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An overview of research topics on constructing
polynomial time asymptotically optimal (exact)
algorithms for several hard optimization problems.
Relevant research results are mostly obtained in
di�erent years (since 1969) by the author and his
younger colleagues in the laboratory "Discrete
Optimization in Operations Research" of the Institute
of Mathematics SB RAS, Novosibirsk, Russia.
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Notation

FA(I) is the objective by algorithm A on input I;

εAn is the resulting relative error of A;

δAn ∈ (0, 1) is the failure probability of A;

Pr{·} is the probability of the corresponding event.
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Algorithm with performance guarantees (εAn , δ
A
n )

We say that Algorithm A admits estimates (εAn , δ
A
n ) in the

class of n-sized optimization problems if, for every size n and
input I, we have

Pr
{∣∣∣FA(I)−OPT (I)

OPT (I)

∣∣∣ > εAn

}
≤ δAn .

It is clear that

The event within the brackets is not desirable.

The algorithm is better than the smaller its estimates εAn
and δAn .
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Asymptotically optimal algorithm

The algorithm is called asymptotically optimal (exact) on the
class of n-sized problems, if it admits a pair of estimates
(εAn , δ

A
n ), s.t.

εAn → 0; δAn → 0 as n→∞.

Thus, the asymptotically optimal algorithm becomes more
exact and relieble with increasing the size problem.

This contrasts with the well-known concept of "curse of
dimensionality" which appeared at the beginning of the
second half of the previous century (Bellman R., Hughes G.F.).
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An event, which occurs with high probability
(w.h.p.)

means that an event Bn in the sequence {Bn} occurs
with probability → 1 as n→∞.

I.e.: algorithm solves a problem of size n w.h.p., or
with probability 1− δn, where the failure probability
δn → 0 as n→∞.
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Examples of implementations:

TSP and some its variations: Max TSP on Euclidean
Space Rk, Euclidean Max PSP, TSP and m-PSP on
random distances bounded and unbounded from above;

m-Cycles Covering Problem;

Max (Min) total Weight Vector Subset Problem;

MST Problem with a bounded below diameter;

Degree Constrained Connected Subgraph Problem;

Random Multi-index AP;

Bin and Strip Packing Problem;

Random p-median Problem;

Random VRP with limited number of clients per rout;

PS Problem with limited accumulative resources;

CFLP on random input distances.
Edward GIMADI redAlgorithms



red red red red red red red red red red red red red red red red red red red redFirs texemple of the algorithm with proven guarantees

A. Borovkov. On probabilistic target setting two
economic problems // Reports of Acad. Sc.
USSR. 1962. Vol. 146, N 5, P. 983-986.

TSP& AP

n points in bounded simply connected domain Ω in
Euclidean space Rk are considered. Distribution
function of points inside Ω are distributed with
continuous everywhere non-zero density function.
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• Cut k-dimensional region Ω into a system of
cylindrical stripes.
(Each of these stripes gives (k−1)-dimensional cube in section

x1 =const)

• Connect points of every stripe by broken line
such that along this line quantity x1 are changing
monotonously.
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For uniform distributed points in unit square
Algorithm �nds Hamiltonian circuit in time
O(n log n) with estimates

εn = 0.48,

δn → 0 as n→∞.
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solving TSP and its generalizations.

The classical TSP is to �nd the minimum length
route through n cities.
A good survey on TSP can be found in

�TSP and its Variations�

[(2002) Gutin G., Punnen A. P. (eds.), Kluver
Academic Publishers, Dordrecht].
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A number of results concerning NCA is obtained
under the assumption
independent random variables. In the case of discrete
distr. f.

pk = Pr{cij = k}, k = 1, . . . , rn,

NCA is asymptotically optimal if

rn∑
k=1

1∑k
i=1 pi

= o(n).

[Gimadi and Perepelitsa, 1969]
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cij ∈ [an, bn], an > 0 an ≤ cij ≤ bn, an > 0, NCA
is asymptotically optimal if

bn/an = o

(
n

max{nγn, Jn}

)
,

Jn =

∫ 1

γn

dx

P (x)
→∞,

where P (x) = Pr
{

cij−an
bn−an < x

}
, P (γn) = 1/n.

[Gimadi & Perepelitsa, 1974]
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Results mentioned above were established using the
classical Chebyshev's probability inequality.

Better approximation guarantees can be obtained
using the techniques initiated by [Chernov, 52] and
generalized by [Hoe�ding, 63].

