Linear methods of classification

Victor Kitov

Geometric foundations of linear classification

Table of contents

Geometric foundations of linear classification

- 2 Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Geometric foundations of linear classification

Linear discriminant functions

- Classification of two classes ω_1 and ω_2 .
- Linear discriminant function:

$$g(x) = w^T x + w_0$$

Decision rule:

$$oldsymbol{x} o egin{cases} \omega_1, & oldsymbol{g}(oldsymbol{x}) \geq oldsymbol{0} \ \omega_2, & oldsymbol{g}(oldsymbol{x}) < oldsymbol{0} \end{cases}$$

• Decision boundary $B = \{x : g(x) = 0\}$ is linear.

Geometric foundations of linear classification

Example: decision regions

Linear classification decision regions

Geometric foundations of linear classification

Reminder

•
$$a = [a^1, ...a^D]^T$$
, $b = [b^1, ...b^D]^T$
• Scalar product $\langle a, b \rangle = a^T b = \sum_{d=1}^D a_d b_b$
• $a \perp b$ means that $\langle a, b \rangle = 0$
• Norm $||a|| = \sqrt{\langle a, a \rangle}$
• Distance $\rho(a, b) = ||a - b|| = \sqrt{\langle a - b, a - b \rangle}$

- $p = \langle a, \frac{b}{\|b\|} \rangle$ signed projection
- $|p| = \left|a, \frac{b}{\|b\|}\right|$ unsigned projection length

Geometric foundations of linear classification

• Consider arbitrary
$$x_A, x_B \in B \Rightarrow egin{cases} g(x_A) = w^T x_A + w_0 = 0 \ g(x_B) = w^T x_B + w_0 = 0 \ ext{so} \ w^T (x_A - x_B) = 0 \ ext{and} \ w ot B. \end{cases}$$

Geometric foundations of linear classification

Distance form origin

• Distance from the origin to *B* is equal to absolute value of the projection of $x \in B$ on $\frac{w}{\|w\|}$:

$$\langle x, \frac{w}{\|w\|}
angle = \frac{\langle x, w \rangle}{\|w\|} = \{w^T x + w_0 = 0\} = -\frac{w_0}{\|w\|}$$

• So $\rho(0, B) = \frac{w_0}{\|w\|}$, and w_0 determines the offset from the origin.

Geometric foundations of linear classification

Distance from x to B

Denote x_{\perp} - the projection of x on B, and $r = \langle \frac{w}{\|w\|}, x - x_{\perp} \rangle$ - the signed length of the orthogonal complement of x on B:

$$x = x_\perp + r \frac{w}{\|w\|}$$

After multiplication by w and addition of w_0 :

$$w^T x + w_0 = w^T x_\perp + w_0 + r \frac{\langle w, w \rangle}{\|w\|}$$

Using $w^T x + w_0 = g(x)$ and $w^T x_\perp + w_0 = 0$, we obtain: $r = rac{g(x)}{\|w\|}$

So from one side of the hyperplane $r > 0 \Leftrightarrow g(x) > 0$, and from the other side of the hyperplane $r < 0 \Leftrightarrow g(x) < 0$.

Geometric foundations of linear classification

Illustration

Linear decision rule:

$$\widehat{c}(x) = egin{cases} \omega_1, & g(x) > 0 \ \omega_2, & g(x) < 0 \end{cases}$$

Decision boundary: g(x) = 0, confidence of decision: |g(x)| / ||w||.

Geometric foundations of linear classification

Multiple classification

- Popular schemes:
 - one versus all
 - one versus rest
- If only sign is taken into account, they have regions of ambiguity.

Geometric foundations of linear classification

One versus all - ambiguity

Classification among three classes: $\omega_1, \omega_2, \omega_3$

Geometric foundations of linear classification

One versus one - ambiguity

Classification among three classes: $\omega_1, \omega_2, \omega_3$

Geometric foundations of linear classification

Multiple classes classification - solution

- Classification among $\omega_1, \omega_2, ..., \omega_C$.
- Use C discriminant functions $g_c(x) = w_c^T x + w_{c0}$
- Decision rule:

$$\widehat{c}(x) = rg\max_{c} g_{c}(x)$$

• Decision boundary between classes ω_i and ω_j is linear:

$$\left(w_{i}-w_{j}\right)^{T}x+\left(w_{i0}-w_{j0}\right)=0$$

• Decision regions are convex¹.

¹why? prove that.

