

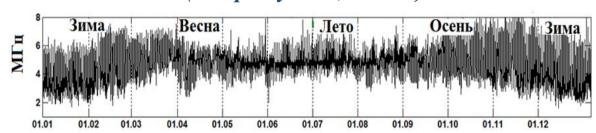
Институт космофизических исследований и распространения радиоволн ДВО РАН

Метод моделирования параметров ионосферы и обнаружения ионосферных возмущений

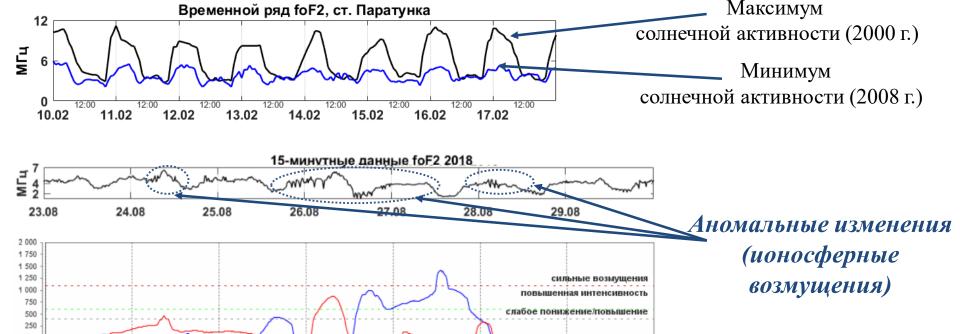
О. В. Мандрикова, Н. В. Фетисова, Ю. А. Полозов

Структура временного ряда параметров ионосферы

2018-08-23 00:00


2018-08-24 00:00

2018-08-25 00:00


2018-08-26 00:00

2018-08-27 00:00

Сезонные изменения временного ряда критической частоты ионосферы foF2 («Паратунка», 2011 г.)

Влияние солнечной активности на временной ряд foF2

2018-08-28 00:00

2018-08-29 00:00

Обобщенная многокомпонентная модель временного ряда параметров ионосферы

$$f(t) = A^{\text{PE}\Gamma}(t) + U(t) + e(t) = \sum_{\mu = \overline{1,T}} \sum_{j} G_{j}^{\mu} \alpha_{j}^{\mu}(t) + \sum_{i,\eta} \beta_{i,\eta}^{\text{BO3M}}(t) + e(t) \quad (1)$$

Регулярная компонента

$$A^{\text{PE}\Gamma}(t) = \sum_{\mu=\overline{1}.T} \sum_{j} G_{j}^{\mu} \alpha_{j}^{\mu} (t)$$

1. Быстрые вейвлет-разложения Выделение регулярных разномасштабных составляющих α_j^μ (t), описывающих изменения в спокойной ионосфере

$$f(t) = \sum_{j=-1}^{-m} g_j(t) + f_{-m}(t)$$

2. Класс моделей АРПСС

Оценка параметров G_j^{μ} регулярных составляющих

$$A^{ ext{PE}\Gamma}(t) = \sum_{\mu = \overline{1,T}} \sum_{k=\overline{1,N_{j}^{\mu}per}} s^{\mu}_{j^{per},k} b^{\mu}_{j^{per},k}(t)$$

Аномальная компонента

$$U(t) = \sum_{i,n} \beta_{i,\eta}^{\text{BO3M}}(t)$$

1. Нелинейные аппроксимирующие вейвлет-разложения

Детальный анализ данных

$$U(t) = \sum_{i,\eta} \beta_{i,\eta}^{\text{\tiny BO3M}}(t) = \sum_{i=\overline{1,3}} \sum_{\eta,n} P_{i,\eta}(d_{\eta,n}) \Psi_{\eta,n}(t)$$

