параметра eta



Качество прогноза в зависимости от степеней при  $\beta = 0.8$ 

#### Как настраивать, точнее где...

- на всей выборке
- на угадываемых днях (на остальных бесполезно для функционала)

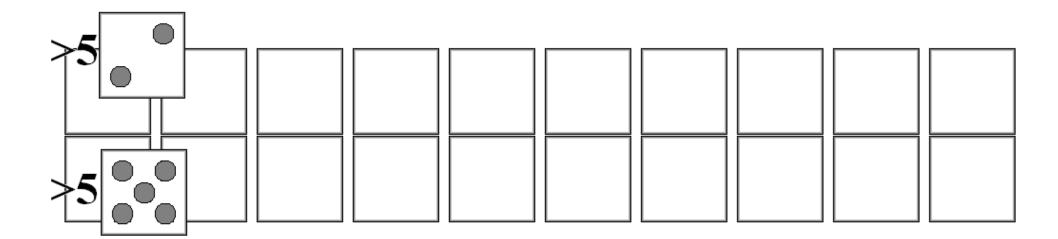


Качество прогноза суммы покупок от параметра  $\beta$  при  $\rho = 0.7$ ,  $\rho' = 1.6$ .

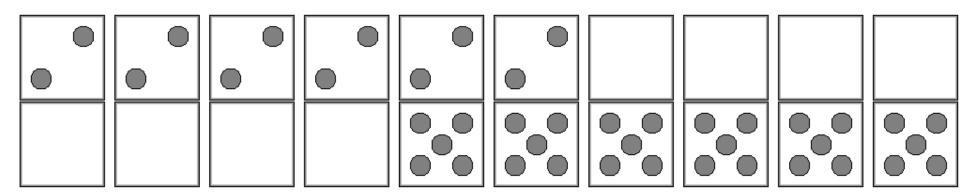
## Улучшение алгоритма Есть:

- метод предсказания даты визита (вероятностный пересчёт)
  - метод предсказания суммы покупки (непараметрическое восстановление)

# Можно ли так осуществить прогноз? Все прогнозировали так...



#### Почему метод работает не очень хорошо...



«И» в условии не означает «И» в решении Найти день И сумму.

Понедельник: 10\$, 50\$, 220\$, 100\$, 310\$, 5\$, 250\$, 75\$, 500\$

Вторник: 40\$, 42\$, 40\$

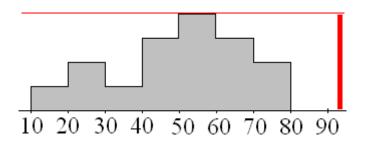
(вероятность угадать день) \* (вероятность угадать сумму)

0.9 \* 0.1 = 0.09

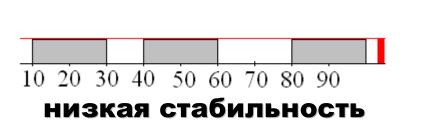
0.1 \* 1 = 0.1 выгоднее ставить на вторник

Надо: вычислить вероятность угадывания дня и суммы

## Как вычислить стабильность поведения клиента?



#### высота графика плотности





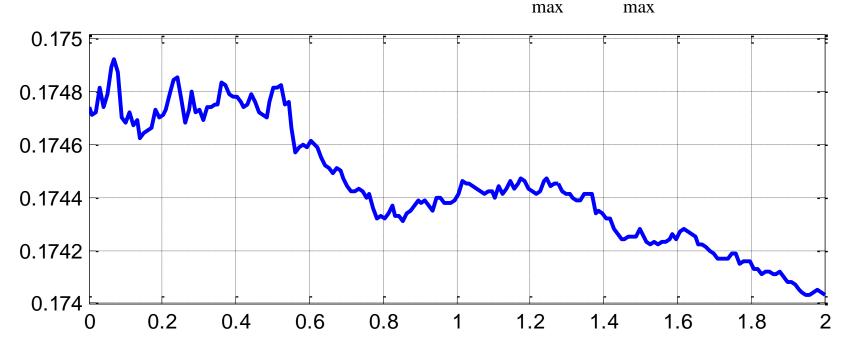
учёт стабильности = улучшение результата

