Decision trees

Victor Kitov

Definition of decision tree

Table of Contents

2 Splitting rules

- 3 Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Definition of decision tree

Example of decision tree

Definition of decision tree

Definition of decision tree

• Prediction is performed by tree *T*:

- directed graph
- without loops
- with single root node

Definition of decision tree

- for each internal node t a check-function $Q_t(x)$ is associated
- for each edge $r_t(1), ..., r_t(K_t)$ a set of values of check-function $Q_t(x)$ is associated: $S_t(1), ..., S_t(K_t)$ such that:

•
$$\bigcup_k S_t(k) = range[Q_t]$$

• $S_t(i) \cap S_t(j) = \emptyset \ \forall i \neq j$

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes *terminal*(*T*), which do not have child nodes but have associated prediction values.

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes *terminal*(*T*), which do not have child nodes but have associated prediction values.
- Prediction process for tree *T*:
 - t = root(T)
 - while *t* is not a leaf node:
 - calculate $Q_t(x)$
 - determine j such that $Q_t(x) \in S_t(j)$
 - follow edge $r_t(j)$ to *j*-th child node: $t = \tilde{t}_j$
 - return prediction, associated with leaf t.

Specification of decision tree

- To define a decision tree one needs to specify:
 - the check-function: $Q_t(x)$
 - the splitting criterion: K_t and $S_t(1), ..., S_t(K_t)$
 - the termination criteria (when node is defined as a terminal node)
 - the predicted value for each leaf node.

Splitting rules

Table of Contents

2 Splitting rules

- 3 Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Possible definitions of splitting rules

- $Q_t(x) = x^{i(t)}$, where $S_t(j) = v_j$, where $v_1, ... v_K$ are unique values of feature $x^{i(t)}$.
- $S_t(1) = \{x^{i(t)} \le h_t\}, \ S_t(2) = \{x^{i(t)} > h_t\}$
- $S_t(j) = \{h_j < x^{i(t)} \le h_{j+1}\}$ for set of partitioning thresholds $h_1, h_2, \dots h_{K_t+1}$.
- $S_t(1) = \{x : \langle x, v \rangle \leq 0\}, \quad S_t(2) = \{x : \langle x, v \rangle > 0\}$
- $S_t(1) = \{x : \|x\| \le h\}, \quad S_t(2) = \{x : \|x\| > h\}$

etc.

Splitting rules

Most famous decision tree algorithms

- CART (classification and regression trees)
 - implemented in scikit-learn
- C4.5

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

• binary splits:

$$K_t = 2$$

• split based on threshold *h_t*:

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

•
$$h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ... x_N^{i(t)}\}$$

- applicable only for real, ordinal and binary features
- discrete unordered features:

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

• binary splits:

$$K_t = 2$$

split based on threshold h_t:

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

•
$$h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ... x_N^{i(t)}\}$$

- applicable only for real, ordinal and binary features
- discrete unordered features:may use one-hot encoding.

Analysis of CART splitting rule

• Advantages:

- simplicity
- estimation efficiency
- interpretability
- Drawbacks:
 - many nodes may be needed to describe boundaries not parallel to axes:

Splitting rules

Piecewise constant predictions of decision trees

Sample dataset

Splitting rules

Example: Decision tree classification

Splitting rules

Example: Regression tree

Splitting rules

Example: Regression tree

Splitting rule selection

Table of Contents

2 Splitting rules

- 3 Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Impurity function

- Impurity function φ(t) = φ(p(ω₁|t), ...p(ω_C|t)) measures the mixture of classes using class probabilities inside node t.
- It can be any function \(\phi(\mathbf{q}_1, \mathbf{q}_2, ... \mathbf{q}_C\)\) with the following properties:
 - ϕ is defined for $q_j \ge 0$ and $\sum_j q_j = 1$.
 - ϕ attains maximum for $q_j = 1/C$, k = 1, 2, ...C.
 - ϕ attains minimum when $\exists j : q_j = 1, q_i = 0 \ \forall i \neq j$.
 - ϕ is symmetric function of $q_1, q_2, ..., q_C$.
- Note: in regression φ(t) measures the spread of y inside node t.
 - may be MSE, MAE.

