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Geometric foundations of linear classification

Linear discriminant functions

Classification of two classes ω1 and ω2.

Linear discriminant function:

g(x) = wTx + w0

Decision rule:

x→

{
ω1, g(x) ≥ 0

ω2, g(x) < 0

Decision boundary B = {x : g(x) = 0} is linear.
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Geometric foundations of linear classification

Example: decision regions
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Geometric foundations of linear classification

Reminder

1 a = [a1, ...aD]T , b = [b1, ...bD]T

2 Scalar product 〈a, b〉 = aTb =
∑D

d=1 adbb

3 a ⊥ b means that 〈a, b〉 = 0

4 Norm ‖a‖ =
√
〈a, a〉

5 Distance ρ(a, b) = ‖a− b‖ =
√
〈a− b, a− b〉

p = 〈a, b
‖b‖〉 - signed

projection

|p| =
∣∣∣a, b
‖b‖

∣∣∣- unsigned

projection length
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Geometric foundations of linear classification

Properties

Consider arbitrary

xA,xB ∈ B⇒

{
g(xA) = wTxA + w0 = 0

g(xB) = wTxB + w0 = 0

so wT(xA − xB) = 0 and w⊥B.
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Geometric foundations of linear classification

Distance form origin

Distance from the origin to B is equal to absolute value of

the projection of x ∈ B on w
‖w‖ :

〈x, w

‖w‖
〉 = 〈x,w〉

‖w‖
= {wTx + w0 = 0} = − w0

‖w‖

So ρ(0,B) = w0

‖w‖ , and w0 determines the offset from the

origin.
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Geometric foundations of linear classification

Distance from x to B

Denote x⊥ - the projection of x on B, and r = 〈 w
‖w‖ ,x− x⊥〉 -

the signed length of the orthogonal complement of x on B:

x = x⊥ + r
w

‖w‖

After multiplication by w and addition of w0:

wTx + w0 = wTx⊥ + w0 + r
〈w,w〉
‖w‖

Using wTx + w0 = g(x) and wTx⊥ + w0 = 0, we obtain:

r =
g(x)

‖w‖

So from one side of the hyperplane r > 0⇔ g(x) > 0, and from

the other side of the hyperplane r < 0⇔ g(x) < 0.
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Geometric foundations of linear classification

Illustration

Linear decision rule:

ĉ(x) =

{
ω1, g(x) > 0

ω2, g(x) < 0

Decision boundary: g(x) = 0, confidence of decision: |g(x)|/ ‖w‖.
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Geometric foundations of linear classification

Multiple classification

Popular schemes:

one versus all

one versus rest

If only sign is taken into account, they have regions of

ambiguity.
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Geometric foundations of linear classification

One versus all - ambiguity

Classification among three classes: ω1, ω2, ω3

10/41



Linear classification - Victor Kitov

Geometric foundations of linear classification

One versus one - ambiguity

Classification among three classes: ω1, ω2, ω3
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Geometric foundations of linear classification

Multiple classes classification - solution

Classification among ω1, ω2, ...ωC.

Use C discriminant functions gc(x) = wT
c x + wc0

Decision rule:

ĉ(x) = argmax
c

gc(x)

Decision boundary between classes ωi and ωj is linear:(
wi − wj

)T
x +

(
wi0 − wj0

)
= 0

Decision regions are convex1.

1why? prove that.
12/41



Linear classification - Victor Kitov

Estimation of error rate from above

Table of contents

1 Geometric foundations of linear classification

2 Estimation of error rate from above

3 Stochastic gradient descend

4 Regularization

5 Connection with probabilistic methods

6 Logistic regression

13/41



Linear classification - Victor Kitov

Estimation of error rate from above

Linear discriminant functions

Consider binary classification of classes ω1 and ω2.

Denote classes ω1 and ω2 with y = +1 and y = −1.

Linear discriminant function: g(x) = wTx + w0,

ω̂ =

{
ω1, g(x) ≥ 0

ω2, g(x) < 0

Decision rule: y = sign g(x).

Define constant feature x0 ≡ 1, then g(x) = wTx = 〈w,x〉
for w = [w0,w1, ..wD]

T .

Define the margin M(x, y) = g(x)y

M(x, y) ≥ 0 <=> object x is correctly classified as y

|M(x, y)| - confidence of decision
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Estimation of error rate from above

Weights selection

Target: minimization of the number of misclassifications Q:

Q(w|X) =
∑

n

I[M(xn, yn|w) < 0]→ min
w

Problem: standard optimization methods are inapplicable,

because Q(w,X) is discontinuous.

