Соревнование Rossmann Store Sales

Остапец Андрей (aostapec@mail.ru)

15 октября 2015 г.

Содержание

- Конкурсное задание
 - Условие
 - Данные
- Краткий обзор нескольких алгоритмов машинного обучения

Условие

Задача: предсказать дневные продажи лекарств для 1115 магазинов за 6-недельный период времени Признаки:

- Описание магазина (идентификатор, тип)
- Информация о праздничных днях
- Описание ассортимента магазина
- Информация о ближайших конкурирующих магазинах
- Информация о промо-акциях

Целевая переменная: количество проданных товаров **Метрика качества**: Root Mean Square Percentage Error (RMSPE)

RMSPE

$$RMSPE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i}\right)^2},$$

- п число объектов
- у; истинное значение продаж в конкретном магазине в конкретный день
- \bullet $\hat{y_i}$ предсказанное значение продаж в конкретном магазине в конкретный день

RMSPE

$$RMSPE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2},$$

- п число объектов
- y_i истинное значение продаж в конкретном магазине в конкретный день
- $\hat{y_i}$ предсказанное значение продаж в конкретном магазине в конкретный день

Если $y_i = 0$, то данный объект не участвует в оценке.

Leaderboard и форум

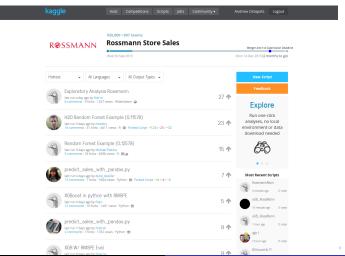
Таблица результатов:

- Результаты в таблице вычисляются по 39% тестовой выборке
- ② Опасно настраиваться только на leaderboard, появляется риск переобучения

На странице конкурса есть форум.

- Можно делиться интересными идеями или кодом
- Можно воспользоваться чужими идеями или кодом

Scripts



Данные

- 1115 различных магазинов
- Обучение: период времени с 2013-01-01 по 2015-07-31
- Тест: период времени с 2015-08-01 по 2015-09-17
- Обучение: 1,017,209 объектов
- Тест: 41,088 объектов

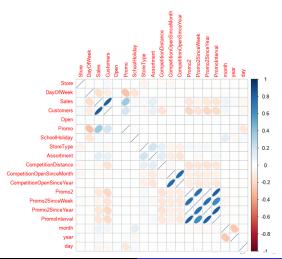
Признаки

- Store уникальный идентификатор магазина
- Date день, в который производятся продажи
- Sales число проданных товаров за день (целевая переменная)
- Customers количество покупателей в данный день (дано только для тренировочной выборки)
- Open открыт магазин или нет: 0 = закрыт, 1 = открыт
- StateHoliday наличие государственного праздника в этот день (a = public holiday, b = Easter holiday, c = Christmas, 0 = None)
- SchoolHoliday наличие школьных каникул
- StoreТуре тип магазина (a, b, c, d)
- Assortment выбор товаров в магазине (a = basic, b = extra. c = extended)

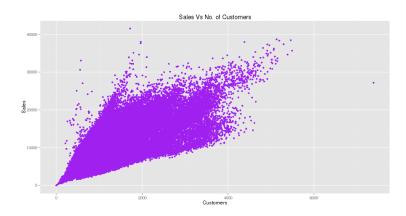
Признаки

- CompetitionDistance расстояние до ближайшего конкурента
- CompetitionOpenSince[Month/Year] когда был открыт ближайший конкурент?
- Promo индикатор промо-акции в этот день
- Promo2 наличие Promo2 акции (более продолжительная и действующая на ряд магазинов)
- Promo2Since[Year/Week] когда магазин начал участвовать в Promo2 акции?
- PromoInterval в какие месяцы каждый год в этом магазине идет Promo2?