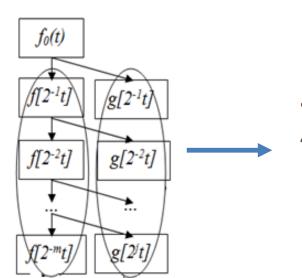
2. Адаптивные пороговые функции

Обнаружение короткопериодных аномальных изменений разной интенсивности и длительности

Регулярная компонента модели

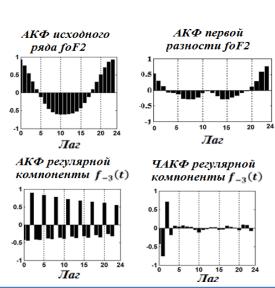
Быстрые вейвлет-разложения

$$f(t) = \sum_{j=-1}^{-m} g_j(t) + f_{-m}(t)$$


$$f_{-m}(t) = \sum_{k} c_{-m,k} \phi_{-m,k}(t),$$

$$g_j(t) = \sum_k d_{j,k} \Psi_{j,k}(t),$$

$$c_{-m,k} = \langle f, \phi_{-m,k} \rangle, \ d_{j,k} = \langle f, \Psi_{j,k} \rangle$$


 $\phi_{-m,k}$ - масштабирующая функция

 $\Psi_{i,k}(t)$ - вейвлет-функция

Модели АРПСС

$$\phi(B)\nabla^d z_t = \theta(B)a_t$$

$$A^{\text{PE}\Gamma}(t) = f_{-m^{\text{per}}}(t) + \sum_{j^{\text{per}}} g_{j^{\text{per}}}(t) = \sum_{\mu = \overline{1,T}} \sum_{k=1,N_{j^{\text{per}}}} s_{j^{\text{per}},k}^{\mu} b_{j^{\text{per}},k}^{\mu}(t)$$
(2)

$$s_{j^{ ext{per}},k}^{\mu} = \sum_{l=1}^{p_{j^{ ext{per}},l}^{\mu}} \gamma_{j^{ ext{per}},l}^{\mu} \omega_{j^{ ext{per}},k-l}^{\mu}(t) - \sum_{n=1}^{h_{j^{ ext{per}},n}^{\mu}} heta_{j^{ ext{per}},k-n}^{\mu}(t)$$
 – оценочное значение μ – компоненты,

 $p_{i^{\mathrm{per}}, \gamma_{i^{\mathrm{per}}, l}^{\mu}$ — порядок и параметры авторегрессии модели μ — компоненты

 $h_{i^{\mathrm{per}}, \theta_{i^{\mathrm{per}}, k}^{\mu}$ — порядок и параметры скользящего среднего μ — компоненты

$$a^{\mu}_{j^{\mathrm{per}},k}$$
 — остаточные ошибки модели $b^{1}_{-m^{\mathrm{per}},k}$ — масштабирующая μ — компоненты функция

$$b_{-m^{{
m per}},k}^{1}$$
 — масштабирующа функция

$$b^{\mu}_{-m^{ ext{per}},k}$$
 — вейвлет функция

Аномальная компонента модели

Построение нелинейной аппроксимирующей вейвлет-схемы:

$$U(t) = \sum_{i,\eta} \beta_{i,\eta}^{\text{BO3M}}(t) = \sum_{\eta,n} P_{1,\eta} (d_{\eta,n}) \Psi_{\eta,n}(t) + \sum_{\eta,n} P_{2,\eta} (d_{\eta,n}) \Psi_{\eta,n}(t) + \sum_{\eta,n} P_{3,\eta} (d_{\eta,n}) \Psi_{\eta,n}(t)$$
(3)

 $d_{\eta,n}=\left\langle f,\Psi_{\eta,n}
ight
angle$ - вейвлет-коэффициенты на масштабе $\eta,\quad \left\{ \Psi_{\eta,n}
ight\} _{\eta,n\in Z}$ — вейвлет — базис

$$P_{1,\eta}(x) = egin{cases} 0$$
, если $|x| \leq T_{1,\eta}$ или $|x| > T_{2,\eta} \ x$, если $T_{1,n} < |x| \leq T_{2,\eta} \end{cases}$