#### Неполный учёт стабильности

$$\widetilde{p}_j(q_j+h) \to \max_j$$

#### это и регуляризация

и ансамблирование 
$$(\widetilde{p}_j q_j + h \widetilde{p}_j)$$

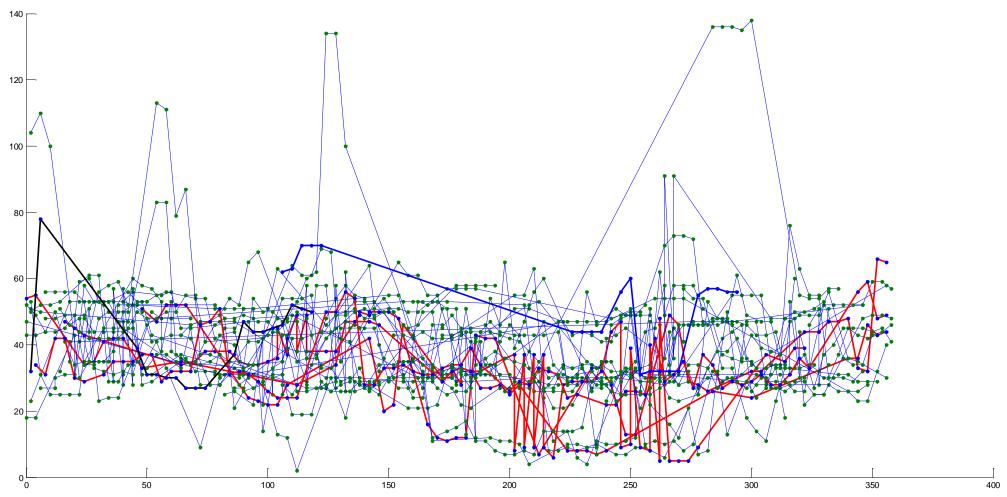


Качество предсказания поведения в зависимости от параметра h .

Вопрос: Как решать задачу о пробках?

