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General regularization reminder

Regularization

Regularization - any modi�cation we make to the learning
algorithm that is intended to reduce the generalization error,
but not its training error.

Over�tting - training loss<�<test loss.

very relevant to deep learning , having a lot of parameters.
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Aims of regularization

make underdetermined model determined1

improve generalization (performance on train may decrease)

by encoding prior domain knowledge
by solving bias-variance trade-o�

reduces variance
at the expense of small bias increase

this can useful when

model space is large and complex (↓variance)
model space can approximate well the true model (bias is low)
example: decision trees, neural nets.

1examples: linear regression estimated with LS, logistic regression
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Types of regularization

add restrictions on parameters

add penalty to objective function (soft restriction)

ensemble learning
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Soft regularization

Modi�ed loss:
J̃(θ) = J(θ) + αR(θ)

Speci�cs of neural networks:

On layer h: ih+1 = β0 +
∑
βko

h
k

bias term β0 is usually not included in regularization

there are comparatively few bias terms
model will stay unbiased

we may use di�erent αh for di�erent layers h = 1, 2, ...H.
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L2 regularization (�weight decay�)

J̃(w ,X ,Y ) =
α

2
wTw + J(w ,X ,Y )

∇w J̃(w ,X ,Y ) = αw +∇wJ(w ,X ,Y )

Stochastic gradient descent step:

w ← (1− εα)w − ε∇wJ(w ,X ,Y )

Weights are shrunk towards zero.
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Analysis of L2-regularized solution

Write J̃(w) for Taylor 2nd order approximation around
w∗ = arg minw J(w):

Ĵ(w) = J(w∗) +
1

2
(w − w∗)T H(w − w∗) +

α

2
wTw

where H = ∇2
wJ(w∗) � 0 and ∇wJ(w∗)T (w − w∗) = 0,

because in minimum ∇wJ(w∗) = 0.

This expansion is precise for quadratic loss J(w) (e.g. MSE).

Minimum is achieved when ∇Ĵ(w̃) = 0:

H(w̃ − w∗) + αw̃ = 0

(H + αI ) w̃ = Hw∗

w̃ = (H + αI )−1Hw∗
(1)

When α = 0 w̃ = w∗.
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Analysis of L2-regularized solution

H = QΛQT (spectral decomposition), where

Q is orthonormal basis of eigenvectors
Λ - diagonal matrix with eigenvalues

Substituting spectral decomposition into(1), we obtain:

w̃ = (QΛQT + αI )−1QΛQTw∗

=
[
Q(Λ + αI )QT

]−1
QΛQTw∗

= Q(Λ + αI )−1ΛQTw∗

w̃ is obtained by rescaling w∗ along the eigenvectors.

along i-th eigenvector rescaling factor is λi

λi+α
rescaling e�ect is

high for small λi

insigni�cant for large λi
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Illustration of L2 regularization e�ect

Notation

Solid: iso-lines of J(w)
Dashed: iso-lines of α

2
wTw

w̃ - equlibrium point

Eigenvectors of H:

v1 = [1, 0], λ1 is small => |w∗
1
− w̃1| - large

v2 = [0, 1], λ2 large => |w∗
2
− w̃2| - small
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Linear regression with L2 regularization

y = xTw

ŵ = arg min
w

N∑
n=1

(
xTn w − yn

)2
+
α

2
wTw

Solution:

ŵ =
(
XTX + αI

)−1
XTY

For centered features:
XTX ∝ Ncov [x , x ], XTY = Ncov [x , y ]
L2 regularization �adds� α variance to each feature.
this forces estimator to reduce weights (based on cov[x,y])
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General regularization reminder

L1 norm regularization

J̃(w) = J(w) + α ‖w‖1
∇J̃(w) = ∇J(w) + α sign(w)

When α > supwi
|∇J(w)| SGD will force wi → 0.
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E�ect of L1 regularization on solution

To get analytical solution need to assume that Hessian is
diagonal.

Consider 2nd order Taylor approximation to Ĵ(w):

Ĵ(w) = J(w∗) +
∑
i

[
1

2
Hi ,i (wi − w∗i )2 + α |wi |

]
Solution2:

wi = sign(w∗i ) max

{∣∣∣∣w∗i − α

Hi ,i

∣∣∣∣ , 0}
Analysis:

solution is sparse (many wi may be 0)
shift in weights is smaller along directions with high Hi,i
α
Hi,i

> w∗
i : regularizer dominates J(w) improvements.

2L2 regularized solution would be here wi =
Hi,i

Hi,i+α
w∗

i
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L1 regularizer: feature selection

||w ||1 regularizer will do feature selection.