 $T_{1,\eta}$ - порог, определяющий аномалии малой интенсивности (класс 1)

$$P_{2,\eta}(x) = egin{cases} 0$$
, если $|x| \leq T_{2,\eta}$ или $|x| > T_{3,\eta} \ x$, если $T_{2,\eta} < |x| \leq T_{3,\eta} \end{cases}$

$$T_{2,\eta}$$
- порог, определяющий аномалии умеренной интенсивности (класс 2)

$$P_{3,\eta}(x) = egin{cases} 0, ext{ если} |x| \leq T_{3,\eta} \ x, ext{ если} |x| > T_{3,\eta} \end{cases}$$

 $T_{3,\eta}$ - порог, определяющий аномалии высокой интенсивности (класс 3)

Применение адаптивных порогов: $P_{i,\eta}^{a\partial}$, $i = \overline{1,3}$

$$P_{i,\eta}^{ ext{ad}} = V_i * St_\eta$$
, V_i — пороговый коэффициент,

$$St_{\eta}=\sqrt{rac{1}{\Phi-1}\sum_{n=1}^{\Phi}\Bigl(d_{\eta,n}-\overline{d_{\eta,n}}\Bigr)^2}$$
, Ф — длина скользящего временного окна

Аномальная компонента модели

Применение адаптивных порогов: P_{in}^{ao} , i = 1, 3

$$P_{i,n}^{a\partial}, i = \overline{1,3}$$

Аномалии малой интенсивности (класс 1)

$$d_{\eta,n}^{1+}, \, \text{если}\, P_{1,\eta}^{\mathrm{a}\mathrm{A}} < \left(d_{\eta,n} - d_{\eta,n}^{med}\right) \leq P_{2,\eta}^{\mathrm{a}\mathrm{A}}$$

$$d_{\eta,n} = \begin{cases} 0, \, \, \text{если}\, |d_{\eta,n} - d_{\eta,n}^{med}| < P_{1,\eta}^{\mathrm{a}\mathrm{A}} \, \, \text{или}\, \, |d_{\eta,n} - d_{\eta,n}^{med}| > P_{2,\eta}^{\mathrm{a}\mathrm{A}} \\ d_{\eta,n}^{1-}, \, \, \text{если}\, - P_{2,\eta}^{\mathrm{a}\mathrm{A}} \leq \left(d_{\eta,n} - d_{\eta,n}^{med}\right) < -P_{1,\eta}^{\mathrm{a}\mathrm{A}} \end{cases}$$

Аномалии умеренной интенсивности (класс 2)

$$d_{\eta,n} = \begin{cases} d_{\eta,n}^{2+}, \text{ если } P_{2,\eta}^{\mathrm{ad}} < \left(d_{\eta,n} - d_{\eta,n}^{med}\right) \leq P_{3,\eta}^{\mathrm{ad}} \\ 0, \text{ если } |d_{\eta,n} - d_{\eta,n}^{med}| < P_{2,\eta}^{\mathrm{ad}} \text{ или } |d_{\eta,n} - d_{\eta,n}^{med}| > P_{3,\eta}^{\mathrm{ad}} \\ d_{\eta,n}^{2-}, \text{ если } - P_{3,\eta}^{\mathrm{ad}} \leq \left(d_{\eta,n} - d_{\eta,n}^{med}\right) < -P_{2,\eta}^{\mathrm{ad}} \end{cases}$$

Общая интенсивность:

Аномалии высокой интенсивности (класс 3)

$$d_{\eta,n} = egin{cases} d_{\eta,n}^{3+}, \, ext{если} \left(d_{\eta,n} - d_{\eta,n}^{med}
ight) \geq P_{3,\eta}^{ ext{ad}} \ 0, \, \, ext{если} \, \left|d_{\eta,n} - d_{\eta,n}^{med}
ight| < P_{3,\eta}^{ ext{ad}} \ d_{\eta,n}^{3-}, \, ext{если} \left(d_{\eta,n} - d_{\eta,n}^{med}
ight) < -P_{3,\eta}^{ ext{ad}} \end{cases}$$