Also good bounds are investigated using like-wise
Bernstein probability inequalities [Petrov 74].
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Consider i.r.v. X1, . . . , Xn.
Let there be constants T and g1, . . . , gn > 0 s.t. for
all 1 ≤ k ≤ n, t ∈ [0, T ]

EetXk ≤ exp
{gkt2

2

}
.

Put S =
∑n

k=1Xk and G =
∑n

k=1 gk. Then

Pr{S > y} ≤
{

exp
{
− y2

2G

}
, 0 ≤ y ≤ GT,

exp
{
−Ty

2

}
, y ≥ GT.
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εn = O
( bn/an
n/ lnn

)
, δn = O

(
1

n

)
.

Then the condition of asymptotic optimality is

bn
an

= o
( n

lnn

)
.
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TSP is called Euclidean (ETSP), if
• vertexes in graph correspond to points in Eucliden
space Rk , and
• edge weights equal to lenghts of relative intervals.
• ETSPmax in space Rk is NP-hard when k ≥ 3.
• For k = 2 hardness status of ETSPmax is open.

[Fekete&Barvinok]
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Serdyukov 1987;
Gimadi 2001;

Baburin&Gimadi 2002.

Time complexity is determined by a procedure of
searching maximum weight matching in given graph
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Let α ≤ π/2 be an angle between two intervals A =
(a1, a2), B = (b1, b2) from Rk. Then

(|A|+ |B|) ≥

≥ max

{
|a1, b1|+ |a2, b2|,
|a1, b2|+ |a2, b1|

≥ (|A|+ |B|) cos
α

2
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Let αk(t) be a min solid angle between t intervals in
Rk. Then

sin
αk(t)

2
≤ γk

t
2

k−1
,

where γk depends on dimension of set Rk.
So

αk(t)→ 0

as t→∞.
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Theorem [Baburin and Gimadi, 2005]
.
Let d = dmin be minimal vertex degree in subgraph
chosen, M be the number of edges. Then
DCCSPmax can be solved in time O(Mn2) with
relative error ε ≤ 2

d2+d .
In the metric case the error is two times less.

The condition of asymptotical optimality for
DCCSPmax is d = φn →∞.
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Generalization of TSP, when d = 2.
For d-regular d-regular DCCSPmax the conditions of
asymptotic optimality were established in the case
when edge weights are i. r. v. from [an, bn] with
i.u.d.f. of minorized type.

uniform.pdf

func.pdf

P (x) = x P (x) ≤ x
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• TSPmaxi is solved for each distance matrix
Di, 1 ≤ i < d, using FC-heuristic.
• For every matrix Hi, 1 ≤ i ≤ d− 2, we pick out i
elements in each row and one element in each
column by greedy heuristic.
• The elements symmetric to the ones that are
chosen above are also chosen.
So in each line of the matrix (wij) we have exactly d
chosen elements that correspond to a d-regular
subgraph in given graph.
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εn ≤
3 ln(m+ 1) + 1

m
, δn =

1

m+ 1
,

where m = n/(d− 1).
So the condition of asymptotic optimality is

d = o(n).

[Baburin&Gimadi, 2005]

Now analogous results were established also without
the requirement of integer representation of m and
for d-regular DCCSPmin.
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weight subset of vectors

P1: Consider the �nite family of vectors V = {v1, . . . , vn} in
Euclidean space Rk and positive integer m < n. Find a subset
of vectors X of cardinality m such that the norm of the sum
of the vectors from X is maximum.
P2: Given the �nite family V = {v1, . . . , vn} of vectors in
Euclidean space Rk and positive integers l,m such that
lm < n �nd a subset of vectors X = {va1 , . . . , vam}, such that
the norm of the sum of the vectors from X is maximum under
the restriction ai+1 − ai ≥ l for i = 1, 2, . . . ,m− 1.
The problems are NP-hard.
The problem P2 is connected in a signal search in a sequence
of impulses with additional noise problem. This problem has
applications in electronic reckoning, radiolocation,
telecommunication, geophysics, medical and technical
diagnostics, etc.
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1 The m-layered 3-index planar assignment problem on single cycle
permutations or
the m-Peripatetic Salesman Problem with di�erent weight functions
(m-PSP-DW)

2 The m-Peripatetic Salesman Problem with identical weight functions
(m-PSP)

3 The m-Cycles Cover Problem (m-CCP)

4 The m-index axial assignment problem on single-cycle permutations
(m-AAPC)
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Given n× n cost matrix C = (cij).