Оценка среднего, вероятности, плотности

#### Как выглядят данные:

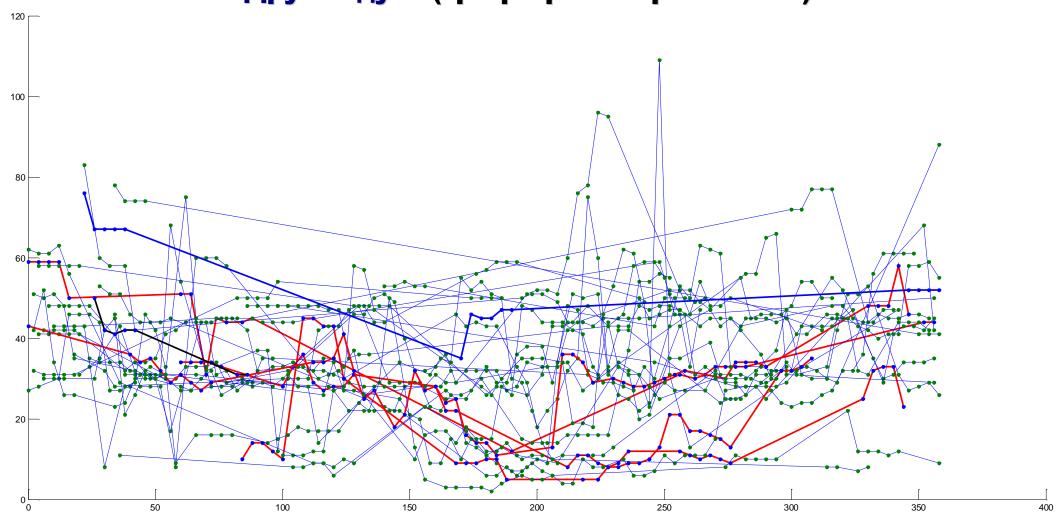


Чёрный – наш день,

Красный – этот день недели,

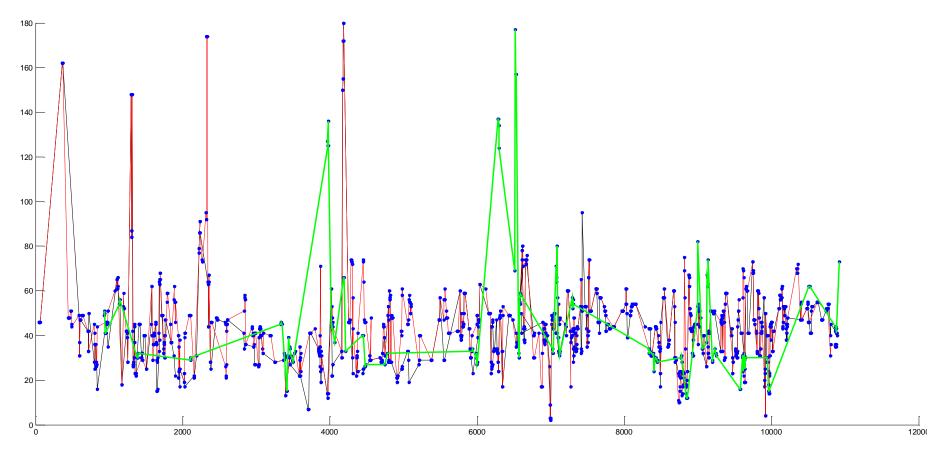
Синий – предыдущий день.

# Другая дуга (граф ориентированный):



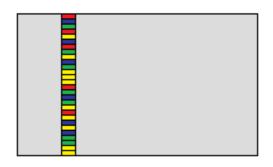
#### Замечаем странности:

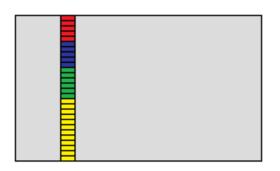
- 1. По некоторым дугам статистика совпадает
  - 2. Или почти совпадает.
- 3. Скорость «теряется» при переходе на другую дугу.



Разные дороги: чёрный, красный, зелёный.

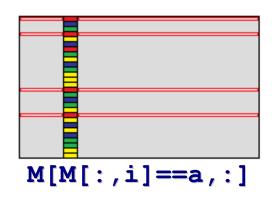
# В процессе обработки данных открыл для себя приём: Выборка по факторам...

