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Minimum cost and maximum probability solutions

Costs

Classi�cation

supervised learning

y ∈ {1, 2, ...C} takes �nite discrete set of values

λyf is the cost of predicting true class y with forecasted class

f .

Examples with costs: diagnosis prediction, fraud detection,

spam �ltering, intrusion detection.
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Minimum cost and maximum probability solutions

Costs

Matrix of outcomes:

f = 1 f = 2 · · · f = C

y = 1 λ11 λ12 · · · λ1C
y = 2 λ21 λ22 · · · λ2C
· · · · · · · · · · · · · · ·

y = C λC1 λC2 · · · λCC

Expected cost of solution ŷ(x) = f :

L(f ) =
∑
y

p(y |x)λyf
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Minimum cost and maximum probability solutions

Decision rule

Which best prediction ŷ(x) for object x to select?

Bayes minimum risk decision rule

Assign class, yielding minimum expected cost:

ŷ(x) = argmin
f
L(f ) (1)

This rule minimizes expected cost among all rules (if p(y |x)
are correct).
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Minimum cost and maximum probability solutions

Simpli�cations

λyf ≡ λy I[y 6= f ]: constant within class cost of

misclassi�cation.

Matrix of outcomes:

f = 1 f = 2 · · · f = C

y = 1 0 λ1 · · · λ1
y = 2 λ2 0 · · · λ2
· · · · · · · · · · · · · · ·

y = C λC λC · · · 0

Expected cost of solution ŷ(x) = f :
L(f ) =

∑
y p(y |x)λy I[f 6= y ]
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Minimum cost and maximum probability solutions

Equal misclassi�cation costs

Then cost of prediction equals:

L(f ) =
∑
y

p(y |x)λy I[f 6= y ] =

const(f )︷ ︸︸ ︷∑
y

p(y |x)λy −p(f |x)λf

So (1) becomes:

ŷ(x) = argmin
f
L(f ) = argmax

f
λf p(f |x) (2)

Suppose further λy ≡ λ ∀y , then
ŷ(x) = argmax

f
p(f |x)

This is termed maximum posterior probability rule or

Bayes minimum error rule because it yields minimum

probability of misclassi�cation among all decision rules (given

that p(f |x) is correct)
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Minimum cost and maximum probability solutions

Equal misclassi�cation costs

This rule minimizes expected error rate.

if p(y |x) are known

If x and y are independent, then (2) reduces to

ŷ(x) = argmax
f

p(f |x) = argmax
f

p(f )
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Gaussian classi�er
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Gaussian classi�er

Gaussian classi�er

In Gaussian classi�er

p(x |y) =
1

(2π)D/2|Σy |1/2
exp

{
−1
2

(x − µy )TΣ−1

y (x − µy )

}

It follows that

log p(y |x) = log p(x |y) + log p(y)− log p(x)

= −1
2

(x − µTy )Σ−1

y (x − µy )− 1

2
log |Σy |

−D

2
log(2π) + log p(y)− log p(x)

Removing common additive terms, we obtain discriminant

functions:

gy (x) = log p(y)− 1

2
log |Σy | −

1

2
(x − µy )TΣ−1

y (x − µy ) (3)
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Gaussian classi�er

Practical application

In practice we replace theoretical terms µy , Σy with their

sample estimates µ̂y , Σ̂y .

p̂(y) =
Ny

N .

gy (x) = log p̂(y)− 1

2
log |Σ̂y | −

1

2
(x − µ̂y )T Σ̂−1

y (x − µ̂y )

Analysis:

depends on normality assumptions (in particular - on
unimodality)
needs to specify:

CD parameters to estimate µ̂y , y = 1, 2, ...C .

CD(D + 1)/2 parameters to estimate Σ̂y , j = 1, 2, ...C .
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Gaussian classi�er

Simplifying assumptions

CD(D + 3)/2 may be too large for multidimensional tasks

with small training sets.

Simplifying assumptions:

Naive Bayes: assume that Σ1,Σ2, ...ΣC are diagonal.
Project data onto a subspace: for example on �rst few
principal components.
Proportional covariance matrices: assume that
Σ1 = α1Σ, Σ2 = α2Σ, ...ΣC = αCΣ.
Fisher's linear discriminant analysis: assume that
Σ1 = Σ2 = ... = ΣC .
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Gaussian classi�er

QDA vs. LDA

Gaussian classi�er is called:

Quadratic discriminant analysis (QDA) when Σ1,Σ2, ...ΣC are
arbitrary.

class boundaries are quadratic1

Linear discriminant analysis (LDA) when Σ1 = Σ2 = ... = ΣC

class boundaries are linear2

1prove this
2prove this
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Naive Bayes assumption
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Naive Bayes assumption

High dimensional problem

p(x1, x2, ...xD) = p(x1)p(x2|x1)...p(xD |x1, x2, ...xD−1)
Problem: exponential to D number of observations needed for

estimation.

Solution: make simplifying assumptions.

Independence assumption

Individual features are independent: p(x) = p(x1)p(x2)...p(xD)

Naive Bayes assumption in classi�cation

Individual features are class conditionally independent:

p(x |y) = p(x1|y)p(x2|y)...p(xD |y)

Under Naive Bayes assumption max-posterior probability rule

becomes:

ŷ(x) = argmax
y

p(y)p(x1|y)p(x2|y)...p(xD |y)
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Naive Bayes assumption

Conditional independence visualization
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Model examples with naive Bayes assumption

Text models

Restrict attention to D words w1,w2, ...wD

all unique words
possibly with stop words removal
possibly only most frequent words
or only words relevant to the topic of study

Two major models:

Bernoulli
Multinomial
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Model examples with naive Bayes assumption

Bernoulli model5

Document is represented with feature vector x ∈ RD

x i = I[wi appeared in the document]

θdy = p(xd = 1|y)

p(x |y) =
∏D

d=1

(
θdy
)xd (

1− θdy
)1−xd

p(y) =
Ny

N

θdy =
N
yxd

Ny

Smoothed variant34: θdy =
N
yxd

+α

Ny+2α

3interpret this in terms of adding arti�cial observations
4modify for smoothing towards uncoditional word distribution
5is it linear classi�er?
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Model examples with naive Bayes assumption

Multinomial model8

Document is represented with feature vector x ∈ RD

xd =number of times wd appeared in the document

θdy =probability of wd on word position

p(x |y) =
(
∑

d xd)!∏
d(xd)!

∏D
d=1

(
θdy
)xd

p(y) =
Ny

N

θdy =
nyd
ny

where

nyd - number of times word wd appeared in documents∈ y
ny - number of words in documents∈ y

Smoothed version67: θdy =
nyd+α

ny+αD

6interpret this in terms of adding arti�cial observations
7modify for smoothing towards uncoditional word distribution
8is it linear classi�er?
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