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Introduction

Introduction

Our objective is to recognize handwritten mathematics in pen-based
environment.

x = −b±
√
b2−4ac
2a
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Introduction

Organization

Organization

Background of handwriting, approximation and classification

Rotation-invariant recognition

Shear-invariant recognition

Optimization of recognition of isolated characters

Optimization of recognition of distorted groups of characters
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Introduction

Digital handwriting

Digital handwriting

Represented as a sequence of points

(x0, y0), (x1, y1), (x2, y2), ...

Each point contains one value of certain channel
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Introduction

Digital handwriting

Decomposition of Channels

Consider X and Y coordinates separately, as functions of arclength.
Then

(x0, y0), (x1, y1), (x2, y2), ...

becomes

(l0, x0), (l1, x1), (l2, x2), ... and (l0, y0), (l1, y1), (l2, y2), ...

And
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Introduction

Functional Approximation

Functional Approximation

An inner product 〈f , g〉 gives the orthogonal basis
{φ0(λ), ..., φd (λ)} on a subspace of polynomials
by GS orthogonalization.

We use a Legendre-Sobolev inner product so we can measure
distance in the first jet space

〈f , g〉 =

∫ 1

−1
f (λ)g(λ)dλ + µ

∫ 1

−1
f ′(λ)g ′(λ)dλ

Can approximate

f (λ) ≈

d
∑

i=0

αiφi (λ)
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Introduction

Functional Approximation

Pre-classification

Coefficients are computed as

ci =
〈F ,Pi 〉

〈Pi ,Pi 〉
i = 1..d

where 〈·, ·〉 is the L-S inner product.

Having the coefficients vector

x0, x1, ..., xd , y0, y1, ..., yd

the sample can be normalized with respect to position and size by
omitting the first point (x0, y0) and normalizing the vector
(x1, ..., xd , y1, ..., yd ).



Towards Online Recognition of Handwritten Mathematics

Introduction

Classification

Classification

Classification is based on the distance to convex hulls of nearest
neighbours
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Rotation-Invariant Recognition

Rotation

Rotation

Commonly occurs in practice.

Decreases recognition rate of most of algorithms as a function of the
rotation angle.
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Rotation-Invariant Recognition

Challenge

Challenge

Question

Is it possible to make an algorithm independent of rotation?

Answer

Yes. Describe the curve in terms of rotation invariant functions:

Integral invariants (II)

Geometric moments (GM)
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Rotation-Invariant Recognition

Integral Invariants

Geometric Representation of II

Invariant I0(λ) is the radius to a point on a curve.

Invariant I1(λ) is the area between the curve and a secant.
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Rotation-Invariant Recognition

Integral Invariants

Functional Representation of II

I0 and I1 are invariant under rotation and may be given in terms
of coordinate functions X (λ) and Y (λ):

I0(λ) =
√

X 2(λ) + Y 2(λ) = R(λ),

I1(λ) =

∫ λ

0
X (τ)dY (τ)−

1

2
X (λ)Y (λ)

where X (λ), Y (λ) are parameterized by Euclidean arc length.

We calculate coefficients for I0(λ) and I1(λ) and obtain a
2d -dimensional vector for each sample

(I0,1, ..., I0,d , I1,1, ..., I1,d ).
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Rotation-Invariant Recognition

Geometric Moments

Geometric Moments

Of special interest for the purpose of online curve classification
under pressure of computational constraints, since they are easy to
calculate, while invariant under scaling, translation and rotation.

A (p + q)-th order moment of f can be expressed as

mpq =
∑

x

∑

y

xpyqf (x , y )

Moment invariants have form

M0(λ) = m00(λ),

M1(λ) = m20(λ) +m02(λ),

M2(λ) = (m20(λ)−m02(λ))
2 + 4m2

11(λ).
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Rotation-Invariant Recognition

Classification

Classification

The following algorithms are introduced:

Classification with integral invariants (CII)

Classification with coordinate functions and integral invariants
(CCFII)

Classification with coordinate functions and moment invariants
(CCFMI)
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Rotation-Invariant Recognition

Experimental Setting

Experimental Setting

Our dataset comprised 50,703 handwritten mathematical symbols
from 242 classes.

Testing is implemented in 10-fold cross-validation (the dataset
was randomly divided into 10 parts, preserving proportions of class
sizes).

Normalized Legendre-Sobolev coefficient vectors of coordinate
functions of randomly rotated symbols, as well as coefficients of
integral invariants, were pre-computed for all symbols.
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Rotation-Invariant Recognition

Comparison of results

Comparison of results

Table: Error rates of CII, CCFII and CCFMI

α, rad. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1

CII 12 12 12 12 12 12 12 12 12 12
CCFII 3.7 3.9 4.5 5.3 5.9 6.4 6.6 7.2 8.2 8.2
CCFMI 5.8 5.9 6.5 7.1 7.7 8.1 8.7 9.2 10 10
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Rotation-Invariant Recognition

Analysis of Results

Analysis of Results

CCFII performs noticeably better, while requiring less
computation.