Estimation of error rate from above

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Estimation of error rate from above

Linear discriminant functions

- Consider binary classification of classes ω_1 and $\omega_2.$
- Denote classes ω_1 and ω_2 with y = +1 and y = -1.
- Linear discriminant function: $g(x) = w^T x + w_0$,

$$\widehat{\omega} = egin{cases} \omega_1, & oldsymbol{g}(oldsymbol{x}) \geq oldsymbol{0} \ \omega_2, & oldsymbol{g}(oldsymbol{x}) < oldsymbol{0} \end{cases}$$

- Decision rule: $y = \operatorname{sign} g(x)$.
- Define constant feature $x_0 \equiv 1$, then $g(x) = w^T x = \langle w, x \rangle$ for $w = [w_0, w_1, ... w_D]^T$.
- Define the margin M(x,y) = g(x)y
 - $M(x,y) \geq$ 0 <=> object x is correctly classified as y
 - |M(x,y)| confidence of decision

Estimation of error rate from above

Weights selection

• Target: minimization of the number of misclassifications Q:

$$Q(w|X) = \sum_n \mathbb{I}[M(x_n, y_n|w) < 0] o \min_w$$

• Problem: standard optimization methods are inapplicable, because *Q*(*w*,*X*) is discontinuous.

Estimation of error rate from above

Weights selection

• Target: minimization of the number of misclassifications Q:

$$Q(w|X) = \sum_n \mathbb{I}[M(x_n, y_n|w) < 0] o \min_w$$

- Problem: standard optimization methods are inapplicable, because Q(w,X) is discontinuous.
- Idea: approximate loss function with smooth function \mathcal{L} :

$$\mathbb{I}[M(x_n, y_n | w) < 0] \leq \mathcal{L}(M(x_n, y_n | w))$$

Estimation of error rate from above

Approximation of the target criteria

We obtain the upper boundary on the empirical risk:

$$Q(w|X) = \sum_{n} \mathbb{I}[M(x_n, y_n|w) < 0]$$

$$\leq \sum_{n} \mathcal{L}(M(x_n, y_n|w)) = F(w)$$

16/41

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Optimization

• Optimization task to obtain the weights:

$$F(w) = \sum_{i=1}^{N} \mathcal{L}(\langle w, x_i \rangle y_i) \to \min_{w}$$

• Gradient descend algorithm:

```
INPUT:

\eta - parameter, controlling the speed of convergence

stopping rule

ALGORITHM:

initialize w_0 randomly

while stopping rule is not satisfied:

w_{n+1} \leftarrow w_n - \eta \frac{\partial F(w_n)}{\partial w}

n \leftarrow n + 1
```

Stochastic gradient descend

Gradient descend

• Possible stopping rules:

•
$$|w_{n+1} - w_n| < \varepsilon$$

•
$$|F(w_{n+1}) - F(w_n)| < \varepsilon$$

- $n > n_{max}$
- Suboptimal method of minimization in the direction of the greatest reduction of *F*(*w*):

Recommendations for use

- Convergence is faster for normalized features
 - feature normalization solves the problem of «elongated valleys»

Convergence acceleration

Stochastic gradient descend method

set the initial approximation w_0 calculate $\widehat{F} = \sum_{i=1}^{n} \mathcal{L}(M(x_i, y_i | w_0))$ iteratively until convergence \widehat{Q}_{approx} :

- select random pair (x_i, y_i)
- 2 recalculate weights: $w_{n+1} \leftarrow w_n \eta_n \mathcal{L}'(\langle w_n, x_i \rangle y_i) x_i y_i$
- **3** estimate the error: $\varepsilon_i = \mathcal{L}(\langle w_{n+1}, x_i \rangle y_i)$
- recalculate the loss $\widehat{F} = (1 \alpha)\widehat{F} + \alpha\varepsilon_i$
- $n \leftarrow n + 1$

Variants for selecting initial weights

- $w_0 = w_1 = ... = w_D = 0$
- For logistic \mathcal{L} (because the horizontal asymptotes):
 - randomly on the interval $\left[-\frac{1}{2D}, \frac{1}{2D}\right]$
- For other functions \mathcal{L} :
 - randomly

w_i = cov[xⁱ,y]/var[xⁱ] (these are regression weights, given that xⁱ are uncorrelated²).