Find a permutation π ∈ Sn, such that:
n∑
i=1

ciπ(i) → min
π∈Sn
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To minimize the sum of the chosen elements.

NP-hard for the number of indexes at least three in
axial and planar cases both [Karp,Frieze].

Axial MAP
In the case of the axial MAP n elements must be
selected in the multi-dimensional matrix such that in
every "cross-section" exactly one element is chosen.
(The "cross-section" is such set of matrix elements
when one index is �xed).

Conditions of asymptotic optimality established are
likewise for TSP .
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Selection of n2 elements in a cubic matrix (cijk).
Exactly one element in each line is chosen.
(A line is the set of n elements with two �xed
indexes).

Conditions of asymptotic optimality were established
when the number of layers of the matrix (cijk) is at
most O(nθ), 0 < θ < 1

Edward GIMADI redAlgorithms



red red red red red red red red red red red red red red red red red red red redMotivation of the research

Complexity

The considered problems:

Multi-index assignment problems on single-cycle permutations

The m-Peripatetic Salesman Problem

The m-Cycles Cover Problem

are strong NP-hard.
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Multi-index axial assignment problems

Data association problem in multitarget tracking.

Problems of classi�cation and pairing of human
chromosomes.

Multi-index planar assignment problems

Related to the Latin squares, which has
applications in combinatorics, statistics,
cryptography, quasigroups studies in algebra.

Scheduling problems

Con�ict-free access to parallel memories.

Design of error-correcting codes.

The m-Peripatetic Salesman Problem

Optimization of delivery routes.

Design of patrol routes, of automated guided
vehicle (AGV) loops, and of hazardous material
transportation routes.

Network design (protecting the network from the
link failure)
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Given a complete graph G = (V,E) with weight functions of edges
wi : E → R+, 1 ≤ i ≤ m.
The problem is to �nd m edge-disjoint Hamiltonian cycles
H1, . . . ,Hm ⊂ E:

W (H1, . . . ,Hm) =

m∑
i=1

∑
e∈Hi

wi(e)→ min(max).

The weight functions wi can be
di�erent � m-PSP-DW

Or identical w1 = . . . = wn �
classic m-PSP

The problem was �rst described in
[Krarup 1974].
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Baburin, Gimadi, 2010

An O(n3) algorithm for the m-PSPmax in
k-dimensional Euclidean space with relative error

m

n

2/(k+1)
.

The algorithm is asymptotically optimal for
m = o(n).
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An approximation algorithm Ã

Stage i = 1, . . . ,m < n/4.

Consider graph G with weight function of edges wi and build Hamiltonian
cycle Hi :

Step i0 Randomly select the �rst edge for Hi.

Step i1 Starting from the endpoint of the �rst edge build a partial path,
according to the principal "go to the nearest unvisited vertex"
n− 4i times.

Step i2 Convert the path into a Hamiltonian cycle Hi using an
extension-rotation procedure PH .

Delete all edges that belong to Hi from G, so these edges won't be used
in Hamiltonian cycles Hi+1, . . . ,Hm.

Edward GIMADI redAlgorithms



red red red red red red red red red red red red red red red red red red red red1. Extension-rotation procedure PH for the m-PSP
Given graph (VH , EH) with vertex degree > |VH |/2, �nd a Hamiltonian
path P with given endpoints u and v in O(|VH |2) running-time.

Let P = {u = u1, . . . , uk} be the constructed path
Extension: If possible, add an edge {uk, w}, w /∈ P ∪ {v} to the path.

Rotation: Else, for an arbitrary w /∈ P , add edges {uk, ui} and {ui+1, w} into
P, and delete the edge {ui, ui+1}
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Probabilistic analysis of Ã

We assume that the weights of the edges wi(e) are i.i.d. random
reals.

The weight of an edge wi(e
i
s) chosen at Step i1 is estimated from

above as minimum of n− 2i− s+ 2 elements of random input.

The weights of edges chosen at Step i2 has the same distribution
function as the elements of random input.

All random variables wi(e
i
s) are independent.