Typical impurity functions

Gini criterion

 interpretation: probability to make mistake when predicting class randomly with class probabilities [p(ω₁|t),...p(ω_C|t)]:

$$I(t) = \sum_{i} p(\omega_i|t)(1-p(\omega_i|t)) = 1 - \sum_{i} [p(\omega_i|t)]^2$$

Entropy

• interpretation: measure of uncertainty of random variable

$$I(t) = -\sum_{i} p(\omega_i|t) \ln p(\omega_i|t)$$

Classification error

 interpretation: frequency of errors when classifying with the most common class

$$I(t) = 1 - \max_{i} p(\omega_i | t)$$

Typical impurity functions

Impurity functions for binary classification with class probabilities $\rho = \rho(\omega_1|t)$ and $1 - \rho = \rho(\omega_2|t)$.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{R} I(t_i) \frac{N(t_i)}{N(t)}$$

• $\Delta I(t)$ is the quality of the split¹ of node *t* into child nodes $t_1, \dots t_R$.

¹If I(t) is entropy, then $\Delta I(t)$ is called *information gain*.

Splitting criterion selection

$$\Delta I(t) = I(t) - \sum_{i=1}^{R} I(t_i) \frac{N(t_i)}{N(t)}$$

- $\Delta I(t)$ is the quality of the split¹ of node *t* into child nodes $t_1, ..., t_R$.
- CART selection: select feature i_t and threshold h_t , which maximize $\Delta I(t)$:

$$i_t, h_t = \arg \max_{k,h} \Delta I(t)$$

• CART decision making: from node t follow: $\begin{cases}
ext{left child } t_1, & \text{if } x^{i_t} \leq h_t \\
ext{right child } t_2, & \text{if } x^{i_t} > h_t
\end{cases}$

¹If I(t) is entropy, then $\Delta I(t)$ is called *information gain*.

Prediction assignment to leaves

Table of Contents

2 Splitting rules

- 3 Splitting rule selection
- Prediction assignment to leaves
 - 5 Termination criterion

Regression: prediction assignment for leaf nodes²

- Define $I_t = \{i : x_i \in \text{node } t\}$
- For mean squared error loss (MSE):

$$\widehat{y} = rg\min_{\mu}\sum_{i\in I_t}(y_i-\mu)^2 = rac{1}{|I_t|}\sum_{i\in I_t}y_i,$$

• For mean absolute error loss (MAE):

$$\widehat{y} = rg\min_{\mu} \sum_{i \in I_t} |y - \mu| = median\{y_i : i \in I_t\}.$$

²Prove optimality of estimators for MSE and MAE loss.

^{27/40}

Classification: prediction assignment for leaf nodes

- Define λ(ω_i, ω_j) the cost of predicting object of class ω_i as belonging to class ω_i.
 - Minimum loss class assignment:

Classification: prediction assignment for leaf nodes

- Define λ(ω_i, ω_j) the cost of predicting object of class ω_i as belonging to class ω_i.
 - Minimum loss class assignment:

$$m{c} = rg\min_{\omega} \sum_{i \in I_t} \lambda(m{c}_i, \omega)$$

• For
$$\lambda(\omega_i, \omega_j) = \mathbb{I}[\omega_i \neq \omega_j]$$
:

Classification: prediction assignment for leaf nodes

- Define λ(ω_i, ω_j) the cost of predicting object of class ω_i as belonging to class ω_j.
 - Minimum loss class assignment:

$$m{c} = rg\min_{\omega} \sum_{i \in I_t} \lambda(m{c}_i, \omega)$$

For λ(ω_i, ω_j) = I[ω_i ≠ ω_j]:most common class will be associated with the leaf node:

$$c = \arg \max_{\omega} |\{i : i \in I_t, y_i = \omega\}|$$

Termination criterion

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- **3** Splitting rule selection
- Prediction assignment to leaves