Discussion of SGD

Advantages

- Easy to implement
- Works online
- A small subset of learning objects may be sufficient for accurate estimation

Discussion of SGD

Advantages

- Easy to implement
- Works online
- A small subset of learning objects may be sufficient for accurate estimation

Drawbacks

- Suboptimal converges to local optimum
- Needs selection of η_n :
 - too big: divergence
 - too small: very slow convergence
- Overfitting possible for large *D* and small *N*
- When *L(u)* has left horizontal asymptotes (e.g. logistic), the algorithm may «get stuck» for large values of ⟨w, x_i⟩.

Examples

Delta rule $\mathcal{L}(M) = (M-1)^2$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - \boldsymbol{y}_i) \boldsymbol{x}_i$$

Perceptron of Rosenblatt $\mathcal{L}(M) = [-M]_+$		
$oldsymbol{w} \leftarrow oldsymbol{w} + igg\{$	0, η <i>x_iy_i</i>	$egin{aligned} &\langle w, x_i angle y_i \geq 0 \ &\langle w, x_i angle y_i < 0 \end{aligned}$

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- **3** Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Regularization for SGD³

L₂-regularization for upperbound approximation:

$$m{F}^{regularized}(m{w}) = m{F}(m{w}) + \lambda \sum_{d=1}^{D} m{w}_{d}^{2}$$

L₁-regularization for upperbound approximation:

$$F^{regularized}(w) = F(w) + \lambda \sum_{d=1}^{D} |w_d|^2$$

 λ is the parameter controlling strength of regularization = model complexity.

³how will SGD step change? Interpret.

Regularization

• General regularization.

$$F^{regularized}(w) = Q(w) + \lambda R(w)$$

• Examples:

$$R(w) = ||w||_{1} = \sum_{d=1}^{D} |w_{d}|$$

$$R(w) = ||w||_{2}^{2} = \sum_{d=1}^{D} (w_{d})^{2}$$

$$R(w) = \alpha ||w||_{1} + (1 - \alpha) ||w||_{2}^{2}, \alpha \in [0, 1]$$

L_1 norm

- $||w||_1$ regularizer will do feature selection.
- Consider

$$Q(w) = \sum_{i=1}^{n} \mathcal{L}_i(w) + \lambda \sum_{d=1}^{D} |w_d|$$

if λ > sup_w | ∂L(w)/∂w_i |, then it becomes optimal to set w_i = 0
For smaller C more inequalities will become active.

L_2 norm

• $||w||_1$ regularizer will do feature selection.

• Consider
$$R(w) = \|w\|_2^2 = \sum_d w_d^2$$

$$Q(w) = \sum_{i=1}^{n} \mathcal{L}_i(w) + \lambda \sum_{d=1}^{D} w_d^2$$

•
$$\frac{\partial R(w)}{\partial w_i} = 2w_i \rightarrow 0$$
 when $w_i \rightarrow 0$.

Illustration

Connection with probabilistic methods

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- **3** Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Connection with probabilistic methods

Maximum probability estimation

- $X = \{x_1, x_2, ... x_n\}, Y = \{y_1, y_2, ... y_n\}$ training sample of i.i.d. observations, $(x_i, y_i) \sim \rho(y|x, w)$
- ML estimation $\widehat{w} = \arg \max_{w} p(Y|X, w)$
- Using independence assumption:

$$\prod_{i=1}^n
ho(y_i|x_i,w) = \sum_{i=1}^n \ln
ho(y_i|x_i,w)
ightarrow \max_w$$

• Approximated misclassification:

$$\sum_{i=1}^n \mathcal{L}(g(x_i)y_i|w)
ightarrow \min_w$$

Interrelation:

$$\mathcal{L}(g(x_i)y_i|w) = -\ln p(y_i|x_i,w)$$

Connection with probabilistic methods

Maximum a prosteriori estimation

- $X = \{x_1, x_2, ... x_n\}, Y = \{y_1, y_2, ... y_n\}$ training sample of i.i.d. observations, $(x_i, y_i) \sim \rho(x, y|w)$
- $x_i \sim \rho(x|w)$
- MAP estimation:
 - w is random with prior probability p(w)

$$p(w|X,Y) = rac{p(X,Y,w)}{p(X,Y)} = rac{p(X,Y|w)p(w)}{p(X,Y)} \propto p(X,Y|w)p(w)$$

$$w = \arg \max_{w} p(w|X, Y) = \arg \max_{w} p(X, Y|w) p(w)$$

$$\sum_{i=1}^n \ln p(x_i, y_i | \theta) + \ln p(w) \to \max_w$$

Connection with probabilistic methods

Gaussian prior

• Gaussian prior

$$\ln p(w,\sigma^2) = \ln \left(\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{||w||_2^2}{2\sigma^2}} \right) = -\frac{1}{2\sigma^2} ||w||_2^2 + \text{const}(w)$$