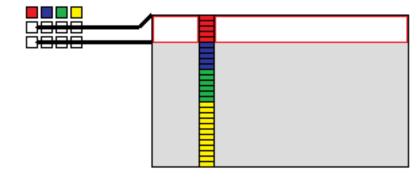






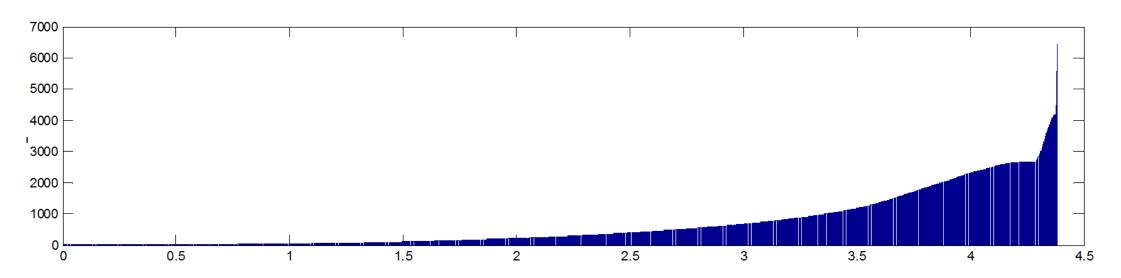






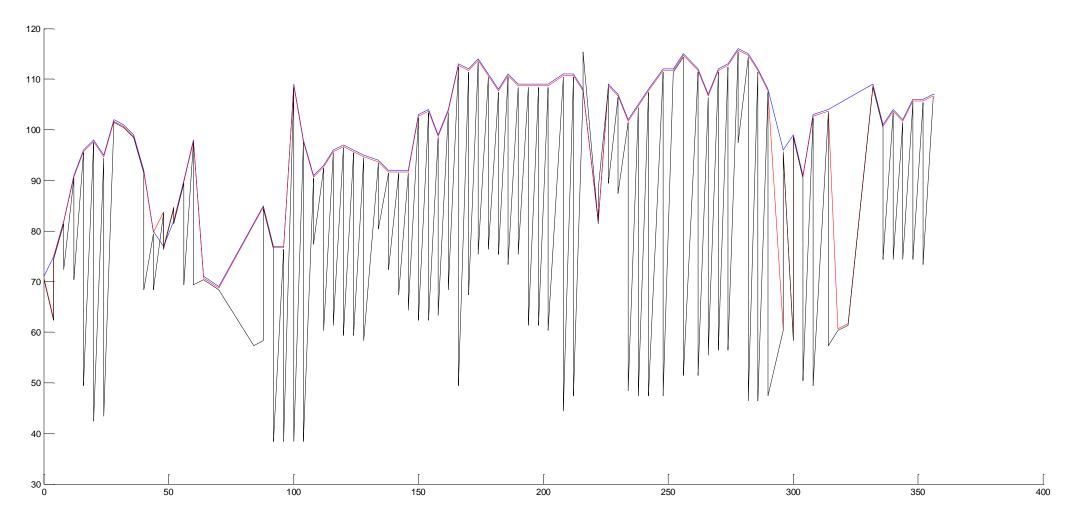
Хранить начала и концы разных факторов.

## Распределение длин дорог



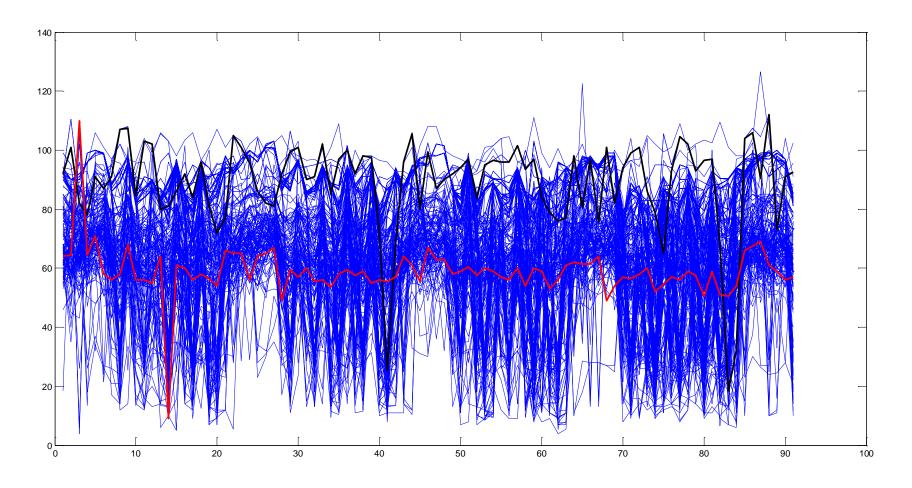
опять нет нормального распределения...

