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Definition of decision tree

Prediction is performed by tree T:

directed graph

without loops

with single root node
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Definition of decision tree

for each internal node t a check-function Qt(x) is associated

for each edge rt(1), ...rt(Kt) a set of values of check-function

Qt(x) is associated: St(1), ...St(Kt) such that:⋃
k St(k) = range[Qt]

St(i) ∩ St(j) = ∅ ∀i 6= j
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Definition of decision tree

Prediction process

a set of nodes is divided into:

internal nodes int(T), each having ≥ 2 child nodes

terminal nodes terminal(T), which do not have child nodes

but have associated prediction values.

Prediction process for tree T:

t = root(T)
while t is not a leaf node:

calculate Qt(x)
determine j such that Qt(x) ∈ St(j)
follow edge rt(j) to j-th child node: t = t̃j

return prediction, associated with leaf t.
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Definition of decision tree

Specification of decision tree

To define a decision tree one needs to specify:

the check-function: Qt(x)
the splitting criterion: Kt and St(1), ...St(Kt)
the termination criteria (when node is defined as a terminal

node)

the predicted value for each leaf node.
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Splitting rules

Possible definitions of splitting rules

Qt(x) = xi(t), where St(j) = vj, where v1, ...vK are unique

values of feature xi(t).

St(1) = {xi(t) ≤ ht}, St(2) = {xi(t) > ht}
St(j) = {hj < xi(t) ≤ hj+1} for set of partitioning thresholds

h1, h2, ...hKt+1.

St(1) = {x : 〈x, v〉 ≤ 0}, St(2) = {x : 〈x, v〉 > 0}
St(1) = {x : ‖x‖ ≤ h}, St(2) = {x : ‖x‖ > h}
etc.
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Splitting rules

Most famous decision tree algorithms

CART (classification and regression trees)

implemented in scikit-learn

C4.5
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Splitting rules

CART version of splitting rule

single feature value is considered:

Qt(x) = xi(t)

binary splits:

Kt = 2

split based on threshold ht:

S1 = {xi(t) ≤ ht}, S2 = {xi(t) > ht}

h(t) ∈ {xi(t)
1
,x

i(t)
2
, ...x

i(t)
N
}

applicable only for real, ordinal and binary features

discrete unordered features:

may use one-hot encoding.

11/40



Decision trees - Victor Kitov

Splitting rules

CART version of splitting rule

single feature value is considered:

Qt(x) = xi(t)

binary splits:

Kt = 2

split based on threshold ht:

S1 = {xi(t) ≤ ht}, S2 = {xi(t) > ht}

h(t) ∈ {xi(t)
1
,x

i(t)
2
, ...x

i(t)
N
}

applicable only for real, ordinal and binary features

discrete unordered features:may use one-hot encoding.

11/40



Decision trees - Victor Kitov

Splitting rules

Analysis of CART splitting rule

Advantages:

simplicity

estimation efficiency

interpretability

Drawbacks:

many nodes may be needed to describe boundaries not

parallel to axes:
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Splitting rules

Piecewise constant predictions of decision trees
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Sample dataset
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Example: Decision tree classification

15/40



Decision trees - Victor Kitov

Splitting rules

Example: Decision tree classification

16/40



Decision trees - Victor Kitov

Splitting rules

Example: Decision tree classification

17/40



Decision trees - Victor Kitov

Splitting rules

Example: Decision tree classification

18/40



Decision trees - Victor Kitov

Splitting rules

Example: Regression tree
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Splitting rules

Example: Regression tree
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Splitting rule selection

Impurity function

Impurity function φ(t) = φ(p(ω1|t), ...p(ωC|t)) measures the

mixture of classes using class probabilities inside node t.

It can be any function φ(q1, q2, ...qC) with the following

properties:

φ is defined for qj ≥ 0 and
∑

j qj = 1.

φ attains maximum for qj = 1/C, k = 1, 2, ...C .

φ attains minimum when ∃j : qj = 1, qi = 0 ∀i 6= j.

φ is symmetric function of q1, q2, ...qC.

Note: in regression φ(t) measures the spread of y inside

node t.

may be MSE, MAE.
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Splitting rule selection

Typical impurity functions

Gini criterion
interpretation: probability to make mistake when predicting

class randomly with class probabilities [p(ω1|t), ...p(ωC|t)]:

I(t) =
∑

i

p(ωi |t)(1− p(ωi |t)) = 1−
∑

i

[p(ωi |t)]2

Entropy
interpretation: measure of uncertainty of random variable

I(t) = −
∑

i

p(ωi |t) ln p(ωi |t)

Classification error
interpretation: frequency of errors when classifying with the

most common class

I(t) = 1− max
i

p(ωi |t)
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Splitting rule selection

Typical impurity functions

Impurity functions for binary classification with class probabilities

p = p(ω1|t) and 1− p = p(ω2|t).
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Splitting rule selection

Splitting criterion selection

∆I(t) = I(t)−
R∑

i=1

I(ti)
N(ti)

N(t)

∆I(t) is the quality of the split1 of node t into child nodes

t1, ...tR.

