Bayes decision rule

Victor Kitov

v.v.kitov@yandex.ru

Minimum cost and maximum probability solutions

Table of Contents

1 Minimum cost and maximum probability solutions

2 Gaussian classifier

- 3 Naive Bayes assumption
- 4 Model examples with naive Bayes assumption

Minimum cost and maximum probability solutions

Costs

Classification

- supervised learning
- $y \in \{1, 2, ... C\}$ takes finite discrete set of values
- λ_{yf} is the cost of predicting true class y with forecasted class f.
- Examples with costs: diagnosis prediction, fraud detection, spam filtering, intrusion detection.

Minimum cost and maximum probability solutions

• Matrix of outcomes:

	f = 1	<i>f</i> = 2		f = C
y = 1	λ_{11}	λ_{12}		λ_{1C}
y = 2	λ_{21}	λ_{22}		λ_{2C}
		•••		
y = C	λ_{C1}	λ_{C2}	•••	λ_{CC}

• Expected cost of solution $\widehat{y}(x) = f$:

$$\mathcal{L}(f) = \sum_{y} p(y|x) \lambda_{yf}$$

Minimum cost and maximum probability solutions

Decision rule

• Which best prediction $\hat{y}(x)$ for object x to select?

Minimum cost and maximum probability solutions

• Which best prediction $\hat{y}(x)$ for object x to select?

Bayes minimum risk decision rule

Assign class, yielding minimum expected cost:

$$\widehat{y}(x) = \arg\min_{f} \mathcal{L}(f)$$
 (1)

Minimum cost and maximum probability solutions

• Which best prediction $\hat{y}(x)$ for object x to select?

Bayes minimum risk decision rule

Assign class, yielding minimum expected cost:

$$\widehat{y}(x) = \arg\min_{f} \mathcal{L}(f)$$
 (1)

This rule minimizes expected cost among all rules (if p(y|x) are correct).

Minimum cost and maximum probability solutions

Simplifications

• $\lambda_{yf} \equiv \lambda_y \mathbb{I}[y \neq f]$: constant within class cost of misclassification.

Minimum cost and maximum probability solutions

Simplifications

λ_{yf} ≡ λ_y I[y ≠ f]: constant within class cost of misclassification.

Matrix of outcomes:

	f = 1	<i>f</i> = 2	• • • •	f = C
y = 1	0	λ_1		λ_1
<i>y</i> = 2	λ_2	0	• • •	λ_2
•••		•••	•••	•••
y = C	λ_{C}	λ_{C}	•••	0

Minimum cost and maximum probability solutions

Simplifications

λ_{yf} ≡ λ_y I[y ≠ f]: constant within class cost of misclassification.

Matrix of outcomes:

	f = 1	<i>f</i> = 2	• • • •	f = C
y = 1	0	λ_1		λ_1
<i>y</i> = 2	λ_2	0	• • •	λ_2
•••		•••		•••
y = C	λ_C	λ_C	• • •	0

• Expected cost of solution
$$\hat{y}(x) = f$$
:
 $\mathcal{L}(f) = \sum_{y} p(y|x) \lambda_{y} \mathbb{I}[f \neq y]$

Minimum cost and maximum probability solutions

Equal misclassification costs

• Then cost of prediction equals:

$$\mathcal{L}(f) = \sum_{y} p(y|x)\lambda_{y}\mathbb{I}[f \neq y] = \overbrace{\sum_{y} p(y|x)\lambda_{y}}^{const(f)} - p(f|x)\lambda_{f}$$

• So (1) becomes:

$$\widehat{y}(x) = \arg\min_{f} \mathcal{L}(f) = \arg\max_{f} \lambda_{f} p(f|x)$$
(2)

• Suppose further $\lambda_y \equiv \lambda \, \forall y$, then

$$\widehat{y}(x) = \arg\max_{f} p(f|x)$$

• This is termed maximum posterior probability rule or Bayes minimum error rule because it yields minimum probability of misclassification among all decision rules (given that p(f|x) is correct)