The key element when estimating

Pr
{ m∑
i=1

n∑
s=1

wi(e
i
s) > (1 + εÃ)OPT

}
≤ δÃ

is the Petrov's theorem.
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Probabilistic analysis of Ã

De�nition

The distribution function F ′(x) is a function of F-majorizing type if

F ′(x) ≥ F(x) for every x

Distribution functions considered

We have considered the random inputs for the m-PSP-DW with
distribution functions:

of UNI[an, bn]-majorizing type,
where UNI[an, bn] is uniform distribution in the interval [an, bn],
0 < an < bn;

of Exp(x)-majorizing type,
where Exp(x) is exponential distribution with parameters βn, an:

Exp(x) = 1− exp
(x− an

βn

)
, x ≥ an > 0.
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Probabilistic analysis of Ã

De�nition

The distribution function F ′(x) is a function of F-majorizing type if

F ′(x) ≥ F(x) for every x

Distribution functions considered

We have considered the random inputs for the m-PSP-DW with
distribution functions:

of UNI[an, bn]-majorizing type,
where UNI[an, bn] is uniform distribution in the interval [an, bn],
0 < an < bn;

of Exp(x)-majorizing type,
where Exp(x) is exponential distribution with parameters βn, an:

Exp(x) = 1− exp
(x− an

βn

)
, x ≥ an > 0.
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The distribution function F ′(x) is a function of F-majorizing type if

F ′(x) ≥ F(x) for every x

Distribution functions considered

We have considered the random inputs for the m-PSP-DW with
distribution functions:

of UNI[an, bn]-majorizing type,
where UNI[an, bn] is uniform distribution in the interval [an, bn],
0 < an < bn;

of Exp(x)-majorizing type,
where Exp(x) is exponential distribution with parameters βn, an:

Exp(x) = 1− exp
(x− an

βn

)
, x ≥ an > 0.
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De�nition

The distribution function F ′(x) is a function of F-majorizing type if

F ′(x) ≥ F(x) for every x

Distribution functions considered

We have considered the random inputs for the m-PSP-DW with
distribution functions:

of UNI[an, bn]-majorizing type,
where UNI[an, bn] is uniform distribution in the interval [an, bn],
0 < an < bn;

of Exp(x)-majorizing type,
where Exp(x) is exponential distribution with parameters βn, an:

Exp(x) = 1− exp
(x− an

βn

)
, x ≥ an > 0.
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Probabilistic analysis of Ã. Results.

Theorem

If the weights of edges are i.i.d. random reals with distribution
UNI[an, bn], 0 < an < bn, then the O(mn2) algorithm Ã is
asymptotically optimal with the following performance guarantees:

εn = O

(
bn/an
n/lnn

)
, δn = n−9, for 2 ≤ m ≤ lnn, bnan = o

(
n

lnn

)
.

εn = O

(
bn/an
nθ

)
, δn = n−9, for

lnn < m ≤ n1−θ, bnan = o(nθ),

θ ∈ (0, 1− ln lnn
lnn ).

Note

The obtained performance guarantees are true for any distribution
function that dominates (majorates) UNI[an, bn].

Edward GIMADI redAlgorithms



red red red red red red red red red red red red red red red red red red red red1. The m-PSP with di�erent weight functions
Probabilistic analysis of Ã. Results.

For the maximum m-PSP-DW, use a similar algorithm Ã1, that choose
the longest edge at Step i1.

Note

If the weights of edges are i.i.d. UNI[an, bn], 0 < an < bn random reals,

then the O(mn2) algorithm Ã1 for the maximum m-PSP-DW is
asymptotically optimal with the following performance guarantees:

εn = O

(
lnn
n

)
, δn = n−9, for 2 ≤ m ≤ lnn.

εn = O(n−θ), δn = n−9, for lnn < m ≤ n1−θ, θ ∈ (0, 1− ln lnn
lnn ).
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Probabilistic analysis of Ã. Results.

Theorem

If the weights of edges are i.i.d. random reals having distribution Exp(x)

with parameters βn, an > 0, then the O(mn2) algorithm Ã is
asymptotically optimal with the following performance guarantees:

εn = O

(
βn/an
n/lnn

)
, δn = n−(3/4m+6/4), for

2 ≤ m ≤ lnn,

βn/an = o
(

n
lnn

)
;

εn = O
(
βn/an
nθ

)
, δn = n−(3/4m+6/4), for

lnn < m ≤ n1−θ,
βn/an = o(nθ),
θ ∈ (0, 1− ln lnn

lnn ).

Note

The obtained performance guarantees are true for any distribution
function that dominates (majorates) Exp(x).
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Probabilistic analysis of Ã. Results.