Laplace prior

$$\ln p(w,C) = \ln \left(\frac{1}{(2C)^n} e^{-\frac{||w||_1}{C}}\right) = -\frac{1}{C} ||w||_1 + \operatorname{const}(w)$$

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- **3** Stochastic gradient descend
- 4 Regularization
- 5 Connection with probabilistic methods
- 6 Logistic regression

Logistic regression

Binary classification

• Linear classifier:

$$score(\omega_1|x) = w^T x$$

 +relationship between score and class probability is assumed:

$$\boldsymbol{\rho}(\omega_1|\boldsymbol{x}) = \sigma(\boldsymbol{w}^T\boldsymbol{x})$$

where $\sigma(\textbf{\textit{z}}) = \frac{1}{1+e^{-\textbf{\textit{z}}}}$ - sigmoid function

Binary classification: estimation

Using the property $1 - \sigma(z) = \sigma(-z)$ obtain that

$$p(y=+1|x) = \sigma(w^T x) \Longrightarrow p(y=-1|x) = \sigma(-w^T x)$$

So for $y \in \{+1, -1\}$

$$p(y|x) = \sigma(y\langle w, x \rangle)$$

Therefore ML estimation can be written as:

$$\prod_{i=1}^N \sigma(\langle w, x_i \rangle y_i) \to \max_w$$

Loss function for 2-class logistic regression

For binary classification $p(y|x) = \sigma(\langle w, x \rangle y) \ w = [\beta'_0, \beta], x = [1, x_1, x_2, ... x_D].$

Estimation with ML:

$$\prod_{i=1}^n \sigma(\langle w, x_i \rangle y_i) \to \max_w$$

which is equivalent to

$$\sum_{i}^{n} \ln(1 + e^{-\langle w, x_i \rangle y_i}) \to \min_{w}$$

It follows that logistic regression is linear discriminant estimated with loss function $\mathcal{L}(M) = \ln(1 + e^{-M})$.

SGD realization of logistic regression

Substituting $\mathcal{L}(M) = \ln(1 + e^{-M})$ into update rule, we obtain that for each sample (x_i, y_i) weights should be adapted according to

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \sigma(-\mathbf{M}_i) \mathbf{x}_i \mathbf{y}_i$$

Perceptron of Rosenblatt update rule:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[\boldsymbol{M}_i < \boldsymbol{0}] \boldsymbol{x}_i \boldsymbol{y}_i$$

- Logistic rule update is the smoothed variant of perceptron's update.
- The more severe the error (according to margin) - the more weights are adapted.

Multiple classes

Multiple class classification:

$$\begin{cases} \textit{score}(\omega_1 | \boldsymbol{x}) = \boldsymbol{w}_1^T \boldsymbol{x} \\ \textit{score}(\omega_2 | \boldsymbol{x}) = \boldsymbol{w}_2^T \boldsymbol{x} \\ \cdots \\ \textit{score}(\omega_C | \boldsymbol{x}) = \boldsymbol{w}_C^T \boldsymbol{x} \end{cases}$$

+relationship between score and class probability is assumed:

$$\rho(\omega_c | x) = softmax(w_c^T x | x_1^T x, ... x_c^T x) = \frac{exp(w_c^T x)}{\sum_i exp(w_i^T x)}$$

Multiple classes

Weights ambiguity:

 $w_c, c = 1, 2, ... C$ defined up to shift v:

$$\frac{exp((w_c - v)^T x)}{\sum_i exp((w_i - v)^T x)} = \frac{exp(-v^T x)exp(w_c^T x)}{\sum_i exp(-v^T x)exp(w_i^T x)} = \frac{exp(w_c^T x)}{\sum_i exp(w_i^T x)}$$

To remove ambiguity usually $v = w_C$ is subtracted.

Estimation with ML:

$$\begin{cases} \prod_{n=1}^{N} softmax(w_{y_n}^{T} x_n | x_1^{T} x, ... x_C^{T} x) \rightarrow \max_{w_1, ..., w_C - 1} \\ w_C = \mathbf{0} \end{cases}$$