Consider

J̃(w) = J(w) + α

D∑
d=1

|wd |

if α > supw

∣∣∣∂J(w)
∂wi

∣∣∣, then it becomes optimal to set wi = 0

For higher α more weights will become zeroes.
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L2 regularizer: no feature selection

Consider R(w) = α
2
‖w‖22 = α

2

∑
d w

2
d

J̃(w) = J(w) +
α

2

D∑
d=1

w2
d

∂R(w)
∂wi

= αwi → 0 when wi → 0.
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General regularization reminder

Illustration
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Regularization for deep learning
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Example of unregularized, L1 and L2 regularized weights
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Regularization for deep learning

Constrained optimization

Constrained optimization

J̃(θ) = J(θ) + αR(θ)→ min
θ

is equivalent to constrained maximization task for some γ = γ(α):{
J(θ)→ minθ

R(θ) ≤ γ
(2)

α ↓⇐⇒ γ ↑
To solve (2) repeat:
θ ← θ − ε∇J(θ) (or any other optimization update)
project θ onto region {θ : R(θ) ≤ γ}
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Regularization for deep learning

Constrained optimization

When to use constrained optimization

Penalty addition may force algorithm get stuck in local optima
around zero:

causing �dead units� with very small weights
ine�cient local solution

Constrained maximization has no such problem

Constrained maximization: more stable

weights cannot take arbitrary values
may use higher learning rate!
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Regularization for deep learning

Constrained optimization

Constrained optimization

We can impose constraints on:

all weights
all weights within each layer
all incoming weights to each neuron

Bias weights are usually not constrained.
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Dataset augmentation

Dataset augmentation

Dataset augmentation - applying a wide array of
domain-speci�c invariant transformations to synthetically
expand a training set.

More data - more accurate model.

Examples for image classi�cation:

translation, scaling, cropping
re�ection

counterexample: b->d

rotation

not big, otherwise 6->9, p->d

adding small random noise

See more invariant transformations here.
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Regularization for deep learning

Dataset augmentation

Examples of augmented images
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Dataset augmentation

Examples of augmented images
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Regularization for deep learning

Adding noise

Adding noise

Add noise to inputs

solution becomes robust to input noise

Add noise to hidden unit inputs

this is dataset augmentation with di�erent levels of abstraction

Add noise to weights (=adding it to gradient)

pushes weights to �plateu� regions where small weight
changes do not a�ect output
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Adding noise

Add noise to gradient3

∇J(θ)← ∇J(θ) + N(0, σt)

Recommended schedule:

σt =
η

(1 + t)γ

where η ∈ {0.01, 0.3, 1.0}, γ = 0.55.

Improvements obtained:

for networks with poor initialization (all zeroes)

for very deep networks

for memory networks

3Neelakantan, Arvind et al. Adding Gradient Noise Improves Learning for
Very Deep Networks. 2015.
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Adding noise

Add noise to outputs

When incorrect labels y are present - the model may over�t to
them.
Idea: to force model not to take y too seriously - slightly
spread y over all classes.
For (xn, yn) replace hard targets with soft targets:

hard target soft target
y = 1 0 ε

C
· · ·

y = yn − 1 0 ε
C

y = yn 1 1− C−1
C ε

y = yn + 1 0 ε
C

· · ·
y = C 0 ε

C

Smoothed likelihood:
N∏

n=1

∏
y 6=yn

p(y |xn)
ε
C p(yy |xn)1−

C−1
C
ε → max

θ
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Semi-supervised, multitask approaches

Semi-supervised learning

In semi-supervised learning we use:

labelled data (x1, y1), ...(xN , yN)
unlabelled data xN+1, ...xN+M .

Motivation:

labelling is expensive
N is small and M � N.
p(x) and p(y |x) have shared parametrization.
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Semi-supervised, multitask approaches

Semi-supervised learning - neural nets4

Lhybrid(X ,Y ) = Ldisc(X ,Y ) + γLunsup(X )

where

Ldisc(X ,Y ) =
∑N

n=1 ln p(yn|xn) - discriminative log-likelihood

Lunsup(X ,Y ) =
∑N+M

n=1 ln p(xn) - unsupervised log-likelihood

γ - trade-o� hyperparameter (tuned on validation set)

Results:

In article Bolzmann machines were used

Signi�cant reduction of error-rate on MNIST, 20 newsgroups.

4Larochelle, H. and Bengio, Y. (2008). Classi�cation using discriminative
restricted Boltzmann machines. In ICML'2008.
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Semi-supervised, multitask approaches

Multi-task learning

Applicable when several tasks have shared factors.