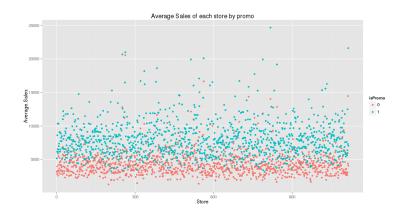
Корреляционная матрица признаков



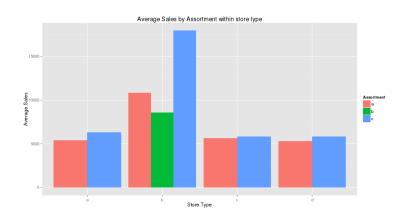
Продажи и клиенты



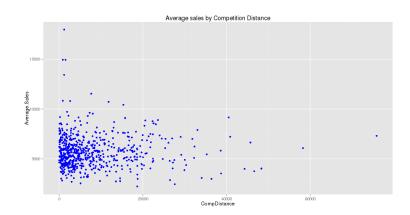
Промо акции



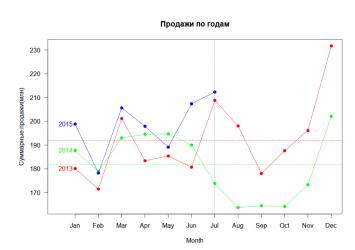
Тип и ассортимент



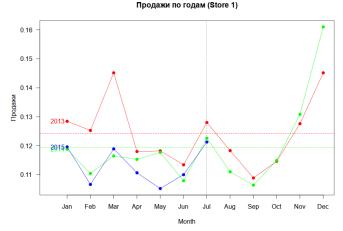
Расстояние до ближайшего конкурента



Визуализация продаж



Визуализация продаж



Naive Bayes kNN Линейная регрессия Решающее дерево Случайный лес Бустинг

Основные алгоритмы машинного обучения

Краткий обзор нескольких алгоритмов машинного обучения

Naive Bayes

Что он делает? Наивный байесовский классификатор – это семейство алгоритмов классификации, которые принимают одно допущение:

Каждый параметр классифицируемых данных рассматривается независимо от других параметров класса.

Что означает слово «независимо»? 2 параметра называются независимыми, когда значение одного параметра не оказывает влияния на второй.

Почему метод называется наивным? Предположение, что все параметры набора данных независимы – это довольно наивное предположение. Обычно так не бывает (пульс, уровень холестерина, вес, рост и почтовый индекс)

Naive Bayes kNN Линейная регрессия Решающее дерево Случайный лес

Naive Bayes

$$P(Class\ A|Feature\ 1, Feature\ 2) = \frac{P(Feature\ 1|Class\ A) \cdot P(Feature\ 2|Class\ A) \cdot P(Class\ A)}{P(Feature\ 1) \cdot P(Feature\ 2)}$$

Naive Bayes

Таблица: Описание фруктов

Class	Long	Sweet	Yellow	Total
Banana	400	350	450	500
Orange	0	150	300	300
Other	100	150	50	300
Total	500	650	800	1000

P(Banana|Long, Sweet, Yellow) = ?

- P(Long|Banana) = 400/500 = 0.8
- P(Sweet|Banana) = 350/500 = 0.7
- P(Yellow|Banana) = 450/500 = 0.9
- P(Banana) = 500/1000 = 0.5

Naive Bayes

- Числитель для P(Banana|Long, Sweet, Yellow) = $0.8 \cdot 0.7 \cdot 0.9 \cdot 0.5 = 0.252$
- Числитель для P(Orange|Long, Sweet, Yellow) = 0
- Числитель для P(Other|Long, Sweet, Yellow) = 0.01875

Наивный байесовский алгоритм классифицирует этот длинный, сладкий и желтый фрукт как банан

Naive Bayes kNN Линейная регрессия Решающее дерево Случайный лес

Код на К

```
library (e1071)
x <- cbind(xtrain, ytrain)
# Fitting model
fit < naiveBayes(ytrain \sim ., data = x)
summary (fit)
#Predict Output
predicted <- predict(fit, xtest)</pre>
```

Naive Bayes kNN Линейная регрессия Решающее дерево Случанный лес

В данной задаче...

Классификация:

- Выросли или упали продажи по сравнению с прошлым годом?
- Будут ли хоть продажи выше порога(например, 0)?
- · · ·

Naive Bayes kNN Линейная регрессия Решающее дерево Случанный лес

В данной задаче...