Оценка интенсивности аномалий:

Интенсивность для каждого класса *i*:

$$J^{i+(-)}(n) = \sum_{n} \left| d_{\eta,n}^{i+(-)} \right|$$

$$J^{+(-)}(n) = \sum_{n} \left| d_{\eta,n}^{+(-)} \right|$$

Обнаружение длительных и интенсивных аномальных изменений

1 Обнаружение интенсивных аномалий в ионосфере

$$\varepsilon_{j^{\text{per}}}^{\mu} = \sum_{q=1}^{Q_{\mu}} \left| a_{j^{\text{per}},k+q}^{\mu} \right| > H_{\mu,j^{\text{per}}}, \tag{4}$$

$$a^{\mu}_{j^{ ext{per}},k+q}=s^{\mu, ext{факт}}_{j^{ ext{per}},k+q}-s^{\mu, ext{модель}}_{j^{ ext{per}},k+q}$$
 - ошибки модели $A^{ ext{PE}\Gamma}(t)$

 Q_{μ} — длина упреждения данных, $H_{\mu,i}^{\text{per}}$ —пороговое значение.

$$s_{j^{ ext{per}},k+q}^{\mu, ext{модель}} = \sum_{l=1}^{p_{j^{ ext{per}}}^{\mu}} \gamma_{j^{ ext{per}},l}^{\mu} \omega_{j^{ ext{per}},k+q-l}^{\mu} - \sum_{n=1}^{h_{j^{ ext{per}}}^{\mu}} heta_{j^{ ext{per}},n}^{\mu} a_{j^{ ext{per}},k+q-n}^{\mu}$$

2 Оценка порога:

$$H_{\mu,j^{\text{per}}}(Q_{\mu}) = u_{\xi/2} \left\{ 1 + \sum_{q=1}^{Q_{\mu}-1} \left(\psi_{j^{\text{per}},q}^{\mu} \right)^{2} \right\}^{1/2} \sigma_{a_{j^{\text{per}}}^{\mu}}$$
(5)

 $u_{\xi/2}$ -квантиль уровня стандартного нормального распределения

 $\psi^{\mu}_{j^{\mathrm{per}},q}$ - весовые коэффициенты модели µ компоненты

3 Оценка интенсивности аномалии:

$$Y_{j^{\text{per}},k+1,k+L_{\mu}}^{\mu} = \frac{\sqrt{\frac{1}{L_{\mu}} \sum_{l=1}^{L_{\mu}} \left| a_{j^{\text{per}},k+l}^{\mu} \right|^{2}}}{H_{\mu,j^{\text{per}}}}$$
(6)

 L_{μ} — длина скользящего временного окна

Метод обнаружения длительных и интенсивных аномалий

1. Выполняем моделирование компонент

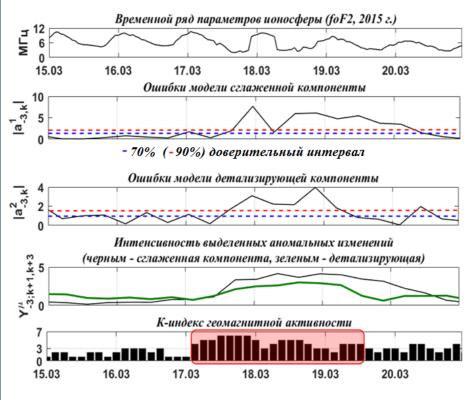
$$f_{-m^{
m per}}(t) = \sum_{k=1,N_{-m^{
m per}}^{\mu}} s_{-m^{
m per},k}^{1} b_{-m^{
m per},k}^{1}(t)$$

$$\sum_{j^{
m per}} g_{j^{
m per}}(t) = \sum_{\mu=2}^{T} \sum_{k=1,N_{j^{
m per}}^{\mu}} s_{j^{
m per},k}^{\mu} b_{j^{
m per},k}^{\mu}(t)$$