Idea: approximate loss function with smooth function L:

I[M(xn, yn|w) < 0] ≤ L(M(xn, yn|w))
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Estimation of error rate from above

Approximation of the target criteria

We obtain the upper boundary on the empirical risk:

Q(w|X) =
∑

n

I[M(xn, yn|w) < 0]

≤
∑

n

L(M(xn, yn|w)) = F(w)
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Stochastic gradient descend

Optimization

Optimization task to obtain the weights:

F(w) =
N∑

i=1

L(〈w,xi〉yi)→ min
w

Gradient descend algorithm:

INPUT:
η - parameter, controlling the speed of convergence
stopping rule

ALGORITHM:
initialize w0 randomly
while stopping rule is not satisfied:

wn+1 ← wn − η ∂F(wn)
∂w

n← n + 1
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Stochastic gradient descend

Gradient descend

Possible stopping rules:

|wn+1 − wn| < ε
|F(wn+1)− F(wn)| < ε
n > nmax

Suboptimal method of minimization in the direction of the

greatest reduction of F(w):
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Stochastic gradient descend

Recommendations for use

Convergence is faster for normalized features

feature normalization solves the problem of «elongated

valleys»
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Stochastic gradient descend

Convergence acceleration

Stochastic gradient descend method

set the initial approximation w0

calculate F̂ =
∑n

i=1 L(M(xi , yi |w0))

iteratively until convergence Q̂approx:

1 select random pair (xi , yi)

2 recalculate weights: wn+1 ← wn − ηnL′(〈wn,xi〉yi)xiyi

3 estimate the error: εi = L(〈wn+1,xi〉yi)

4 recalculate the loss F̂ = (1− α)F̂ + αεi
5 n← n + 1
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Stochastic gradient descend

Variants for selecting initial weights

w0 = w1 = ... = wD = 0

For logistic L (because the horizontal asymptotes):

randomly on the interval [− 1
2D
, 1

2D
]

For other functions L:

randomly

wi =
cov[xi ,y]
var[xi ]

(these are regression weights, given that xi are

uncorrelated2).

2why?
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Stochastic gradient descend

Discussion of SGD

Advantages

Easy to implement

Works online

A small subset of

learning objects may

be sufficient for

accurate estimation

Drawbacks

Suboptimal - converges to local optimum

Needs selection of ηn:

too big: divergence

too small: very slow convergence

Overfitting possible for large D and small

N

When L(u) has left horizontal asymptotes

(e.g. logistic), the algorithm may «get

stuck» for large values of 〈w,xi〉.
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Stochastic gradient descend

Examples

Delta rule L(M) = (M − 1)2

w ← w − η(〈w,xi〉 − yi)xi

Perceptron of Rosenblatt L(M) = [−M]+

w ← w +

{
0, 〈w,xi〉yi ≥ 0

ηxiyi 〈w,xi〉yi < 0
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Regularization

Regularization for SGD3

L2-regularization for upperbound approximation:

F regularized(w) = F(w) + λ

D∑
d=1

w2
d

L1-regularization for upperbound approximation:

F regularized(w) = F(w) + λ

D∑
d=1

|wd|2

λ is the parameter controlling strength of regularization = model

complexity.

3how will SGD step change? Interpret.
26/41



Linear classification - Victor Kitov

Regularization

Regularization

General regularization.

F regularized(w) = Q(w) + λR(w)

Examples:

R(w) = ‖w‖1 =
D∑

d=1

|wd|

R(w) = ‖w‖22 =
D∑
d=

(wd)
2

R(w) = α ‖w‖1 + (1− α) ‖w‖22 , α ∈ [0, 1]
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Regularization

L1 norm

||w||1 regularizer will do feature selection.

Consider

Q(w) =
n∑

i=1

Li(w) + λ

D∑
d=1

|wd|

if λ > supw

∣∣∣∂L(w)
∂wi

∣∣∣, then it becomes optimal to set wi = 0

For smaller C more inequalities will become active.
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Regularization

L2 norm

||w||1 regularizer will do feature selection.

