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Abstract

We consider importance sampling to estimate the probability
of a union of J rare events. There are existing ways of ad-
dressing the problem like ALOE. However, it ignores the ge-
ometrical structure of the problem. That is why we propose
adaptive importance sampling. We show how our approach
helps to improve the performance on both synthetic and real
data.

Introduction
Now renewable energy sources become and more popular.
The most well-spread are solar panels and wind farms. They
are economically beneficial and environmentally friendly.
However, they bring fluctuations to power grid and cause
failures. The main focus is to estimate the probability of
power system failure in the most efficient and accurate way.

Model
The most common way to describe power system work is to
use alternating current (AC) power flow model. In this work
we use linearized direct current (DC) model as a simplifica-
tion of AC model. It is good in describing large power grids
and is quite accurate for high voltage regimes.

Our aim is to estimate the probability of failure

µ = P

x ∈ J⋃
j=1

Hj

 . (1)

We use Gaussian distribution for modeling of random
busses such as variable demand by users and variable pro-
duction (for example, wind farms), x ∼ N (η,Σ). We model
failure as union of J events Hj , j ∈ {1, . . . , J}, each event
means that one linear condition is violated.

Now we give an overview of how random vector x and
events Hj come from DC model. Our power system is
treated as a directed graph with N nodes (each node is one
bus) and M edges (each edge is one power line). The power
production at bus i is pi, negative values indicate power con-
sumption. We consider 3 types of busses: NF fixed busses,
NR random busses and one slack bus S. The power at all
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busses can be represented by the vector p =
(
pTF , p

T
R, pS

)T
.

In (1) x is equal to pR ∈ RNR .
According to DC model we must satisfy conditions:

pF = ηF (ηF ∈ RNF is a constant), (2)∑
i

pi = 0 (balance equation), (3)

pRi ≤ pRi ≤ pRi (pRi , p
R
i ∈ RNR are constants), (4)

pS ≤ pS ≤ pS (pS , pS ∈ R1 are constants), (5)

θ = B+p (B is a given laplacian matrix), (6)∣∣ θi − θj ∣∣≤ θij (i 6= j, θij are constants). (7)

So pS and θ are expressed through pR from (3) and (6).
From (4), (5) and (7) we have J = 2NR + 2 + 2M lin-
ear conditions on pR which can be violated. Each event
Hj =

{
x
∣∣ wT

j x ≥ τj
}

denotes that corresponding condi-
tion is violated.

Method
With the help of linear transformation x ← Σ−1/2 (x− η)
random vector x becomes standard multivariate Gaussian
vector: x ∼ N (0, I).

In the case of rare events importance sampling (IS) esti-
mate of µ from (1) is better than Monte-Carlo estimate be-
cause IS estimate has lower variance. Power system failure
is a rare event (typically µ < 10−3) so we use IS technique.

Denote H = ∪Jj=1Hj , p(x) is the PDF of N (0, I), q(x)
is the PDF of biased distribution q. Then IS estimate of µ is

µ̂q =
1

n

n∑
i=1

I(xi ∈ H)p(xi)

q(xi)
, xi ∼ q, (8)

Var (µ̂q) =
1

n

(∫
I(x ∈ H)p2(x)

q(x)
dx− µ2

)
. (9)

It is important that

q(x) > 0 wherever I(x ∈ H)p(x) 6= 0. (10)

Let us denote: Hj(x) = I(x ∈ Hj), H(x) =∑J
j=1Hj(x), P = P (Hj).



The method ALOE was introduced and analyzed in
(Owen, Maximov, and Chertkov 2017):

qALOE(x) ≡ qα(x) =

J∑
j=1

αALOEj qALOEj (x), (11)

qALOEj (x) =
Hj(x)p(x)

Pj
, (12)

αALOEj = Pj

(
J∑
k=1

Pk

)−1
. (13)

It was proved in (Owen, Maximov, and Chertkov 2017) that

Var
(
µ̂ALOE

)
≤ µ2

n

J + J−1 − 2

4
.