2. Вычисляем остаточные ошибки моделей:

$$a^{\mu}_{j^{\mathrm{per}},k+q}=s^{\mu,\mathrm{факт}}_{j^{\mathrm{per}},k+q}-s^{\mu,\mathrm{модель}}_{j^{\mathrm{per}},k+q}$$

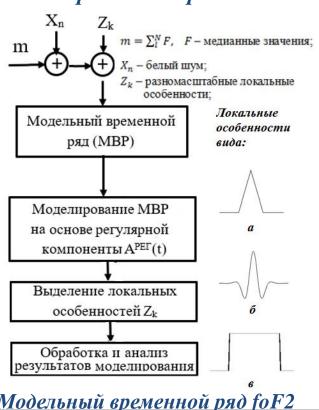
3. Принимаем за аномальные моменты времени t=k , для которых


$$\varepsilon_{j}^{\mu} = \sum_{q=1}^{Q_{\mu}} \left| a_{j}^{\mu}_{per,k+q} \right| > H_{\mu,j}^{per},$$

4. Интенсивность для аномального периода $t = \overline{k+1, k+L_u}$

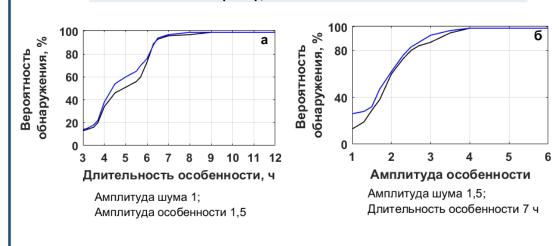
$$Y_{j^{\text{per}}, \overline{k+1, k+L_{\mu}}}^{\mu} = \frac{\sqrt{\frac{1}{L_{\mu}} \sum_{l=1}^{L_{\mu}} \left| a_{j^{\text{per}}, k+l}^{\mu} \right|^2}}{H_{\mu, j^{\text{per}}}}$$

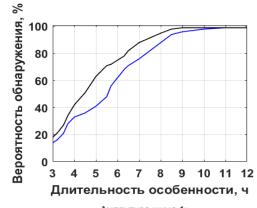
Применение метода

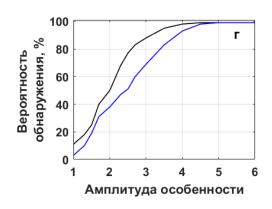

Анализ ионосферных данных (ст. «Паратунка», Камчатка) в период магнитной бури 17 марта 2015 г.



- порог $H_{\mu,-3}$ (доверительная вероятность 70%)
- порог $H_{\mu,-3}$ (доверительная вероятность 90%)


Оценка эффективности алгоритма (статистическое моделирование)

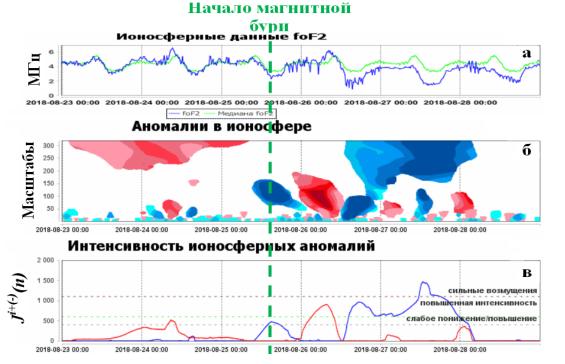



Зима, черным — низкая солнечная активность (СА), синим- высокая СА

Лето, черным — низкая солнечная активность (CA), синим- высокая CA

Амплитуда шума 1; Амплитуда особенности 1,5

Амплитуда шума 1,5; Длительность особенности 7 ч


Алгоритм обнаружения аномальных изменений разной интенсивности

1. В момент времени $n=n_0$ возникла короткопериодная аномалия малой (умеренной, высокой) интенсивности масштаба η_0 , если