Minimum cost and maximum probability solutions

Equal misclassification costs

- This rule minimizes expected error rate.
 - if p(y|x) are known

Minimum cost and maximum probability solutions

Equal misclassification costs

- This rule minimizes expected error rate.
 - if p(y|x) are known
- If x and y are independent, then (2) reduces to

$$\widehat{y}(x) = rg\max_{f} p(f|x) = rg\max_{f} p(f)$$

Bayes decision rule - Victor Kitov Gaussian classifier

Table of Contents

2 Gaussian classifier

3 Naive Bayes assumption

4 Model examples with naive Bayes assumption

Gaussian classifier

• In Gaussian classifier

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right\}$$

Gaussian classifier

• In Gaussian classifier

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right\}$$

• It follows that

$$\log p(y|x) = \log p(x|y) + \log p(y) - \log p(x)$$

= $-\frac{1}{2}(x - \mu_y^T)\Sigma_y^{-1}(x - \mu_y) - \frac{1}{2}\log|\Sigma_y|$
 $-\frac{D}{2}\log(2\pi) + \log p(y) - \log p(x)$

Bayes decision rule - Victor Kitov Gaussian classifier

Gaussian classifier

• In Gaussian classifier

$$p(x|y) = \frac{1}{(2\pi)^{D/2} |\Sigma_y|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right\}$$

• It follows that

$$\log p(y|x) = \log p(x|y) + \log p(y) - \log p(x)$$

= $-\frac{1}{2}(x - \mu_y^T)\Sigma_y^{-1}(x - \mu_y) - \frac{1}{2}\log|\Sigma_y|$
 $-\frac{D}{2}\log(2\pi) + \log p(y) - \log p(x)$

• Removing common additive terms, we obtain discriminant functions:

$$g_{y}(x) = \log p(y) - \frac{1}{2} \log |\Sigma_{y}| - \frac{1}{2} (x - \mu_{y})^{T} \Sigma_{y}^{-1} (x - \mu_{y})$$
(3)

Practical application

- In practice we replace theoretical terms μ_y , Σ_y with their sample estimates $\hat{\mu}_y$, $\hat{\Sigma}_y$.
- $\widehat{p}(y) = \frac{N_y}{N}$.

$$g_y(x) = \log \widehat{p}(y) - \frac{1}{2} \log |\widehat{\Sigma}_y| - \frac{1}{2} (x - \widehat{\mu}_y)^T \widehat{\Sigma}_y^{-1} (x - \widehat{\mu}_y)$$

- Analysis:
 - depends on normality assumptions (in particular on unimodality)
 - needs to specify:
 - CD parameters to estimate $\widehat{\mu}_y, y = 1, 2, ... C$.
 - CD(D+1)/2 parameters to estimate $\widehat{\Sigma}_y$, j=1,2,...C.

Gaussian classifier

Simplifying assumptions

- CD(D+3)/2 may be too large for multidimensional tasks with small training sets.
- Simplifying assumptions:
 - Naive Bayes: assume that $\Sigma_1, \Sigma_2, ... \Sigma_C$ are diagonal.
 - **Project data onto a subspace**: for example on first few principal components.
 - Proportional covariance matrices: assume that $\Sigma_1 = \alpha_1 \Sigma, \ \Sigma_2 = \alpha_2 \Sigma, \ ... \Sigma_C = \alpha_C \Sigma.$
 - Fisher's linear discriminant analysis: assume that $\Sigma_1 = \Sigma_2 = ... = \Sigma_C$.

QDA vs. LDA

Gaussian classifier is called:

- Quadratic discriminant analysis (QDA) when Σ₁, Σ₂, ...Σ_C are arbitrary.
 - class boundaries are quadratic¹
- Linear discriminant analysis (LDA) when $\Sigma_1 = \Sigma_2 = ... = \Sigma_C$

• class boundaries are linear²

¹prove this

²prove this

Naive Bayes assumption

Table of Contents

Minimum cost and maximum probability solutions

2 Gaussian classifier

- 3 Naive Bayes assumption
- 4 Model examples with naive Bayes assumption

High dimensional problem

 $p(x^1, x^2, ..., x^D) = p(x^1)p(x^2|x^1)...p(x^D|x^1, x^2, ..., x^{D-1})$ **Problem:** exponential to *D* number of observations needed for estimation.