Note

The truncated normal distribution with an, σn = βn/2:

Nan,σ2
n
(x) =

2√
2πσ2

n

∫ x

an

exp

(
− (t− an)2

2σ2
n

)
dt, , 0 < an ≤ x ,

dominates the shifted exponential distribution with parameters an, βn.
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Given a complete graph G = (V,E) with weight function of edges
w : E → R+, 1 ≤ i ≤ m.
The problem is to �nd m edge-disjoint Hamiltonian cycles
H1, . . . ,Hm ⊂ E:

W (H1, . . . ,Hm) =

m∑
i=1

∑
e∈Hi

w(e)→ min(max).

The analysis of algorithm Ã for m-PSP-DW strongly depends on

1 the Petrov's theorem

2 the independence of the weight functions wi, 1 ≤ i ≤ m.

In the classic m-PSP the weight functions are dependent:

w1 = w2 = . . . = wm
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Description of the new approach

Step 1 Uniformly split the initial complete n-vertex graph G into spanning
subgraphs G1, . . . Gm:

Gi is a random graph where each edge exists with probability 1/m
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Description of the new approach

Step 2 Construct subgraphs G̃1, . . . , G̃m deleting all edges in Gi,
1 ≤ i ≤ m, which are heavier than w∗.

G̃i is a random graph where each edge exists with probability f(w∗)
m

f(x) - the distribution function of weights of edges
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Description of the new approach

Step 3 In each subgraph G̃i build a Hamiltonian cycle, using polynomial
algorithms, that w.h.p. �nd a Hamiltonian cycle in a sparse random
graph.

We will use here algorithms by Gimadi-Perepelitsa (1973) and
Angluin-Valiant (1979).
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New approach. Time complexity

Steps 1 and 2 takes O(n2),

At Step 3 the chosen algorithm with time complexity T (n) runs m
times.

The total time complexity of the approach is O(n2 +mT (n)).

Time complexity of the approach with Gimadi-Perepelitsa algorithm
is O(mn2).

Time complexity of the approach with Angluin-Valiant algorithm is
O(n2 +mn log2 n).
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Two concepts of a random graph:

1 Gp � n-vertex graph, where each edge exists with probability p,
independently of other edges.

2 GN � graph with n vertices and exactly N edges, chosen uniformly
from the set of all such graphs.

In [Angluin-Valiant, 1979] it was shown that these two concepts are
interchangeable for appropriate values N and p.
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Algorithms �nding a Hamiltonian cycle in a random graph

Existence of the HC in a random graph

1952 Dirac: A simple graph with n vertices (n ≥ 3) is Hamiltonian if
every vertex has degree n/2 or greater.

1959 Erdos and Renyi: for any ε > 0 if the number of edges
N < (1/2− ε)n log n, then w.h.p. the graph contains isolated
vertices (w.h.p. no HC).

1976 Posa: an undirected graphs with N ≥ cn log n edges w.h.p. contains
a Hamiltonian cycle. Non-algorithmic proof.

1983 Komlos and Szemeredi and independently Korshunov: the required
density may be reduced to N ≥ 1/2(n log n+ n log log n+Q(n))
edges, where Q(n)→∞ as n→∞.
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Algorithms �nding a Hamiltonian cycle in a random graph

Algorithms

1973 Gimadi and Perepelitsa: randomized algorithm AGP , which in
O(n2/ lnn) time �nds w.h.p. a HC in a random graph with
N ≥ n

√
n lnn edges.

1979 Angluin and Valiant: randomized algorithm AAV , which in
O(n ln2 n) time with probability 1−O(n−α) �nds a HC in a random
graph with N ≥ cαn lnn edges, where cα ∼ 100 + α

1987 Bollobas, Fenner and Frieze: deterministic O(n3+o(1)) algorithm
that w.h.p. �nds a HC in a random undirected graph with
N ≥ 1/2(n log n+ n log log n+ cnn) edges.

