Classifier evaluation

Victor Kitov

v.v.kitov@yandex.ru

Confusion matrix

Confusion matrix $M = \{m_{ij}\}_{i,j=1}^{C}$ shows the number of ω_i class objects predicted as belonging to class ω_i .

Diagonal elements correspond to correct classifications and off-diagonal elements - to incorrect classifications.

Example of confusion matrix visualization

Example of confusion matrix visualization

Example of confusion matrix visualization

Example of confusion matrix visualization

- We see here that errors here are concentrated at distinguishing between classes 1 and 2.
- We can
 - unite classes 1 and 2 into new class «1+2»
 - then solve 6-class classification problem
 - separate classes 1 and 2 for all objects assigned to class «1+2» with a separate classifier.

2 class case

Confusion matrix:

		Prediction		
		+	-	
True class	+	TP (true positives)	FN (false negatives)	
	-	FP (false positives)	TN (true negatives)	

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

2 class case

Confusion matrix:

	Prediction		
		+	-
True class	+	TP (true positives)	FN (false negatives)
	-	FP (false positives)	TN (true negatives)

P and N - number of observations of positive and negative class.

$$P = TP + FN$$
, $N = TN + FP$

Accuracy:	$\frac{TP+TN}{P+N}$
Error rate:	1-accuracy= $\frac{FP+FN}{P+N}$

2 class case

Confusion matrix:

		Prediction		
		+	-	
True class	+	TP (true positives)	FN (false negatives)	
	-	FP (false positives)	TN (true negatives)	

P and N - number of observations of positive and negative class.

$$P = TP + FN, \quad N = TN + FP$$

Accuracy:	$\frac{TP+TN}{P+N}$
Error rate:	1-accuracy= $\frac{FP+FN}{P+N}$

Not informative for skewed classes and one class of interest!

"Positive class" quality metrics

FPR (error rate on negatives):	FP N
TPR (correct rate on positives):	TP P
Precision:	TP TP+FP
Recall:	TP P
F-measure:	$\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$
Weighted F-measure:	$\frac{1}{\frac{\beta^2}{1+\beta^2} \frac{1}{Precision} + \frac{1}{1+\beta^2} \frac{1}{Recall}}$

Class label versus class probability evaluation¹

- **Discriminability quality measures** evaluate class label prediction.
 - examples: error rate, precision, recall, etc..

¹Give example when class labels are predicted optimally, but class probabilities - not.

Class label versus class probability evaluation¹

- **Discriminability quality measures** evaluate class label prediction.
 - examples: error rate, precision, recall, etc..
- **Reliability quality measures** evaluate class probability prediction.
 - Example: probability likelihood:

$$\prod_{i=1}^{N} \widehat{\rho}(y_i | x_i)$$

Brier score:

$$\frac{1}{N}\sum_{n=1}^{N}\sum_{c=1}^{C}\left(\mathbb{I}[y_n=c]-\widehat{\rho}(y=c|x_n)\right)^2$$

¹Give example when class labels are predicted optimally, but class probabilities - not.

Classifier evaluation - Victor Kitov

ROC curves

Table of Contents

Classifier evaluation - Victor Kitov

ROC curves

Bayes decision rule

• Loss matrix:

true class f=1 f=2y=1 0 λ_1 y=2 λ_2 0

Classifier evaluation - Victor Kitov

ROC curves

Bayes decision rule

- Expected loss f = 1: L(f = 1) = λ₂p(y = 2|x) = λ₂p(y = 2)p(x|y = 2)/p(x)
 Expected loss f = 2: L(f = 2) = λ₁p(y = 1|x) = λ₁p(y = 1)p(x|y = 1)/p(x)
- Bayes decision rule minimizes expected loss:

$$\widehat{y} = rg\min_{f} L(f)$$

• This is equivalent to:

$$\widehat{y} = \mathsf{1} \Leftrightarrow \lambda_2 \rho(y = \mathsf{2}) \rho(x|y = \mathsf{2}) < \lambda_1 \rho(y = \mathsf{1}) \rho(x|y = \mathsf{1}) \Leftrightarrow$$

$$rac{
ho(x|y=1)}{
ho(x|y=2)} > rac{\lambda_2
ho(y=2)}{\lambda_1
ho(y=1)} = \mu$$

Discriminant decision rules

- Decision rule based on discriminant functions:
 - predict $\omega_1 \Longleftrightarrow g_1(x) g_2(x) > \mu$
 - predict $\omega_1 \Longleftrightarrow g_1(x)/g_2(x) > \mu$ (for $g_1(x) > 0, \, g_2(x) > 0$)
- Decision rule based on probabilities:
 - predict $\omega_1 \iff P(\omega_1 | x) > \mu$

ROC curve²

- ROC curve is a function TPR(FPR).
- It shows how the probability of correct classification on positive classes ("recognition rate") changes with probability of incorrect classification on negative classes ("false alarm").
- It is build as a set of points TPR(μ), FPR(μ).
- If $\mu\downarrow$, the algorithm predicts ω_1 more often and
 - TPR=1 − ε₁ ↑
 - FPR=ε₂ ↑
- Characterizes classification accuracy for different μ .
 - more concave ROC curves are better

²Prove that diagonal ROC corresponds to random assignment of ω_1 and ω_2 with probabilities p and 1 - p.

Comparison of classifiers using ROC curves

Comparison of classifiers using ROC curves

How to compare different classifiers?

Area under the curve

- AUC area under the ROC curve:
 - global quality characteristic for different μ
 - AUC $\in [0,1]$
 - AUC=0.5 equivalent to random guessing
 - AUC=1 no errors classification.
 - AUC property: it is equal to probability that for 2 random objects x₁ ∈ ω₁ and x₂ ∈ ω₂ it will hold that:

 ρ(ω₁|x₁) > *ρ*(ω₂|x)