The ALOE estimate is efficent only if S(x) =
∑J
j=1Hj(x)

has a uniform distribution on {1, . . . , J}.
LetP denote polytope:P = ∩Jj=1Hj . Let polytopePθ,J,τ

be a regular pyramid in 3-dimention space where θ is an an-
gle between base face and side face and J denotes the num-
ber of faces, which is equal to the number of linear condi-
tions Hj . We set Pj = e−τ , so Hj =

{
x
∣∣ wT

j x ≥ τ
}

, τ is
the same for all j,

wj =

{
(0, 0,−1) , if j = 1,
(cosαj sin θ, sinαj sin θ, cos θ) , if j ≥ 2,

where αj = 2π(j−1)
J−1 . If j = 1 then we have the base face of

the pyramid, if j ≥ 2 then we have the side face.
In the case the angle θ is sufficiently small if a point xi

is sampled from qALOEj where j ≥ 2, then S(x) is equal
to (J − 1) with probability close to 1 (if J = 1000, θ =
0.01, τ = 4 then from 10000 samples S(x) = J − 1 in 95%
cases).

We propose to adjust αj adaptively, so we don’t ignore
the geometry of polytope P .

Our aim is to minimize variance from (9) over α coming
from q = qα. Optimizing the integral

∫ I(x∈H)p2(x)
q(x) dx is

equal to the optimization of the variance (9). It is hard to
optimize integral so we will optimize its unbiased estimate:
f(α) = 1

n

∑n
i=1

I(xi∈H)p2(xi)
qα(xi)qα′ (xi)

, xi ∼ qα′ , where α′ is a
fixed vector.

Let denote rα(x) = qα(x)
p(x) =

∑J
j=1 αjHj(x)P−1j .

We have the following optimization task:

f(α) =
1

n

n∑
i=1

H(xi)

rα(xi)rα′(xi)
→ min

α
,

J∑
j=1

αj = 1, αj ≥ ε. (14)

Here conditions αj ≥ ε are introduced otherwise the con-
dition (10) can be violated.

One can show that f(α) is a convex function on the poly-

hedral set S = {α
∣∣ J∑
j=1

αj = 1, αj ≥ ε}. We propose to

apply Frank-Wolfe (FW) method to solve (14) as it is effi-
cient when the set S is a polytope.

Theorem
We define V (α) to be the per-sample variance of the IS es-
timate of µ with sampling distribution q = qα.

V (α) = Var
(
I(x1 ∈ H)p(x1)

qα(x1)

)
= (15)

=

∫
I(x ∈ H)p2(x)

qα(x)
dx− µ2, (16)

where x1 ∼ qα. We write V ∗ to denote the optimal over α
value of V (α).
Theorem 1

Var
(
µ̂q

α(k)

)
≤ 1

n

(
V ∗ +

4L

k + 2

)
,

where is L is a Lipschitz constant for∇f(α) from (14).
Proof.

1. Firstly, we would like to show the convexity of f(α).
Let’s write the Hessian:

∂2f(α)

∂αk∂αl
=

1

n

n∑
i=1

2Hk(xi)Hl(xi)P
−1
k P−1l

r3α(xi)rα′(xi)
.

Our Hessian can be represented as

∇2f(α) =
1

n

n∑
i=1

zi(α)zi(α)T,

where

zi(α) =

√
2√

r3α(xi)rα′(xi)
hi,

where hi ∈ RJ and j-th component of vector hi is h(j)i =

Hj(xi)P
−1
j .

Hence our Hessian is the sum of positive-definite matri-
ces, which implies that the Hessian itself is positive semi-
definite, consequently f(α) is convex.