$$|d_{\eta_0,n_0}| > P_{i,\eta_0}^{\mathrm{ad}}, i = 1 \ (i = 2,3).$$

- 2. Интенсивность аномалии в момент времени n_0 на масштабе η_0 : $J_{\eta_0,n_0}^{+(-)} = \left| d_{\eta_0,n_0}^{+(-)} \right|$
- 3. Если $\forall n_s \in (t_1, t_2), t_2 > t_1: d_{\eta_0, n_s} > P_{i, \eta_0}^{\mathrm{ad}}$, $i = 1 \ (i = 2, 3)$, то в период времени (t_1, t_2) наблюдалась аномалия малой (умеренной, высокой) интенсивности масштаба η_0 , длительность которой определим как $l_{\eta_0} = t_2 t_1$.

Применение алгоритма. Анализ ионосферных данных ст. «Паратунка»

Аномалии малой интенсивности (класс 1)

$$400 < J^{+(-)}(n) < 600$$

Аномалии умеренной интенсивности (класс 2) $600 < I^{+(-)}(n) \le 1100$

Аномалии высокой интенсивности (класс 3)

$$J^{+(-)}(n) > 1100$$

Оценка эффективности метода в оперативном режиме

1. В точках k выполняется разрыв временного ряда $f_N = \{f_n\}_{n=\overline{0,N}}$, ряд дополняется медианными

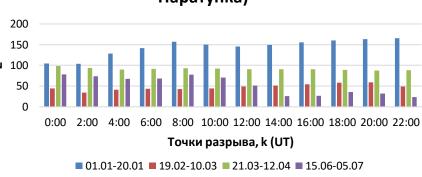
значениями:

$$f_{k+h} = \{f_k\}_{k=\overline{k+1,k+h}} = \left(f_1^{med}, f_2^{med}, \dots, f_h^{med}\right)$$

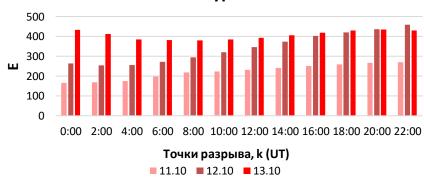
$$f_h^{med}$$
 — медианные значения, $h = M \times \frac{\Omega}{2}$,

M — наибольший масштаб разложения, Ω -размер носителя вейвлет-базиса Ψ

2. Выполняется НВП исходного ряда f_N и дополненного ряда f_{k+h} :


$$f_N = \sum_{n,n} d_{\eta,n}^N \Psi_{\eta,n}(t) \qquad d_{\eta,n}^N = \langle f_N, \Psi_{\eta,n} \rangle$$