1988 Frieze: algorithm with running-time O(n1,5) for directed random
graphs.

2015 Frieze and Haber: algorithm that in O(n1+o(1)) time w.h.p �nds a
HC in a random graph with vertex degree ≥ 3 and N = cn edges,
where c is a su�ciently large constant.
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Algorithm AGP by Gimadi and Perepelitsa

AGP is trying to �nd a HC in a given random graph G = (V,E)
If it cannot produce some step it stops and returns �failure�

|V0| ∼ 0.3
√
n lnn; |V1| = . . . = |Vk| ∼ n

lnn − 0.3
√

n
lnn ;

k = | lnn/2|.
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Algorithm AGP by Gimadi and Perepelitsa

Theorem (Gimadi-Perepelitsa,1979)

Algorithm AGP w.h.p. builds a Hamiltonian cycle in a random n-vertex
graph with at least

N = n
√
n lnn

edges. The failure probability of the algorithm is

δGP = O

( √
lnn

n1.5−o(1)

)
= O

(√
lnn

n0.8

)
.

Time complexity of AGP is O(n2/ lnn).

− Complicated

− Requires more than cn log n edges

+ Doesn't have big constants in the de�nition of N , thus can be used
for small n.
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AV G is trying to �nd a HC in a given random graph G = (V,E)

Works almost like algorithm by Dirac

If it cannot produce a step it stops and returns �failure�
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Algorithm AV G by Angluin and Valiant

Theorem (Angluin-Valiant, 1979)

Algorithm AAV with probability 1−O(n−α) �nds a HC in an undirected
random graph with

N ≥ cαn lnn

edges, where cα is a su�ciently large constant.
The running-time of AAV is O(n log2 n)

+ Algorithm is fast and simple.

+ It has a small failure probability δAV = O(n−α)

− Constant cα ∼ 100 + α.
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Probabilistic analysis. General aspects

Let the weights of the input graph be random reals with a continuous

distribution function f(x) de�ned on [an, bn] or [an,∞), 0 < an. Let N be the

required number of edges.

Setting w∗

If w∗ = f−1
(

4m(N + n)

n(n− 1)

)
, then

Pr{graph G̃i does not have N edges at Step 3} ≤ e−n

The approach gives the following performance guarantees.

The relative error is

εn <
w∗ − an
an

,

The failure probability is

δn =

{
O(m lnn/n0.8), if we use AGP at Step 3,
O(m/nα), if we use AAV at Step 3.
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Probabilistic analysis. Continuous distribution

Theorem

Let the distribution function of inputs be

. UNI(x) uniform on [an, βn], 0 < an ≤ βn,

. Exp(x) shifted exponential with parameters an, βn:

Exp(x) = 1− exp

(
−x− an

βn

)
, 0 < an ≤ x .

The approach gives an asymptotically optimal m-PSP solution if:

m ≤ n0.5−θ/4 , 0 < θ < 0.5, è βn/an = o
(

nθ√
lnn

)
, and we use AGP

at Step 3.

m ≤ n1−θ/4 , 0 < θ < 1, è βn/an = o
(
nθ

lnn

)
, and we use AAV at

Step 3.

Remark

The obtained results can be extended to the case of any distribution
function that dominates the considered distributions.Edward GIMADI redAlgorithms
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Probabilistic analysis. Discrete distributions

Theorem

Let the distribution function of the weights of edges of the input graph
be discrete and de�ned on [a, b] or [a,∞), where a is the the lowest
possible weight of an edge. Let the distribution function satisfy:

pa = Pr(X = a) ≥ 4m(
√
n lnn+ 1)

n− 1
.

If m ≤ n0.3−θ/4, where 0 ≤ θ < 0.3, the approach with AGP gives an

exact solution of the m-PSP with failure probability δA = O
( √

lnn
n0.5+θ

)
.

In particular, the result is true for:

Bernoulli distribution Bp, where p ≤ 1−
√
lnn

n0.2+θ ;

Geometric distribution Gp, where p ≥
√
lnn

n0.2+θ ;

Poisson distribution Πλ, where λ ≤ ln
(
n0.2+θ
√
lnn

)
.
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Algorithm from 1. vs algorithm from 2.

For the considered continuous distributions on [an, βn] or [an,∞):

Performance guarantees of the
algorithm Ã for m-PSP-DW:

ε = O

(
βn
an

lnn

n

)

δ = n−(3/4m+6/4)

if

2 ≤ m < lnn

βn
an

= o
( n

lnn

)
;

Performance guarantees of the new
approach+AAV for m-PSP:

ε = O

(
βn
an

ln2 n

n

)
δ = O

( m
nα

)
, α > 1

if

2 ≤ m < lnn

βn
an

= o
( n

ln2 n

)
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Algorithm from 1. vs algorithm from 2.