Классификация:

- Выросли или упали продажи по сравнению с прошлым годом?
- Будут ли хоть продажи выше порога(например, 0)?
- · · ·

kNN

Что он делает? Алгоритм kNN (k-Nearest Neighbors) не строит в явном виде никакую классификационную модель. Вместо этого он просто сохраняет размеченные тренировочные данные. Когда появляется новые неразмеченные данные, kNN проходит по 2 базовым шагам:

- Сначала он ищет k ближайших соседей
- Затем, используя данные о классах этих соседей, kNN решает, как лучше классифицировать новые данные.

Naive Bayes kNN
Линейная регрессия
Решающее дерево
Случайный лес
Бустинг

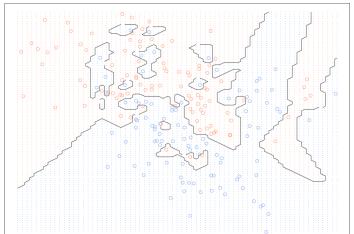
kNN

Если мера сходства введена достаточно удачно, то оказывается, что *схожим объектам*, как правило, соответствуют *схожие ответы*

Naive Bayes kNN Линейная регрессия Решающее дерево Случайный лес

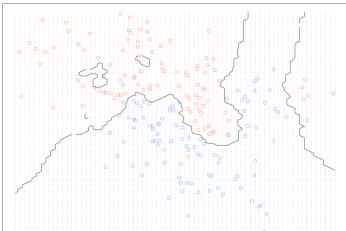
1-NN

1-nearest neighbour



5-NN

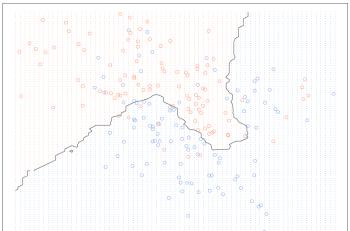
5-nearest neighbours



Naive Bayes kNN Линейная регрессия Решающее дерево Случайный лес

15-NN

15-nearest neighbours



Naive Bayes kNN
Линейная регрессия
Решающее дерево
Случайный лес
Бустинг

Метрика

Вопрос: какие примеры метрик Вы знаете?

Определение класса

Как определить класс классифицируемого объекта?

- Принять за правильное решение простое большинство. К какому классу относится наиболее количество соседей, туда и определяют точку данных.
- Раздать веса в зависимости от расстояния до объекта. При увеличении дистанции вес становится все меньше и меньше.

Naive Bayes kNN
Линейная регрессия
Решающее дерево
Случайный лес
Бустинг

Плюсы

Плюсы:

- Легок в понимании
- Легко реализуем
- При «хорошем» выборе дистанционной метрики, kNN может показывать достаточно точные результаты

Минусы

Минусы:

- Ресурсозатратный на большом наборе данных
- Нужна нормализация признаков. Признаки с большим количеством значений могут оказывать влияние на дистанционную метрику, по отношению к признакам с меньшим количеством значений
- Выбор правильной дистанционной метрики очень важен для точности kNN

Код на К

```
library (knn)
x <- cbind(x train, y train)
# Fitting model
fit <- knn(y train ^{\sim} ., data = x, k=5)
summary (fit)
#Predict Output
predicted <- predict(fit,x test)</pre>
```

Линейная регрессия

Что алгоритм делает? Обучается линейная модель:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{p} x_j w_j = x^T w, \mathbf{x} = (x_1, \dots, x_p)$$

По вектору входов $\mathbf{x}^T = (x_1, \cdots, x_p)$ мы предсказываем выход y:

$$\hat{\mathbf{y}}(\mathbf{x}) = \hat{w}_0 + \sum_{i=1}^{p} x_i \hat{w}_i = \mathbf{x}^T \hat{\mathbf{w}}$$

Линейная регрессия

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(x_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - x_i^T \mathbf{w})^2$$

• Как минимизировать?

Метод наименьших квадратов

• Можно на самом деле решить задачу точно – записать как

$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w}),$$

где ${\bf X}$ -матрица размера $N \times p$, продифференцировать по ${\bf w}$, получится

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y},$$

если матрица $\mathbf{X}^T \mathbf{X}$ невырожденная.