CART selection: select feature it and threshold ht, which

maximize ∆I(t):

it, ht = argmax
k,h

∆I(t)

CART decision making: from node t follow:{
left child t1, if xit ≤ ht

right child t2, if xit > ht

1If I(t) is entropy, then ∆I(t) is called information gain.
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Prediction assignment to leaves

Regression: prediction assignment for leaf nodes2

Define It = {i : xi ∈ node t}
For mean squared error loss (MSE):

ŷ = argmin
µ

∑
i∈It

(yi − µ)2 =
1

|It|
∑
i∈It

yi ,

For mean absolute error loss (MAE):

ŷ = argmin
µ

∑
i∈It

|y− µ| = median{yi : i ∈ It}.

2Prove optimality of estimators for MSE and MAE loss.
27/40



Decision trees - Victor Kitov

Prediction assignment to leaves

Classification: prediction assignment for leaf nodes

Define λ(ωi , ωj) - the cost of predicting object of class ωi as

belonging to class ωj.

Minimum loss class assignment:

c = argmin
ω

∑
i∈It

λ(ci , ω)

For λ(ωi , ωj) = I[ωi 6= ωj]:most common class will be

associated with the leaf node:

c = argmax
ω
|{i : i ∈ It, yi = ω}|
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Termination criterion

Termination criterion

Bias-variance tradeoff:

very large complex trees -> overfitting

very short simple trees -> underfitting

Approaches to stopping:

rule-based

based on pruning
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Termination criterion

Rule based termination

Rule-base termination criteria

Rule-based: a criterion is compared with a threshold.

Variants of criterion:

depth of tree

number of objects in a node

minimal number of objects in one of the child nodes

impurity of classes

change of impurity of classes after the split
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Termination criterion

Rule based termination

Analysis of rule-based termination

Advantages:

simplicity

interpretability

Disadvantages:

specification of threshold is needed

impurity change is suboptimal: further splits may become

better than current one

example:

33/40



Decision trees - Victor Kitov

Termination criterion

CART pruning algorithm

5 Termination criterion

Rule based termination

CART pruning algorithm

34/40



Decision trees - Victor Kitov

Termination criterion

CART pruning algorithm

CART3

General idea: build tree up to pure nodes and then prune.

Define:

T be some subtree of out tree

Tt full subtree with root at node t

T̃ be a set of leaf nodes of tree T

M(t) - the number of mistakes inside node t of the tree on the

training set.

Also define

error-rate loss : R(T) =
∑

t∈T̃
R(t)

complexity+error-rate loss: Rα(T) =
∑

t∈T̃
Rα(t) = R(T) + α|T̃ |

Condition when Rαt
(Tt) = Rαt

(t):

αt =
R(t)− R(Tt)

|T̃t| − 1

3Simple pruning based on validation set.
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Termination criterion

CART pruning algorithm

Pruning algorithm

1 Build tree until each node contains representatives of only

single class - obtain tree T.

2 Build a sequence of nested trees T = T0 ⊃ T1 ⊃ ... ⊃ T|T |
containing |T |, |T | − 1,...1 nodes, repeating the procedure:

replace the tree Tt with smallest αt with its root t

recalculate αt for all ancestors of t.

3 For trees T0,T1, ...T|T | calculate their validation set

error-rates R(T0),R(T1), ...R(T|T |).

4 Select Ti, giving minimum error-rate on the validation set:

i = argmin
i

R(Ti)
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Termination criterion

CART pruning algorithm

Example
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Termination criterion

CART pruning algorithm

Example

Logs of the performance metrics of the pruning process:

step num. αk |T̃k| R(Tk)

1 0 11 0.185

2 0.0075 9 0.2

3 0.01 6 0.22

4 0.02 5 0.25

5 0.045 3 0.34

6 005 2 0.39

7 0.11 1 0.5
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Termination criterion

CART pruning algorithm

Handling missing values

If checked feature is missing:

fill missing values:

with feature mean

with new categorical value “missing” (for categorical values)

predict them using other known features

CART uses prediction of unknown feature using another

feature that best predicts the missing one: “surrogate split”

- technique

ID3 and C4.5 decision trees use averaging of predictions

made by each child node with weights

N(t1)/N(t), N(t2)/N(t), ...N(tS)/N(t).
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Termination criterion

CART pruning algorithm

Analysis of decision trees

Advantages:

simplicity

interpretability

implicit feature selection

naturally handles both discrete and real features

prediction is invariant to monotone transformations of

features for Qt(x) = xi(t)

work well for features of different nature

Disadvantages:

non-parallel to axes class separating boundary may lead to

many nodes in the tree for Qt(x) = xi(t)

one step ahead lookup strategy for split selection may be

insufficient (XOR example)

not online - slight modification of the training set will require

full tree reconstruction.
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