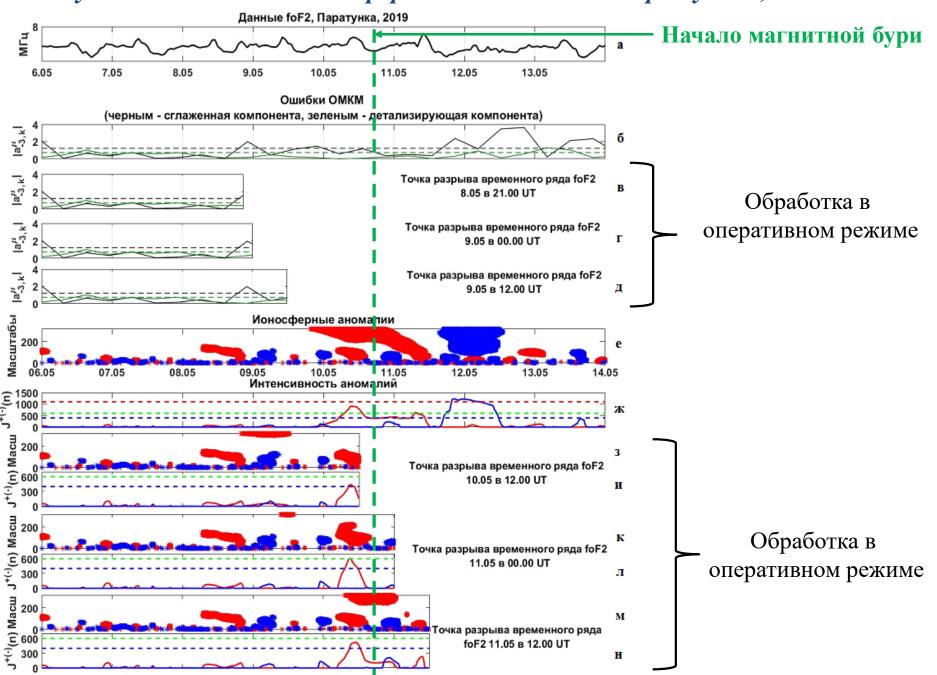
$$f_{k+h} = \sum_{n,n} d_{\eta,n}^{k+h} \Psi_{\eta,n}(t) \quad d_{\eta,n}^{k+h} = \langle f_{k+h}, \Psi_{\eta,n} \rangle$$


3. Оценивается погрешность:

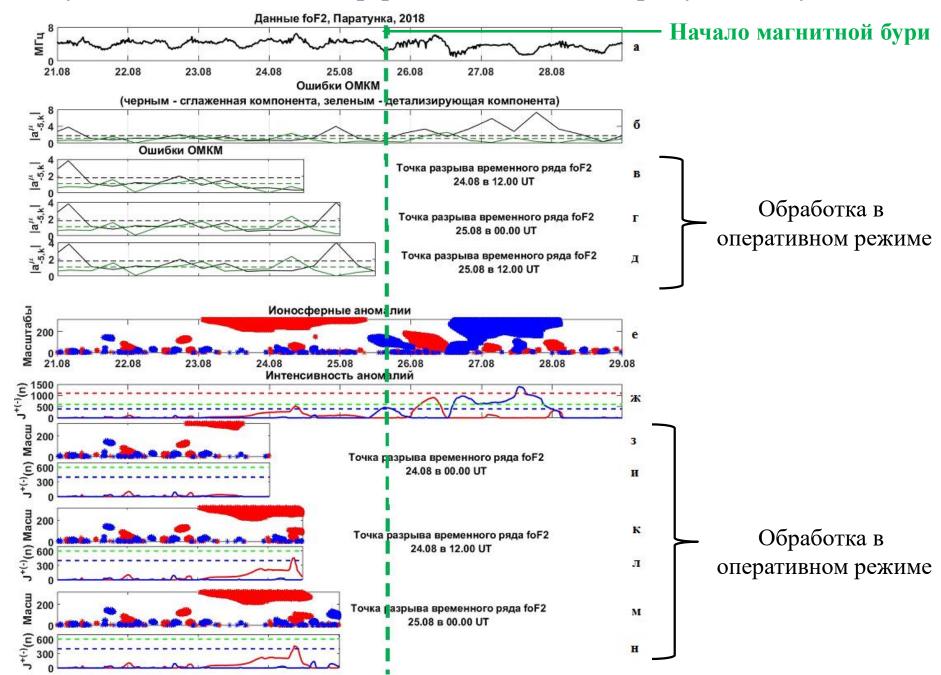
$$E = \sum_{\eta=1}^{n} \left| \frac{1}{k-1} \sum_{n=1}^{k} \left(\left(d_{\eta,n}^{N} - d_{\eta,n}^{k+h} \right) - \left(\overline{d_{\eta,n}^{N} - d_{\eta,n}^{k+h}} \right) \right)^{2} \right|$$

Периоды спокойной ионосферы (2016 г., Паратунка)