Consider R(w) = ‖w‖22 =
∑

d w2
d

Q(w) =
n∑

i=1

Li(w) + λ

D∑
d=1

w2
d

∂R(w)
∂wi

= 2wi → 0 when wi → 0.
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Regularization

Illustration
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Connection with probabilistic methods

Maximum probability estimation

X = {x1,x2, ...xn}, Y = {y1, y2, ...yn} - training sample of

i.i.d. observations, (xi , yi) ∼ p(y|x,w)
ML estimation ŵ = argmaxw p(Y |X,w)
Using independence assumption:

n∏
i=1

p(yi |xi ,w) =
n∑

i=1

ln p(yi |xi ,w)→ max
w

Approximated misclassification:

n∑
i=1

L(g(xi)yi |w)→ min
w

Interrelation:

L(g(xi)yi |w) = − ln p(yi |xi ,w)
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Connection with probabilistic methods

Maximum a prosteriori estimation

X = {x1,x2, ...xn}, Y = {y1, y2, ...yn} - training sample of

i.i.d. observations, (xi , yi) ∼ p(x, y|w)

xi ∼ p(x|w)

MAP estimation:

w is random with prior probability p(w)

p(w|X,Y) = p(X,Y ,w)

p(X,Y)
=

p(X,Y |w)p(w)

p(X,Y)
∝ p(X,Y |w)p(w)

w = argmax
w

p(w|X,Y) = argmax
w

p(X,Y |w)p(w)

n∑
i=1

ln p(xi , yi |θ) + ln p(w)→ max
w
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Connection with probabilistic methods

Gaussian prior

Gaussian prior

ln p(w, σ2) = ln

(
1

(2πσ2)n/2
e
−
||w||2

2

2σ2

)
= − 1

2σ2
||w||22+const(w)

Laplace prior

ln p(w,C) = ln

(
1

(2C)n
e−
||w||1

C

)
= − 1

C
||w||1 + const(w)
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Logistic regression

Binary classification

Linear classifier:

score(ω1|x) = wTx

+relationship between score and class probability is

assumed:

p(ω1|x) = σ(wTx)

where σ(z) = 1
1+e−z - sigmoid function
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Logistic regression

Binary classification: estimation

Using the property 1− σ(z) = σ(−z) obtain that

p(y = +1|x) = σ(wTx) =⇒ p(y = −1|x) = σ(−wTx)

So for y ∈ {+1,−1}

p(y|x) = σ(y〈w,x〉)

Therefore ML estimation can be written as:

N∏
i=1

σ(〈w,xi〉yi)→ max
w
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Logistic regression

Loss function for 2-class logistic regression

For binary classification p(y|x) = σ(〈w,x〉y) w = [β′
0
, β],

x = [1,x1,x2, ...xD].

Estimation with ML:

n∏
i=1

σ(〈w,xi〉yi)→ max
w

which is equivalent to

n∑
i

ln(1 + e−〈w,xi〉yi )→ min
w

It follows that logistic regression is linear discriminant estimated

with loss function L(M) = ln(1 + e−M).
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Logistic regression

SGD realization of logistic regression

Substituting L(M) = ln(1 + e−M) into update rule, we obtain that

for each sample (xi , yi) weights should be adapted according to

w ← w + ησ(−Mi)xiyi

Perceptron of Rosenblatt update rule:

w ← w + ηI[Mi < 0]xiyi

Logistic rule update is the

smoothed variant of

perceptron’s update.

The more severe the error

(according to margin) - the

more weights are adapted.
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Logistic regression

Multiple classes

Multiple class classification:
score(ω1|x) = wT

1 x

score(ω2|x) = wT
2
x

· · ·
score(ωC|x) = wT

Cx

+relationship between score and class probability is assumed:

p(ωc|x) = softmax(wT
c x|xT

1 x, ...xT
Cx) =

exp(wT
c x)∑

i exp(wT
i
x)
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Logistic regression

Multiple classes

Weights ambiguity:
wc, c = 1, 2, ...C defined up to shift v:

exp((wc − v)Tx)∑
i exp((wi − v)Tx)

=
exp(−vTx)exp(wT

c x)∑
i exp(−vTx)exp(wT

i
x)

=
exp(wT

c x)∑
i exp(wT

i
x)

To remove ambiguity usually v = wC is subtracted.

Estimation with ML:{∏N
n=1 softmax(wT

yn
xn|xT

1 x, ...xT
Cx)→ maxw1,...wC−1

wC = 0
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