Statistical bene�t - more accurate estimation

33/68



Regularization - Victor Kitov

Regularization for deep learning

Dense-sparse-dense training

2 Regularization for deep learning
Constrained optimization
Dataset augmentation
Adding noise
Semi-supervised, multitask approaches
Dense-sparse-dense training
Early stopping
Sparse representation
Dropout
Batch normalization
Weights initialization

34/68



Regularization - Victor Kitov

Regularization for deep learning

Dense-sparse-dense training

Dense-sparse-dense training5

1 initial regular training, but with the main purpose of seeing
which weights are important, not learning the �nal weight
values.

2 Drop the connections where the weights are under a particular
threshold. Retrain the sparse network to learn the weights of
the important connections.

3 Make the network dense again and retrain it using small
learning rate, a step which adds back capacity.

Improves AlexNet, GoogleNet, ResNet performance.
5https://arxiv.org/pdf/1607.04381v1.pdf
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Regularization for deep learning

Dense-sparse-dense training

Algorithm
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Early stopping
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Early stopping

Early stopping

Needs separate validation set.

Is similar to weight decay (from close to zero initialization).

Parameters:

period of steps (P) when validation performance is
reevaluated

smaller period - more accurate, but more computationally
intensive

after how many �bad� evaluations (quality didn't improve)
set to stop

if small - may stop too early due to noisy performance
estimation.

In practice model is evaluated �xed amount of epochs, but
serialized every P epochs.
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Regularization for deep learning

Early stopping

Early stopping - utilizing validation set

Early stopping returned:

optimal number of steps i∗

optimal parameters θ∗

performance on validation Pval and train Ptrain

Two approaches how to utilize validation set:

1 reinitialize NN and run i∗ steps using training+validation set.

use the same number of passes through objects or dataset
(epochs)?

2 continue training NN with initialization θ∗ on the validation
set until quality on validation reaches Ptrain.

may not reach
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Sparse representation

Sparse representation

Suppose

θ is a vector of estimated model parameters
h is inner representation:

Optimized criterion in sparse representation becomes:

J̃(θ) = J(θ) + αR(h(θ))→ min
θ

where R(h) is sparsity provoking prior such as R(h) =
∑

i |hi |.

42/68



Regularization - Victor Kitov

Regularization for deep learning

Sparse representation

Example of sparse representation: sparse coding

De�nitions:

X ∈ RNxD - design matrix
D ∈ R - dictionary matrix (rows-code words)
W ∈ R - representation matrix (rows-object representations)

Sparse coding is found with optimization task:

‖X −WD‖22 + ‖W ‖1 → min
D,W

where ‖A‖22 :=
∑

i ,j a
2
i ,j and ‖A‖1 :=

∑
i ,j |ai ,j |.
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Sparse representation

Sparse coding: estimation

Sparse coding is found with optimization task:

‖X −WD‖22 + ‖W ‖1 → min
D,W

(3)

Task (3) is not convex with respect to D,W but is convex
with respect to D or W only (holding another matrix �xed).

INPUT: design matrix X

initialize D randomly
while stop condition not met:

W = argminW ‖X −WD‖22 + ‖W ‖1
D = argminD ‖X −WD‖22 + ‖W ‖1

OUTPUT: dictionary D and sparse representation W

For W solve N LASSO regressions (for each row of W )
For D solve K OLS regressions (for each column of D)
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Sparse representation

Sparse coding: encoder & decoder

Sparse coding is MSE-based sparse autoencoder.

Suppose we get some observation x

Encoder x → w

dictionary D is �xed
solve 1 LASSO regression:∥∥xT − wTD

∥∥2 + ‖w‖
1
→ min

w

Decoder w → x̂ :

x̂T = wTD
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Dropout

Dropout idea

Each node in the neural network is removed with probability 1− p
independently from decisions about other nodes:

Comparison neural net without/with dropout

Output layer nodes are never removed.

Recommended parameters:

p = 0.5 for inner layer nodes
p = 0.8 for input layer nodes (feature subsampling)

Removal probabilities can be �netuned on cross-validation.
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Dropout

Dropout motivation

Motivation from genetic theory of evolution:

sexual reproduction involves taking half the genes of one
parent and half of the other.
best �t genes get mixed with 0.5 probabilities
best genes should learn �by themselves�, not relying on
complex outer gene structure

less ove�tting

Construction works
team of workers and the overall goal is to learn how to erect a
building
if each of the workers is overly specialized, if one gets sick or
makes a mistake, the whole building will be severely a�ected
pick randomly every week some of the workers and send them
to business trip during training.
team becomes more resilient to noise or workers being on
vacation.
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Dropout

Deep learning motivation

nodes rely less on outputs of other nodes

try more to learn something by themselves

behave in a more robust way

resulting network becomes less over�tted.
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Dropout

Dropout algorithm

Comparison of usual and dropout network for one node
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Dropout

De�nitions

De�ne:

f (x) - an activation function.

y l - vector of outputs at layer l

z l - vector of inputs to layer l

a ∗ b de�nes element-wise product of elements.