2. Now we are going to find Lipschitz constant of ∇f(α)
by showing that

∇2f(α) � LIn.
For this purpose let’s find λmax

(
zi(α)zi(α)T

)
for some

arbitrary i ∈ 1, n. Actually, λmax
(
zi(α)zi(α)T

)
=

zi(α)T zi(α) and

zi(α)T zi(α) =
2‖hi‖22

r3α(xi)rα′(xi)
≤

≤
2
(∑J

j=1 P
−2
j

)
r3α(xi)rα′(xi)

≤

≤ 2P 4
max

ε4

 J∑
j=1

P−2j

 .

The first inequality follows from ‖hi‖22 =∑J
j=1

(
P−1j Hj(xi)

)2 ≤
∑J
j=1 P

−2
j . The second in-

equality is due to rα(xi) ≥ αjP
−1
j for some of those



j where Hj(xi) (at least one such j exists because we
generate xi from the mixture of conditional distributions).
That leads to rα(xi) ≥ αjP

−1
j ≥ εP−1max where Pmax

is the maximum value from Pj , j ∈ 1, J . Similarly,
rα′(xi) ≥ α′jP

−1
j ≥ εP−1max.

Let L be

L =
2P 4

max

ε4

 J∑
j=1

P−2j

 .

Then

∇2f(α) �

(
1

n

n∑
i=1

L

)
In = LIn..

So we have proved that L is a Lipschitz constant for
∇f(α).

3. With the help of the Theorem 1 from (Jaggi 2013) we
have:

f
(
α(k)

)
− f∗ ≤ 2LD2

k + 2
≤ 4L

k + 2
, (17)

where D = diam(S) ≤
√

2, S = {α
∣∣ J∑
j=1

αj = 1, αj ≥

ε}.
4. The last step. We use that f(α) is an unbiased estimate

of the integral
∫ I(x∈H)p2(x)

qα(x)
:

Eqα′ f(α(k)) =

∫
I(x ∈ H)p2(x)

qα(k)(x)
dx. (18)

Similarly,

Eqα′ f(α∗) =

∫
I(x ∈ H)p2(x)

qα∗(x)
dx = V ∗ + µ2. (19)

Var
(
µ̂q

α(k)

)
=

=
1

n

(∫
I(x ∈ H)p2(x)

qα(k)(x)
dx− µ2

)
=

=
1

n

(
Eqα′ f(α(k))− µ2

)
≤

≤ 1

n

(
Eqα′ f(α∗) +

4L

k + 2
− µ2

)
=

=
1

n

(
V ∗ +

4L

k + 2

)
.

Here the first equality is just the definition of variance (9)
where qα(k) is used instead of q. The second equality follows
from (18). The inequality follows from (17) (mathematical
expectation was applied to inequatily). The last eqaulity fol-
lows from (19).

Results
We compare the performance of FW (step size policy is
γk = 2

k+2 ), SGD (γk = 1
k+1 ) and ALOE (no optimization)

methods both on simulated data (pyramid Pθ,J,τ where θ =
0.01, J = 1000, τ = 4) and real data (Pegase9241 case from
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Figure 1: Convergenge based on variance, real data

FW SGD ALOE
simulated data 4.8× 10−9 5.3× 10−8 3.8× 10−2

real data 1.0× 10−6 2.1× 10−6 1.03× 10−2

Table 1: Final variance

MATPOWER (Zimmerman, Murillo-Sanchez, and Thomas
2011), J = 293). The number of samples n from formula
(14) in all experiments is n = 10000. Initial α(0) and α′ for
FW and SGD: α(0) = α′ =

(
1
J , . . . ,

1
J

)
.

The dependence of variance (9) on real time for SGD and
FW on real data is shown at the figure 1. The final variance
of all 3 methods after optimization for fixed time is shown
in the table 1.

We can see from the table 1 that SGD and FW perform
better and give less variance than ALOE. That is because
FW and SGD make optimization over α so they take into
account the geometry of the polytope P . We can see from
the figure 1 that FW performs better than SGD because it
uses special properties of the set S (S – is a polyhedral set).
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