## Данные с трёх дуг



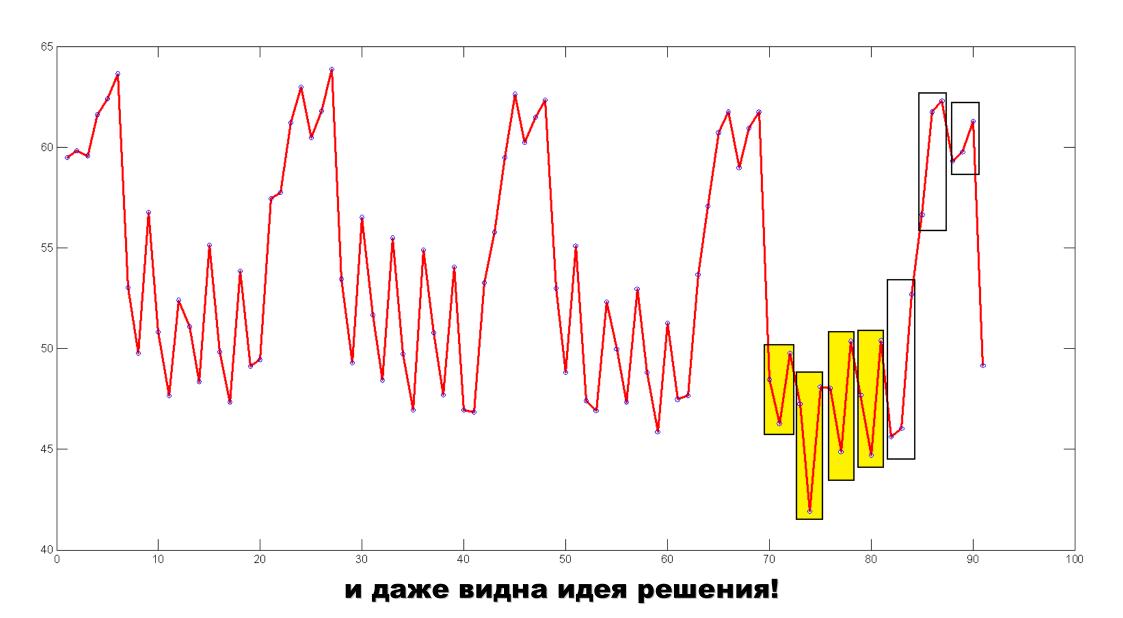
Данные двух дуг совпадают, + с половиной данных третьей дуги.

#### Медианные данные по всем дням

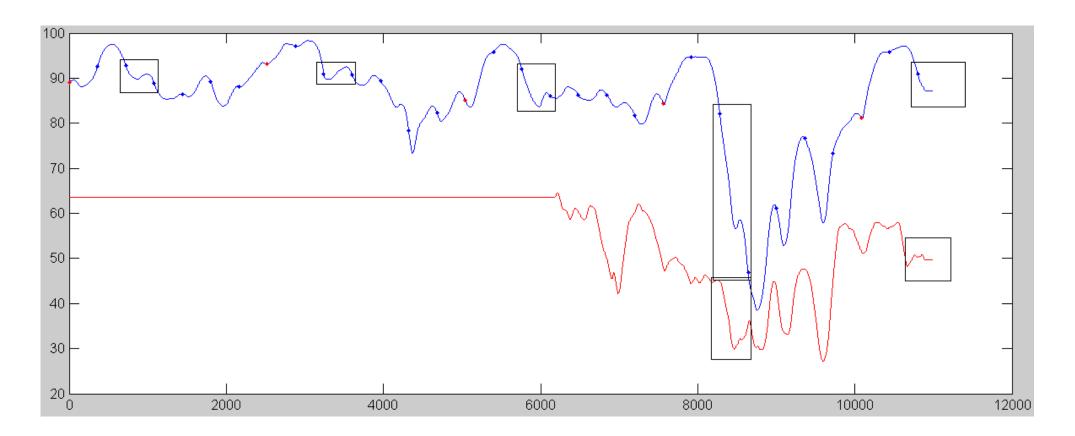


Что можно сказать?

