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General regularization reminder

Regularization

@ Regularization - any modification we make to the learning
algorithm that is intended to reduce the generalization error,
but not its training error.

o Overfitting - training loss<<test loss.

e very relevant to deep learning , having a lot of parameters.
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General regularization reminder

Aims of regularization

@ make underdetermined model determined!
@ improve generalization (performance on train may decrease)

e by encoding prior domain knowledge
e by solving bias-variance trade-off

e reduces variance
o at the expense of small bias increase

e this can useful when

e model space is large and complex (] variance)
e model space can approximate well the true model (bias is low)
e example: decision trees, neural nets.

lexamples: linear regression estimated with LS, logistic regression
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Types of regularization

@ add restrictions on parameters
@ add penalty to objective function (soft restriction)

@ ensemble learning
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Soft regularization

o Modified loss:

J(0) = J(0) + aR(0)
@ Specifics of neural networks:

o On layer h: i"™1 = By + 3 Brof
e bias term (g is usually not included in regularization

o there are comparatively few bias terms
o model will stay unbiased

e we may use different o, for different layers h =1,2,...H.
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L, regularization («weight decay»)

Jw,X,Y) = %WTW +J(w, X, Y)

Vud(w,X,Y)=aw + V,J(w, X, Y)

Stochastic gradient descent step:
w < (1 —ea)w — eV, J(w, X, Y)

Weights are shrunk towards zero.
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Analysis of L,-regularized solution

o Write ](W) for Taylor 2nd order approximation around
w* = argminy, J(w):
17 * 1 *\ T * a
J(w) =J(w )+§(W—W )" Hw —w )+§W w
where H = V2, J(w*) = 0 and V,,J(w*)T(w — w*) =0,
because in minimum V,,J(w*) = 0.
e This expansion is precise for quadratic loss J(w) (e.g. MSE).

~

@ Minimum is achieved when VJ(W) = 0:
H(w — w*) +aw =0
(H+al)w = Hw* (1)
W= (H+ al) ' Hw*

e When a =0 w = w*.
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General regularization reminder

Analysis of L,-regularized solution
o H= QAQT (spectral decomposition), where

e @ is orthonormal basis of eigenvectors
e A - diagonal matrix with eigenvalues
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General regularization reminder

Analysis of L,-regularized solution

o H= QAQT (spectral decomposition), where

e @ is orthonormal basis of eigenvectors
e A - diagonal matrix with eigenvalues

@ Substituting spectral decomposition into(1), we obtain:
W o= (QAQT +al) ' QAQT w*
Tt T
[QA+anQT] @AQTw!
= QA+ a7 IAQTw*
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General regularization reminder

Analysis of L,-regularized solution

o H= QAQT (spectral decomposition), where

e @ is orthonormal basis of eigenvectors
e A - diagonal matrix with eigenvalues

@ Substituting spectral decomposition into(1), we obtain:
W o= (QAQT +al) ' QAQT w*
Tt T
[QA+anQT] @AQTw!
= QA+ a7 IAQTw*

@ W is obtained by rescaling w* along the eigenvectors.
A
At

o along i-th eigenvector rescaling factor is
o rescaling effect is

@ high for small \;
e insignificant for large \;
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General regularization reminder

lllustration of L, regularization effect

o Notation
e Solid: iso-lines of J(w)
o Dashed: iso-lines of $w'w
@ W - equlibrium point
e Eigenvectors of H:
o vy = [1,0], A\ is small => |wy — W] - large
o vp = [0,1], Az large => |wy — Wp| - small
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Linear regression with L, regularization

y:xTW
N 2 o
~ . T T
W:argmv‘llnz;<xnw—yn) —|—§W w
n—

Solution: .
w=(XTX+al) XTY

For centered features:

XTX o Neov[x,x], XTY = Ncov|[x, y]

L, regularization «adds» « variance to each feature.

this forces estimator to reduce weights (based on cov[x,y])
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Ly norm regularization

NJN(W) = J(w) +alwl,

VJ(w) = VJ(w) + asign(w)
When a > sup,, [VJ(w)| SGD will force w; — 0.
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Effect of L; regularization on solution

@ To get analytical solution need to assume that Hessian is
diagonal.
e Consider 2nd order Taylor approximation to J(w):

Ty = ) 3 it = e |

o
e solution is sparse (many w; may be 0)
o shift in weights is smaller along directions with high H; ;
o 7~ > w; : regularizer dominates J(w) improvements.