5 Termination criterion

- Rule based termination
- CART pruning algorithm

Termination criterion

Termination criterion

- Bias-variance tradeoff:
 - very large complex trees -> overfitting
 - very short simple trees -> underfitting
- Approaches to stopping:
 - rule-based
 - based on pruning

Termination criterion

Rule based termination

Termination criterion

Rule based termination

Rule-base termination criteria

- Rule-based: a criterion is compared with a threshold.
- Variants of criterion:
 - depth of tree
 - number of objects in a node
 - minimal number of objects in one of the child nodes
 - impurity of classes
 - · change of impurity of classes after the split

Termination criterion Rule based termination

Analysis of rule-based termination

Advantages:

- simplicity
- interpretability

Disadvantages:

- specification of threshold is needed
- impurity change is suboptimal: further splits may become better than current one
 - example:

Termination criterion

CART pruning algorithm

5 Termination criterion

- Rule based termination
- CART pruning algorithm

Termination criterion

CART pruning algorithm

CART³

- General idea: build tree up to pure nodes and then prune.
- Define:
 - T be some subtree of out tree
 - T_t full subtree with root at node t
 - \tilde{T} be a set of leaf nodes of tree T
 - M(t) the number of mistakes inside node t of the tree on the training set.
- Also define

error-rate loss : $R(T) = \sum_{t \in \tilde{T}} R(t)$ complexity+error-rate loss: $R_{\alpha}(T) = \sum_{t \in \tilde{T}} R_{\alpha}(t) = R(T) + \alpha |\tilde{T}|$

• Condition when $R_{\alpha_t}(T_t) = R_{\alpha_t}(t)$:

$$\alpha_t = \frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1}$$

³Simple pruning based on validation set.

Termination criterion CART pruning algorithm

Pruning algorithm

- Build tree until each node contains representatives of only single class - obtain tree T.
- Build a sequence of nested trees T = T₀ ⊃ T₁ ⊃ ... ⊃ T_{|T|} containing |T|, |T| 1,...1 nodes, repeating the procedure:
 - replace the tree T_t with smallest α_t with its root t
 - recalculate α_t for all ancestors of t.
- So For trees $T_0, T_1, ..., T_{|T|}$ calculate their validation set error-rates $R(T_0), R(T_1), ..., R(T_{|T|})$.
- Select *T_i*, giving minimum error-rate on the validation set:

$$i = \arg\min_i R(T_i)$$

Termination criterion

CART pruning algorithm

Example

Termination criterion CART pruning algorithm

Example

Logs of the performance metrics of the pruning process:

step num.	α_{k}	$ \tilde{T}^{k} $	$R(T^k)$
1	0	11	0.185
2	0.0075	9	0.2
3	0.01	6	0.22
4	0.02	5	0.25
5	0.045	3	0.34
6	005	2	0.39
7	0.11	1	0.5

Termination criterion

CART pruning algorithm

Handling missing values

If checked feature is missing:

- fill missing values:
 - with feature mean
 - with new categorical value "missing" (for categorical values)
 - predict them using other known features
- CART uses prediction of unknown feature using another feature that best predicts the missing one: "surrogate split"
 technique
- ID3 and C4.5 decision trees use averaging of predictions made by each child node with weights $N(t_1)/N(t), N(t_2)/N(t), \dots N(t_S)/N(t).$

Termination criterion

CART pruning algorithm

Analysis of decision trees

Advantages:

- simplicity
- interpretability
- implicit feature selection
- naturally handles both discrete and real features
- prediction is invariant to monotone transformations of features for $Q_t(x) = x^{i(t)}$
 - work well for features of different nature
- Disadvantages:
 - non-parallel to axes class separating boundary may lead to many nodes in the tree for $Q_t(x) = x^{i(t)}$
 - one step ahead lookup strategy for split selection may be insufficient (XOR example)
 - not online slight modification of the training set will require full tree reconstruction.