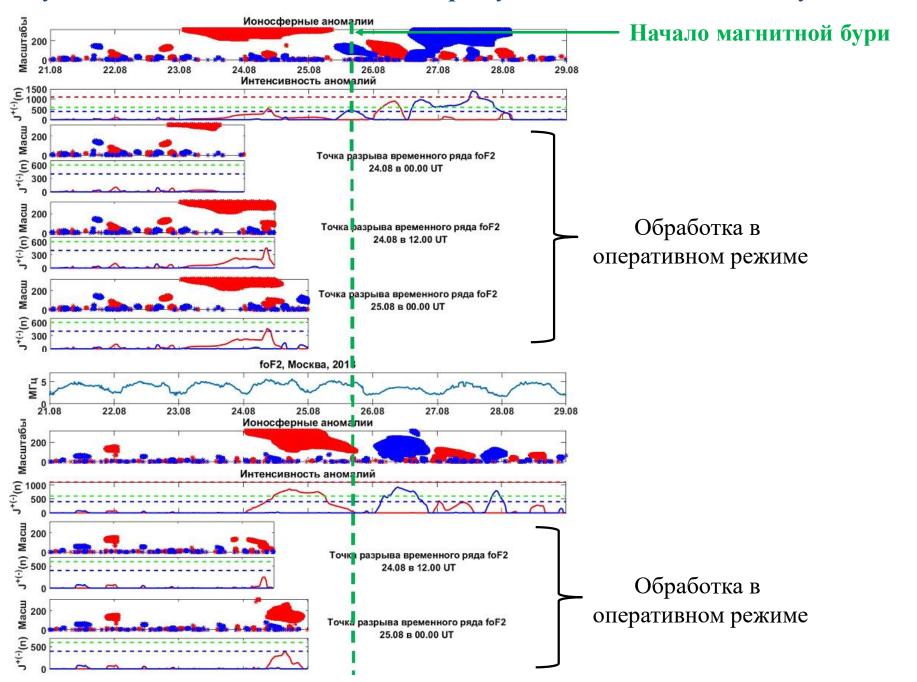
Магнитная буря 13.10.2016 г.



Магнитная буря 24.11.2016 г.



23.11 24.11 25.11


Результаты анализа ионосферных данных ст. «Паратунка», май 2019 г.

Результаты анализа ионосферных данных ст. «Паратунка», август 2018 г.

Результаты анализа данных ст. «Паратунка» и ст. «Москва», август 2018 г.

Выводы

Предложен автоматизированный метод анализа параметров ионосферы и обнаружения ионосферных аномалий, основанный на обобщенной многокомпонентной модели временного ряда параметров ионосферы.

Экспериментально подтверждена возможность возникновения короткопериодных аномалий слабой и умеренной интенсивности, предшествующих сильным магнитным бурям и показана эффективность метода для их обнаружения. Показана возможность применения метода на разных среднеширотных станциях регистрации данных, без дополнительной настройки алгоритмов.

Подтверждена эффективность метода в режиме оперативного анализа данных.

Основные преимущества метода:

- 1. Возможность полной автоматизации.
- 2. Эффективность для обнаружения аномалий малой интенсивности.
- 3. Возможность обнаружения ионосферных аномалий с заданной доверительной вероятностью.

Метод реализован программно и используется в ИКИР ДВО РАН в оперативном режиме для анализа ионосферных данных и оценки состояния ионосферы в Камчатском крае (http://lsaoperanalysis.ikir.ru/lsaoperanalysis.html).

Исследование выполнено в рамках ГЗ по теме «Динамика физических процессов в активных зонах ближнего космоса и геосфер» № гос. регистрации AAAA-A17-117080110043-4.

Авторы выражают благодарность институтам, выполняющим регистрацию ионосферных и геомагнитных данных, которые использовались в работе.

Институт космофизических исследований и распространения радиоволн ДВО РАН

Спасибо за внимание