@ Solution?:

w; = sign(w;") max {‘W,-* -

8]
H; i

)

@ Analysis:

. . H: ;
%L regularized solution would be here w; = W
1,0
12/68 ’
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L, regularizer: feature selection

||wl||1 regularizer will do feature selection.

Consider

D
Jw) = Jw) + 0y lwal
d=1

if « > sup, ‘83‘(;”) , then it becomes optimal to set w; =0

For higher o more weights will become zeroes.
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L, regularizer: no feature selection

. 2
o Consider R(w) = §||w|l5=$> 4 w3

D
J(w) = J(w) + % S W
d=1

° 855\/\7) = aw; — 0 when w; — 0.
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General

regularization reminder

[[lustration

coefficients

L2 regularization

L1 regularization

coefficients.
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Table of Contents

© Regularization for deep learning
@ Constrained optimization
o Dataset augmentation
@ Adding noise
@ Semi-supervised, multitask approaches
@ Dense-sparse-dense training
Early stopping
Sparse representation
Dropout
Batch normalization
@ Weights initialization
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Regularization for deep learning

Example of unregularized, L; and L, regularized weights

Wieights histogram (1stlayer f) - no regularization Weights histogram (1st layer o) - L1 Weights histogram (1st layer fo) - L2
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Regularization for deep learning

Constrained optimization

© Regularization for deep learning
o Constrained optimization
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Regularization for deep learning

Constrained optimization

Constrained optimization

J(0) = J(0) + aR(6) — min

is equivalent to constrained maximization task for some v = y(«a):

J(0) — ming 2
R(6) <~

al—=~y1

To solve (2) repeat:

0 < 6 — eV J(0) (or any other optimization update)
project 6 onto region {6 : R(6) <~}
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Regularization for deep learning

Constrained optimization

When to use constrained optimization

@ Penalty addition may force algorithm get stuck in local optima
around zero:

e causing «dead unitsy with very small weights
o inefficient local solution

@ Constrained maximization has no such problem
@ Constrained maximization: more stable

e weights cannot take arbitrary values
e may use higher learning rate!
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Regularization for deep learning

Constrained optimization

Constrained optimization

@ We can impose constraints on:

o all weights
o all weights within each layer
e all incoming weights to each neuron

@ Bias weights are usually not constrained.
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Regularization for deep learning

Dataset augmentation

© Regularization for deep learning

o Dataset augmentation
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Regularization for deep learning

Dataset augmentation

Dataset augmentation

e Dataset augmentation - applying a wide array of
domain-specific invariant transformations to synthetically
expand a training set.

@ More data - more accurate model.
@ Examples for image classification:

e translation, scaling, cropping
e reflection

@ counterexample: b->d
e rotation
@ not big, otherwise 6->9, p->d

e adding small random noise

@ See more invariant transformations here.
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Regularization for deep learning

Dataset augmentation

Examples of augmented images

Ok, DL ol I
Ly Oaw 1

) e (Rl
Vi el
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Regularization for deep learning

Dataset augmentation

Examples of augmented images
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Regularization for deep learning

Adding noise

© Regularization for deep learning

@ Adding noise
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Regularization for deep learning

Adding noise

Adding noise

@ Add noise to inputs

e solution becomes robust to input noise
@ Add noise to hidden unit inputs

o this is dataset augmentation with different levels of abstraction
@ Add noise to weights (=adding it to gradient)

e pushes weights to «plateu» regions where small weight
changes do not affect output
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Regularization for deep learning

Adding noise

Add noise to gradient®

VJ(0) « VJI(O)+ N(0,0¢)
Recommended schedule:

Ui

Ot — 70—~

(1+1t)

where 77 € {0.01, 0.3, 1.0}, v = 0.55.

Improvements obtained:
e for networks with poor initialization (all zeroes)
o for very deep networks

o for memory networks

3Neelakantan, Arvind et al. Adding Gradient Noise Improves Learning for

Very Deep Networks. 2015.
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Regularization for deep learning

Adding noise

Add noise to outputs

@ When incorrect labels y are present - the model may overfit to
them.

o Idea: to force model not to take y too seriously - slightly
spread y over all classes.