For the considered continuous distributions on [an, βn] or [an,∞):

Performance guarantees of the
algorithm Ã for m-PSP-DW:

ε = O
(βn
an

1

nθ

)
δ = n−(3/4m+6/4)

if

lnn < m ≤ n1−θ

βn
an

= o(nθ)

Performance guarantees of the new
approach+AAV for m-PSP:

ε = O

(
βn
an

lnn

nθ

)
δ = O

( m
nα

)
, α > 1

if

m ≤ n1−θ/4

βn
an

= o

(
nθ

lnn

)
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The m-Cycles Cover Problem

Given: a complete n-vertex weighted graph G = (V,E),
The problem is to �nd m vertex-disjoint simple cycles of extreme total
weight, that spans all vertices of G.

W (C̃) =

m∑
i=1

∑
e∈E(Ci)

w(e)→ min(max),

V (C1) ∪ . . . ∪ V (Cm) = V,

V (Ci) ∩ V (Cj) = ∅, i 6= j, 1 ≤ i, j ≤ m.

It was �rst stated in [Khachay, Neznakhina, 2014]
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Known results

Khachay, Neznakhina, 2014

The problem is NP-hard
2-approximation algorithm for metric m-CCPmin.

Khachay, Neznakhina, 2015

PTAS with relative error 1/c and time complexity O(n3(lnn)O(c)) for
Euclidean m-CCPmin.

Gimadi, Rykov 2015

TSP-approach and

Asymptotically optimal algorithm for Euclidean m-CCPmax, if
m = o(n).

Asymptotically optimal algorithm for m-CCPmin on random
UNI[0,1] inputs, if m ≤ n1/3/ lnn.
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The TSP-approach: TSP solution → m-CCP solution

Step 1 Let H = {1, . . . , n} be the approximate TSP solution.

u = {u1, . . . , um} is a feasible partition of H into a collection of
paths Sk = [uk−1 + 1, uk], if 1 ≤ u1 < . . . , < um ≤ n, u0 = um,
and each path Sk contains at least 2 edges.
An edge (uk, uk + 1) between Sk and Sk+1 is a separating edge.
A chord (uk−1 + 1, uk) is a closing edge.
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The TSP-approach: TSP solution → m-CCP solution

Step 2a Find the best feasible partition of H:

f(u) =

m∑
k=1

(
w(uk−1 + 1, uk)− w(uk, uk + 1)

)
→ min

u∈U
(max
u∈U

).

where U is a set of all feasible partitions of H.

The dynamic programming algorithm gives the exact solution in
O(mn3) time.

According to the best feasible partition delete separating edges from
H, add closing edges and return the obtained m-cycles cover as a
result of the approach.

Edward GIMADI redAlgorithms



red red red red red red red red red red red red red red red red red red red red3. The m-Cycles Cover Problem
The TSP-approach: TSP solution → m-CCP solution

In the case of maximization problem

Step 2b Find the approximately best feasible partition of H in O(nm) time:

Choose arbitrary uk, 1 ≤ k ≤ m, such that uk − uk−1 ≥ 3.

C̃ = argmax0≤j<nW (C̃j).
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The TSP-approach

The TSP-approach does not guarantee that the approximation ratio
that was true for the TSP algorithm would also hold for the m-CCP.

Lemma (Gimadi, Rykov, 2015)

Let H be a Hamiltonian cycle, and C̃ be the solution of the MAX
m-Cycles Cover problem, obtained by applying procedure from Step 2b to
a Hamiltonian cycle H. For the weight of C̃ we have:

W (C̃) ≥ (1−m/n)W (H).

It is not the optimal solution of TSP, that important here, but the
preliminary constructions (spanning tree, cycle cover, perfect
matching) form the approximation algorithm for the TSP.
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The Properties of the m-CCP solution

Lemma: MIN m-CCP

The solution of the m-CCP may contain cycles of odd length, so in the
case of minimization problem the weight of the perfect matching Mmin

can be in many times greater than the weight of the m-CCP solution in
general, metric or Euclidean cases.

Lemma: symmetric MAX m-CCP

Let C∗ be the optimal solution of maximum m-CCP with non-negative
edge weights. We assume that a cycle should consist of at least 3
vertices. Then

W (C∗) ≤ 3W (M).

Lemma: metric MAX m-CCP [Gimadi, Rykov, 2015]

Let C∗ be the optimal solution of the metric maximum m-CCP. Then:

(1−m/n)W (C∗) ≤ 2W (M).
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