## Ответ: Идентифицировать дни недели.

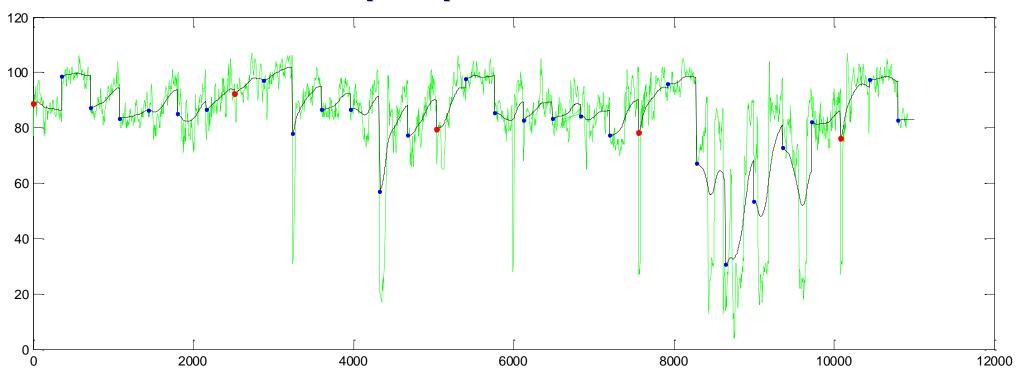


#### Иллюстрация сглаживания



Данные по двум конкретным дорогам. Выделены участки одного дня недели. По красной нет достаточно статистики, но она коррелирует с синей, по которой есть!

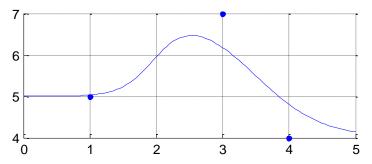
#### Пример сглаживания



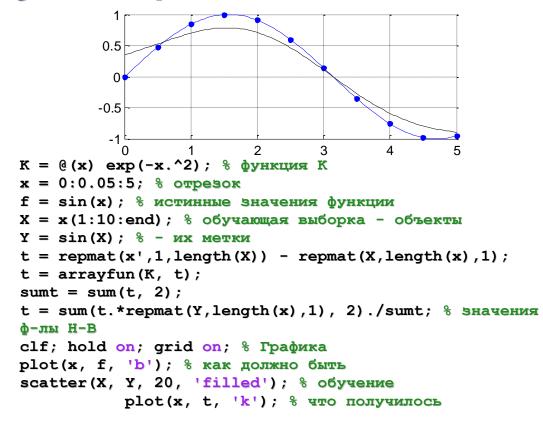
$$y(x) = \sum_{i=1}^{n} w_i y(x_i)$$
$$w_i = K(x, x_i) \approx^{N} e^{-\rho(x, x_i)}$$

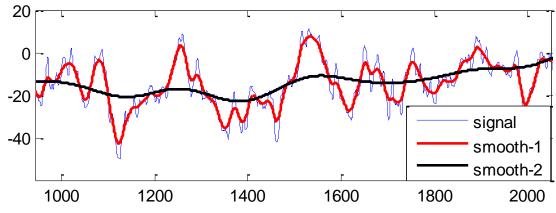
Формула Надарая-Ватсона – а ведь это тоже весовая схема!