• Замечание: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ называется псевдообратной матрицей Мура-Пенроуза (Moore-Penrose pseudo-inverse) матрицы \mathbf{X} ; это обобщение понятия обратной матрицы на неквадратные матрицы.

Код на К

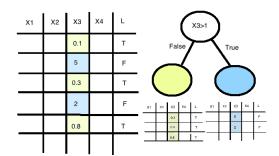
```
x <- cbind(x_train,y_train)
# Train the model using the training set
linear <- lm(y_train ~ ., data = x)
summary(linear)
#Predict Output
predicted <- predict(linear,x_test)</pre>
```

Решающее дерево

Что алгоритм делает? Строит дерево, где каждая вершина представляет собой точку разбиения данных. Вершина определяет некоторый простой критерий по которому мы делим данные на части.

Таким образом, в каждой вершине дерева мы разбиваем данные на несколько частей согласно значению одного из параметров. Дальше для каждой части мы повторяем операцию и в итоге получаем дерево.

Решающее дерево



Вопросы

- Как выбирается параметр по которому происходит разбиение?
- Как выбирается пороговое значения параметра?
- Когда алгоритм должен остановиться?

Код на К

```
library (rpart)
x <- cbind(x train, y train)
# grow tree
fit \leftarrow rpart(y train \sim ., data = x)
summary (fit)
#Predict Output
predicted <- predict(fit,x test)</pre>
```

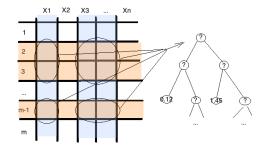
Случайный лес

Что алгоритм делает? Random forest (случайный лес) - ансамбль решающих деревьев.

Особенности:

- Нечувствительность к любым монотонным преобразованиям значений признаков
- Существует методы оценивания значимости (Feature Importance) отдельных признаков в модели
- Высокая параллелизуемость и масштабируемость

Случайный лес

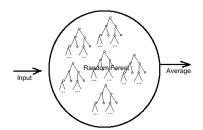


Алгоритм обучения

Пусть обучающая выборка состоит из N примеров, размерность пространства признаков равна M, и задан параметр m. Все деревья комитета строятся независимо друг от друга по следующей процедуре:

- Генерируется случайная подвыборка с повторением размером *N* из обучающей выборки. (Сколько уникальных объектов туда попадут?)
- Строится решающее дерево, классифицирующее примеры данной подвыборки, причём в ходе создания очередного узла дерева выбирается признак, на основе которого производится разбиение, не из всех *М* признаков, а лишь из *m* случайно выбранных.
- Дерево строится до полного исчерпания подвыборки.

Получение ответа



Код на К

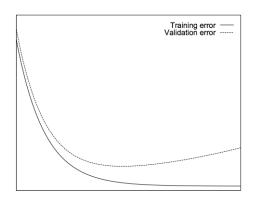
```
library (randomForest)
x \leftarrow cbind(x train, y train)
# Fitting model
fit <- randomForest(Species ~ ., x, ntree=500)</pre>
summary (fit)
#Predict Output
predicted <- predict(fit, x test)</pre>
```

Бустинг

Что алгоритм делает? Бустинг - это процедура последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов. Бустинг представляет собой жадный алгоритм построения композиции алгоритмов.

Вопрос: возможно ли, имея множество плохих (незначительно отличающихся от случайных) алгоритмов обучения, получить хороший?

Зависимость от числа деревьев



Композиция алгоритмов

- бэггинг (bagging) усреднение нескольких однотипных моделей
- бустинг (boosting) построение цепочки моделей, дополняющих друг друга
- блэндинг (blending) смешивание классификаторов (как правило, линейная комбинация)
- стэкинг (stacking) построение классификатора над другими классификаторами

Задание

Дедлайн: 28 октября 23:59

Задание: Попробовать по крайней мере 3 различных алгоритма машинного обучения и по крайней мере 3 различных признаковых пространства. Прислать отчет на почту

aostapec@mail.ru.