@ For (xn, yn) replace hard targets with soft targets:

hard target soft target

y=1 0 €
y=yn—1 0 <
Y =>Yn 1 1- C515
y=ynt1 0 c
y=C 0 ra
@ Smoothed likelihood:

N
-—r - - - 29/68 - s C—=1
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Regularization for deep learning

Semi-supervised, multitask approaches

© Regularization for deep learning

@ Semi-supervised, multitask approaches
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Regularization for deep learning

Semi-supervised, multitask approaches

Semi-supervised learning

@ In semi-supervised learning we use:

o labelled data (x1,y1),...(xn, yn)
o unlabelled data xp41,...XN4M-

@ Motivation:

o labelling is expensive
o Nissmall and M > N.
e p(x) and p(y|x) have shared parametrization.
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Regularization for deep learning

Semi-supervised, multitask approaches

Semi-supervised learning - neural nets*

Liybrid(X, Y) = Ldisc (X, Y) + Y Lunsup(X)
where
° Lyisc(X,Y)= Zy 1 Inp(yn|xn) - discriminative log-likelihood
® Lynsup(X,Y) = ZN+M In p(x,) - unsupervised log-likelihood
@ - trade-off hyperparameter (tuned on validation set)
Results:
@ In article Bolzmann machines were used

@ Significant reduction of error-rate on MNIST, 20 newsgroups.

*Larochelle, H. and Bengio, Y. (2008). Classification using discriminative

restricted Boltzmann machines. In ICML'2008.
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Semi-supervised, multitask approaches

Multi-task learning

o Applicable when several tasks have shared factors.

@ Statistical benefit - more accurate estimation
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Regularization for deep learning

Dense-sparse-dense training

© Regularization for deep learning

@ Dense-sparse-dense training
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Regularization for deep learning

Dense-sparse-dense training

Dense-sparse-dense training®

@ initial regular training, but with the main purpose of seeing
which weights are important, not learning the final weight
values.

@ Drop the connections where the weights are under a particular
threshold. Retrain the sparse network to learn the weights of
the important connections.

© Make the network dense again and retrain it using small
learning rate, a step which adds back capacity.

@ Improves AlexNet, GoogleNet, ResNet performance.
®https://arxiv.org/pdf/1607.04381v1.pdf
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Regularization for deep learning

Dense-sparse-dense training

Algorithm

Initialization: W wirh W(© ~ N(0,%)
Qutput: W),

Initial Dense Phase
while not converged do
‘ W = W1 _ 5O (W=D, zt-D);
t=t+1;
end

Sparse Phase
S = sort(|WED|); A = Si,; Mask = 1([WED| > \);
while not converged do

W = pt-1) _ n(t)vf(w(t—l);x(t—l));

WO = W® . Mask;

t=t+1;
end
Final Dense Phase
while not converged do
‘ W = W= — pOy f(WE=D; z(t=1)),;
t=1+1;
end

goto Sparse Phase for iterative DSD;
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Regularization for deep learning

Early stopping

© Regularization for deep learning

o Early stopping
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Regularization for deep learning

Early stopping

Early stopping

Learning curves
0.20 T T I T

e— Training set loss

0.15 — Validation set loss|{

Loss (negative log likelihood)

Time (epochs)
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Regularization for deep learning

Early stopping

Early stopping

o Needs separate validation set.
@ Is similar to weight decay (from close to zero initialization).
@ Parameters:

o period of steps (P) when validation performance is
reevaluated

o smaller period - more accurate, but more computationally
intensive

o after how many «bad» evaluations (quality didn't improve)
set to stop

o if small - may stop too early due to noisy performance
estimation.

@ In practice model is evaluated fixed amount of epochs, but
serialized every P epochs.
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Regularization for deep learning

Early stopping

Early stopping - utilizing validation set

Early stopping returned:
@ optimal number of steps /*
@ optimal parameters 6*
@ performance on validation P, and train Py.ain
Two approaches how to utilize validation set:
O reinitialize NN and run i* steps using training+validation set.

e use the same number of passes through objects or dataset
(epochs)?

@ continue training NN with initialization 6* on the validation
set until quality on validation reaches Pi.4in.

e may not reach
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Regularization for deep learning

Sparse representation

© Regularization for deep learning

@ Sparse representation
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Regularization for deep learning

Sparse representation

Sparse representation

@ Suppose

e 6 is a vector of estimated model parameters
e h is inner representation:

@ Optimized criterion in sparse representation becomes:

J(0) = J(8) + aR(h(0)) — mb_.in

where R(h) is sparsity provoking prior such as R(h) = |hj|.
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Sparse representation

Example of sparse representation: sparse coding

@ Definitions:

o X € R"P _ design matrix
o D € R - dictionary matrix (rows-code words)
o W € R - representation matrix (rows-object representations)

@ Sparse coding is found with optimization task:

p— 2 1
IX = WDz + Wy = min

)

2
where A3 := 37, ; a7 and [|Ally == 3= [aijl-

43/68



Regularization - Victor Kitov

Regularization for deep learning

Sparse representation

Sparse coding: estimation

@ Sparse coding is found with optimization task:

X — WD|? +|W i 3
| 15+l ||1—>gj;;‘} (3)

@ Task (3) is not convex with respect to D, W but is convex
with respect to D or W only (holding another matrix fixed).