L - number of layers in neural network

y (0) = x - input feature vector

Bernoulli(p) returns a vector of independent Bernoulli random
variables with parameter p.

51/68



Regularization - Victor Kitov

Regularization for deep learning

Dropout

Forward propagation algorithm

We need to repeat forward propagation recurrently for
l = 0, 1, ...L− 1.

1 Usual feed-forward neural network:

z
(l+1)
i = w

(l+1)
i y l + b

(l+1)
i

y
(l+1)
i = f (z

(l+1)
i )

2 Feed-forward network with dropout:

r
(l)
j ∼ Bernoulli(p)

ỹ l = r (l) ∗ y (l)

z
(l+1)
i = w

(l+1)
i ỹ l + b

(l+1)
i

y
(l+1)
i = f (z

(l+1)
i )
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Dropout

Application of dropout

Learning

while weights not converge:

1 sample random subnetwork (�thinned network�) with dropout
2 apply one step of stochastic gradient descent to thinned

network

Comment: due to weights sharing across all thinned networks
the number of parameters is the same as in original network.
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Dropout

Application of dropout

Prediction

use full networks with all nodes, but multiply each weight by
p6.
such scaling will yield the same output as average thinned
network.

Comments:

p ≥ 0.5
p higher if applied to input layer.

6precise for networks without non-linearities. With non-linearities
Monte-Carlo sampling may work better.
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Dropout

Complexity

O(W ) operations during each step to generate binary mask.

O(W ) memory to store the mask

Complexity of forward and backward pass - the same

BUT: total number of steps until convergence may increase

dropout shrinks model capacity
to o�set this, need to increase the network, make more
optimization steps
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Dropout

Modi�cations

Additive Gaussian noise:

hi ← hi ∗ N(1, 1)
at test time: no scaling needed

Dropconnect
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Dropout

Conclusion

Dropout behaves similar to generating 2W networks and
taking weighted average of their predictions (W is the number
of weights in the original neural network).
Dropout performes intelligent high-level information
destruction

model becomes more robust (at high levels of abstraction as
well)

Properties:

number of parameters is the same
training complexity is reduced
complexity of prediction is the same

Dropout provides accuracy improvement in many domains.
More details in: �Dropout: A Simple Way to Prevent Neural

Networks from Over�tting�. Nitish Srivastava, Geo�rey

Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov.

Journal of Machine Learning Research 15 (2014) 1929-1958.57/68
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Batch normalization

Problems solved by batch normalization7

Weights in the network are updated jointly. Let some weight
wi be improved by step of SGD. This improvement may get
lost, because simultaneously other weight were updated.

In the context of other updated weights performed update of
wi may lose sense.

In short: distribution of neuron outputs change making it hard
to keep weight up-to-date.

Consequences:

Slows down convergence
Need to use smaller error rate
If using saturating activations this may lead to neuron
saturation.
Hard to choose proper initialization to omit these saturations.

7Sergey Io�e, Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015.
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Batch normalization

Batch normalization

Idea of method: standardize outputs of neurons

i.e. input features and outputs of hidden neurons

Bene�ts:

Gradient becomes invariant to scale of neuron outputs.
Distribution of inputs is preserved.
Can ensure staying away from neuron saturation regions
May use higher learning rates

Approach has beaten state-of-the-art ImageNet model (2015).
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Batch normalization

Training algorithm

For minibatch x1, ...xm of m random objects:

�nd minibatch mean
�nd minibatch std. deviation
normalize all samples of the minibatch.
form output as yi = γx̂i + β (γ and β are additional
parameters that are learned).
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Batch normalization

Derivatives for back-propagation
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Batch normalization

Batch normalization: algorithm
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Batch normalization

Prediction

At prediction xi is shifted by Exi and scaled by
√
Var [xi ] obtained

by averaging their estimates for all minibatches.

-
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Weights initialization

Random weights initialization

random with distribution wi ∼ F (0, σ2), having

zero mean
varaince equal to 1

nin
or 2

nin+nout
where

nin is the number of incoming connections for neuron i .
nout is the number of outgoing connections for neuron i .
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Weights initialization

Weights initialization with unsupervised pretraining

Unsupervised pretraining:

1 Train an autoencoder.

2 Initialize �rst layers of supervised network with autoencoder
weights.

Comments:

was used in the �rst works on deep learning

now not very popular, random schemes are used or
initialization from supervised nets for similar tasks.
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Weights initialization

Conclusion

Most popular regularization strategies:

early stopping

batch normalization

dropout

L1/L2 regularization.
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