#### «Регрессия» по формуле Надарая-Ватсона

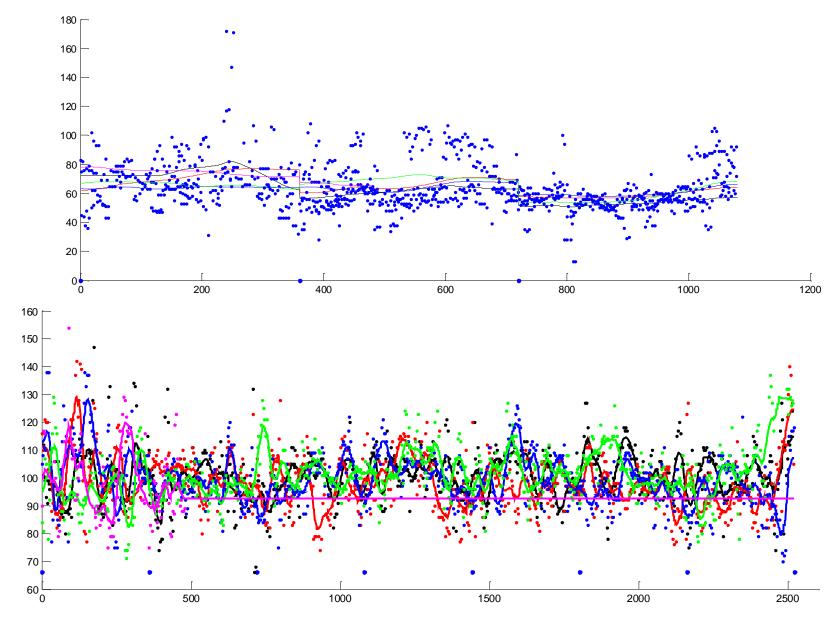


# Сглаженная электрокортикограмма при различных *h*.

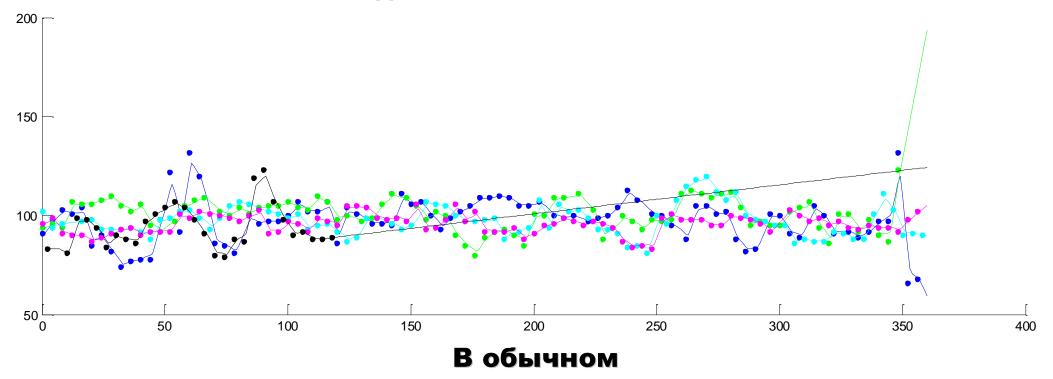




# Зачем нужно сглаживать... скорость на одной дороге в разные дни



# **ЛИНЕЙНЫЙ Надарая-Ватсон** достаточно опасный:



- не проходит через точки
- почти всё считает выбросом
  - не экстраполирует
- проблема подбора ширины окна (ядра)

#### Рецепт по усредению:

#### Что усреднять:

- 1. Данные этого дня
- 2. Данные вчерашнего дня (тек. день пн)
  - 3. Данные этого дня недели

Как – эксперименты!

#### Литература

• Шурыгин А.М. Математические методы прогнозирования // М., Горячая линия — Телеком, 2009, 180 с.

НУЖНЫЕ фрагменты есть в <a href="http://www.machinelearning.ru/wiki/images/7/7e/Dj2010up.pdf">http://www.machinelearning.ru/wiki/images/7/7e/Dj2010up.pdf</a>

 Дьяконов А.Г. Прогноз поведения клиентов супермаркетов с помощью весовых схем оценок вероятностей и плотностей // Бизнес-информатика. 2014. № 1 (27). С. 68–77.

https://bijournal.hse.ru/data/2014/04/15/1320713004/8.pdf

• Оценка вероятности: когда к нам придёт клиент? // https://vimeo.com/119925869