High dimensional problem

 $p(x^1, x^2, ..., x^D) = p(x^1)p(x^2|x^1)...p(x^D|x^1, x^2, ..., x^{D-1})$ **Problem:** exponential to *D* number of observations needed for estimation.

Solution: make simplifying assumptions.

High dimensional problem

 $p(x^1, x^2, ..., x^D) = p(x^1)p(x^2|x^1)...p(x^D|x^1, x^2, ..., x^{D-1})$ **Problem:** exponential to *D* number of observations needed for estimation.

Solution: make simplifying assumptions.

Independence assumption

Individual features are independent: $p(x) = p(x^1)p(x^2)...p(x^D)$

High dimensional problem

 $p(x^1, x^2, ..., x^D) = p(x^1)p(x^2|x^1)...p(x^D|x^1, x^2, ..., x^{D-1})$ **Problem:** exponential to *D* number of observations needed for estimation.

Solution: make simplifying assumptions.

Independence assumption

Individual features are independent: $p(x) = p(x^1)p(x^2)...p(x^D)$

Naive Bayes assumption in classification

Individual features are **class conditionally** independent: $p(x|y) = p(x^1|y)p(x^2|y)...p(x^D|y)$

Under Naive Bayes assumption max-posterior probability rule becomes:

$$\widehat{y}(x) = \arg\max_{y} p(y)p(x^{1}|y)p(x^{2}|y)...p(x^{D}|y)$$

Naive Bayes assumption

Conditional independence visualization

Model examples with naive Bayes assumption

Table of Contents

Minimum cost and maximum probability solutions

2 Gaussian classifier

3 Naive Bayes assumption

4 Model examples with naive Bayes assumption

Model examples with naive Bayes assumption

Text models

- Restrict attention to D words $w_1, w_2, \dots w_D$
 - all unique words
 - possibly with stop words removal
 - possibly only most frequent words
 - or only words relevant to the topic of study
- Two major models:
 - Bernoulli
 - Multinomial

Model examples with naive Bayes assumption

Bernoulli model⁵

- Document is represented with feature vector $x \in \mathbb{R}^D$
- $x^i = \mathbb{I}[w_i \text{ appeared in the document}]$
- $\theta_y^d = p(x^d = 1|y)$
- $p(x|y) = \prod_{d=1}^{D} (\theta_{y}^{d})^{x^{d}} (1 \theta_{y}^{d})^{1-x^{d}}$
- $p(y) = \frac{N_y}{N}$
- $\theta_y^d = \frac{N_{yx^d}}{N_y}$
- Smoothed variant³⁴: $\theta_y^d = \frac{N_{yx}d + \alpha}{N_y + 2\alpha}$

³ interpret this in terms of adding artificial observations ⁴ modify for smoothing towards uncoditional word distribution ⁵ is it linear classifier?

Model examples with naive Bayes assumption

Multinomial model⁸

- Document is represented with feature vector $x \in \mathbb{R}^D$
- $x^d =$ number of times w_d appeared in the document
- θ_{y}^{d} =probability of w_{d} on word position

•
$$p(x|y) = \frac{\left(\sum_{d} x^{d}\right)!}{\prod_{d} (x^{d})!} \prod_{d=1}^{D} \left(\theta_{y}^{d}\right)^{x^{d}}$$

•
$$p(y) = \frac{N_y}{N}$$

$$heta_y^d = rac{n_{yd}}{n_y}$$
 where

- n_{yd} number of times word w_d appeared in documents $\in y$
- n_y number of words in documents $\in y$
- Smoothed version⁶⁷: $\theta_y^d = \frac{n_{yd+\alpha}}{n_y + \alpha D}$

⁶interpret this in terms of adding artificial observations ⁷modify for smoothing towards uncoditional word distribution ⁸is it linear classifier?