INPUT: design matrix X

initialize D randomly

while stop condition not met:
W = arg minw || X — WD|2 + |W|,
D = argminp || X — WD|3 + || W/,

OUTPUT: dictionary D and sparse representation W

e For W solve N LASSO regressions (for each row of W)
@ For D solve K OLS regressig/rgg (for each column of D)
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Sparse representation

Sparse coding: encoder & decoder

@ Sparse coding is MSE-based sparse autoencoder.
@ Suppose we get some observation x
@ Encoder x - w

e dictionary D is fixed
e solve 1 LASSO regression:

T

|x" = WTDH2 + ||w||; = min
w

o Decoder w — X:

o XxT=w'D
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Dropout

© Regularization for deep learning

@ Dropout
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Regularization for deep learning

Dropout

Dropout idea

Each node in the neural network is removed with probability 1 — p
independently from decisions about other nodes:

Comparison neural net without/with dropout

(b) After applying dropout.

(a) Standard Neural Net

@ Output layer nodes are never removed.
@ Recommended parameters:

e p = 0.5 for inner layer nodes
o p = 0.8 for input layer nodes (feature subsampling)

@ Removal probabilities can be finetuned on cross-validation.
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Dropout

Dropout motivation

@ Motivation from genetic theory of evolution:

e sexual reproduction involves taking half the genes of one
parent and half of the other.

o best fit genes get mixed with 0.5 probabilities

o best genes should learn “by themselves”, not relying on
complex outer gene structure

o less ovefitting

o Construction works

o team of workers and the overall goal is to learn how to erect a
building

o if each of the workers is overly specialized, if one gets sick or
makes a mistake, the whole building will be severely affected

e pick randomly every week some of the workers and send them
to business trip during training.

e team becomes more resilient to noise or workers being on
vacation.
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Dropout

Deep learning motivation

@ nodes rely less on outputs of other nodes
@ try more to learn something by themselves
@ behave in a more robust way

@ resulting network becomes less overfitted.
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Dropout

Dropout algorithm

Comparison of usual and dropout network for one node

(a) Standard network

(b) Dropout network
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Dropout

Definitions

Define:
e f(x) - an activation function.
o y' - vector of outputs at layer /
o z' - vector of inputs to layer /
a * b defines element-wise product of elements.
L - number of layers in neural network
y(0)

Bernoulli(p) returns a vector of independent Bernoulli random
variables with parameter p.

°
°
° = x - input feature vector
°
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Dropout

Forward propagation algorithm

We need to repeat forward propagation recurrently for
/=0,1,..L —1.
© Usual feed-forward neural network:

21— (D) 1y ()

y(l+1) f( (I+1))

@ Feed-forward network with dropout:

o~

AR Bernoulli(p)

PO

J
y' =
Z(/+1) ;(I+1))7I n b’(/+1)

yi(/+1) _ f(zi(/ﬂ))
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Dropout

Application of dropout

e Learning
o while weights not converge:

@ sample random subnetwork (“thinned network™) with dropout
@ apply one step of stochastic gradient descent to thinned
network

Comment: due to weights sharing across all thinned networks
the number of parameters is the same as in original network.
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Dropout

Application of dropout

@ Prediction

o use full networks with all nodes, but multiply each weight by
6

p°.
e such scaling will yield the same output as average thinned

network.

o Comments:

e p>05
o p higher if applied to input layer.

8precise for networks without non-linearities. With non-linearities

Monte-Carlo sampling may work better.
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Dropout

Complexity

O(W) operations during each step to generate binary mask.
O(W) memory to store the mask

Complexity of forward and backward pass - the same

BUT: total number of steps until convergence may increase

e dropout shrinks model capacity
o to offset this, need to increase the network, make more
optimization steps
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Dropout

Modifications

o Additive Gaussian noise;

o hj + h;x N(1,1)
e at test time: no scaling needed

@ Dropconnect
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Dropout

Conclusion

e Dropout behaves similar to generating 2" networks and
taking weighted average of their predictions (W is the number
of weights in the original neural network).

@ Dropout performes intelligent high-level information
destruction

e model becomes more robust (at high levels of abstraction as
well)

@ Properties:

e number of parameters is the same
e training complexity is reduced
e complexity of prediction is the same

@ Dropout provides accuracy improvement in many domains.

@ More details in: “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. Nitish Srivastava, Geoffrey
Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov.
Journal of Machine Learnina/Research 15 (2014) 1929-1958.
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Batch normalization

© Regularization for deep learning

@ Batch normalization
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Batch normalization

Problems solved by batch normalization”

@ Weights in the network are updated jointly. Let some weight
w; be improved by step of SGD. This improvement may get
lost, because simultaneously other weight were updated.

@ In the context of other updated weights performed update of
w; may lose sense.

@ In short: distribution of neuron outputs change making it hard
to keep weight up-to-date.

o Consequences:
e Slows down convergence
o Need to use smaller error rate
o If using saturating activations this may lead to neuron
saturation.
e Hard to choose proper initialization to omit these saturations.

"Sergey loffe, Christian Szegedy. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. 2015.
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Batch normalization

Batch normalization

o Idea of method: standardize outputs of neurons
e i.e. input features and outputs of hidden neurons
o Benefits:

Gradient becomes invariant to scale of neuron outputs.
o Distribution of inputs is preserved.

o Can ensure staying away from neuron saturation regions
e May use higher learning rates

@ Approach has beaten state-of-the-art ImageNet model (2015).
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Batch normalization

Training algorithm

For minibatch x1, ...x,, of m random objects:
@ find minibatch mean
@ find minibatch std. deviation
@ normalize all samples of the minibatch.

e form output as y; = vX; + 3 (v and [ are additional
parameters that are learned).

Input: Values of z over a mini-batch: B = {x1.,n};
Parameters to be learned: v, 3
Output: {y; = BN, s(x:)}
“— E im // mini-batch mean
e m -1 .
Lo
of - Z(zl — ug)? // mini-batch variance
i=1
Zi i 7 1B // normalize
Vog+e
Yi < % + B = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation 2 over a mini-batch.
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Batch normalization

Derivatives for back-propagation

o0 _ o0
9z, — By v

aé:f% =Y, & (wi— ) - FE(oh +e) 732

ar_ Zm S| 4 2 L 2imy —2(wi—ps)
8#5 - i=1 35, /Gé-l-f 60'85 m

a¢ o¢ 1, o L 2(mi— us)+ o0 1
dz; — 0z, ,fg2+5 9o m s m
at __ T

6_7 Zl_l aya Ly

oL _

86 Z’L—l ayl
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Batch normalization

Batch normalization: algorithm

Input: Network N with trainable parameters ©;
subset of activations {z*)} X |
Output: Batch-normalized network for inference, Nitg
1: Ny < N/ Training BN network
2. fork=1...K do
3. Add transformation y*) = BN_w g (zF)) to
Nity (Alg. 1)

4 Modify each layer in Niy with input 2(*) to take
y*) instead
5: end for

=2}

- Train Npjy to optimize the parameters © U
{9, B
- Nitl « Nify  // Inference BN network with frozen
// parameters

-
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Batch normalization

Prediction

At prediction x; is shifted by Ex; and scaled by 4/ Var[x;] obtained
by averaging their estimates for all minibatches.

8 fork=1...K do
9. //Forclarity, z = () 4 = ~#) up = pg)j
10:  Process multiple training mini-batches 5, each of
size m, and average over them:
E[z] « Eglus]
Var[z] + —Z-Ep[o3]

11 In N, replace the transform y = BN, 4() with

- . _ _2Efe]
Yy Var[z]+e T+ (ﬁ ,/Var[z]-ke)
12: end for

Algorithm 2: Training a Batch-Normalized Network
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Weights initialization

© Regularization for deep learning

@ Weights initialization
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Weights initialization

Random weights initialization

e random with distribution w; ~ F(0, 0?), having

@ Zero mean

e varaince equal to ,% or —2
mn

Nin+Nout

where

@ nj, is the number of incoming connections for neuron i.
® noy is the number of outgoing connections for neuron /.
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Weights initialization

Weights initialization with unsupervised pretraining

Unsupervised pretraining:
@ Train an autoencoder.

@ Initialize first layers of supervised network with autoencoder
weights.

Comments:
@ was used in the first works on deep learning

@ now not very popular, random schemes are used or
initialization from supervised nets for similar tasks.
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Weights initialization

Conclusion

Most popular regularization strategies:
o early stopping
batch normalization

dropout

L1 /Ly regularization.
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