As expected, we observed an increase in error rate with the
rotation angle for CCFII and CCFMI. Typical misclassifications
arise when distinct symbols have similar shape and are normally
distinguished by their orientation, for example “1” and “/”, “+”
and “×”, “U” and “⊂”.

This result can still be improved, but in a different setting.
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Shear

Shear

Commonly occurs in practice, possibly even more often than rotation.

Easily recognizable by a human, even for a large degree of transformation
(more than 1 radian).
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Shear

Shear

Parameterization by arc length is not suitable, since the length of a curve
changes under shear.

Size normalization is not trivial.

Shear may easily transform symbols to different characters.

Can be treated with integral invariants similar to rotation.
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Shear

Integral Invariants for Shear

Functional Representation

In addition to I1, introduced earlier, we take I2

I2(λ) = X (λ)

∫ λ

0
X (τ)Y (τ)dY (τ)−

1

2
Y (λ)

∫ λ

0
X 2(τ)dY (τ)

−
1

6
X 2(λ)Y 2(λ)

where X (λ), Y (λ) are coordinate functions.

Both I1 and I2 are invariant under special linear group SL(2,R).

I2 can be described geometrically in terms of volume.
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Shear

Size Normalization: Existing Methods that we test

Size Normalization: Existing Methods that we test

Taking the Euclidean norm of the vector of L-S coefficients of
coordinate functions.

Normalizing by the height of a sample (works for horizontal shear,
but not for rotation).

Aspect-ratio size normalization (may work for rotation, but
becomes inaccurate for horizontal shear).

Figure: Aspect ratio size normalization.
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Shear

Size Normalization: Our Approach

Size Normalization: Our Approach

For the case of shear (and affine) recognition we look at the norm
‖I1‖ of the coefficient vector of I1.

Coefficients of coordinate functions are normalized by
multiplication by 1/

√

‖I1‖.

Computing the norm of I1 allows to extend the invariance of I1
and I2 from the special linear group, SL(2,R), to the general
linear group, GL(2,R).
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Shear

Parameterization of Coordinate Functions

Parameterization of Coordinate Functions
We test the following parameterization approaches

By time.

By Euclidean arc length

F (λ) =

∫ λ

0

√

(X ′(τ))2 + (Y ′(τ))2dτ.

By affine arc length

F̂ (λ) =

∫ λ

0

3
√

|X ′(τ)Y ′′(τ)− X ′′(τ)Y ′(τ)|dτ.
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Shear

Classification

Classification: Selecting the Class

We select N classes in the space of L-S coefficients of the integral
invariants.

We consider each of the selected classes Ci to find the minimal
distance to the subject sample with respect to different levels of
shear in the space of L-S coefficients of the coordinate functions:

min
φ

CHNNk(X (φ),Ci ),

where X (φ) is the sheared image of the test sample curve X and
CHNNk(X ,C ) is the distance from a point X (in the L-S space)
to the convex hull of k nearest neighbors in class C .
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Shear

Classification

Classification
Classification results for different types of parameterization of coordinate functions: by time, by Euclidean arc length (AL)
and by affine arc length (AAL) for discussed size normalization approaches.

(a) Size normalization by height
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AAL 82.2 82.2 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82
AL 96.4 96.4 96.1 95.6 95 94.1 93 91.9 90.2 88

Time 94.8 94.9 94.9 94.7 94.5 94.4 94.4 94.4 94.4 94.3

(b) Aspect ratio size normalization
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AAL 81.9 81.8 81.6 81.4 81.2 81 80.8 80.2 79.4 77.4
AL 96.3 96.4 96.1 95.5 94.7 93.7 92.3 90.1 85.7 77.5

Time 94.7 94.7 94.6 94.3 94.1 93.9 93.7 93.2 91.9 89.

(c) Size normalization by I1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 83 83.1 83 82.9 82.9 82.8 82.8 82.8 82.8 82.7
AL 96.3 96.3 96.1 95.7 95.1 94.4 93.3 91.9 90.2 87.9

Time 94.6 94.7 94.6 94.5 94.5 94.5 94.5 94.5 94.5 94.4
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Shear

Mixed Parameterization

Mixed Parameterization
Parameterization by time gives low recognition rate, while remains
affine-invariant. It is opposite for parameterization by arc length. We,
therefore, propose to unite these two parameterization approaches in
the form of mixed parameterization as follows

Divide the curve in N equal time intervals, and parameterize each
interval by arc length.

Smooth the transition from time to arc length with a mixed
metric of the form kdt2 + dx2 + dy2 inside the subintervals, where
k is a parameter.

The optimal values of N and k are found by cross-validation.
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Shear

Recognition rate for different N and k

Recognition rate for different N and k

Figure: Error (%) for the mixed parameterization for different values of skew.
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Improving Recognition Rate

Further optimization

Further optimization

Optimization of isolated characters recognition by adjusting the

“jet scale” in the LS inner product for coordinate functions and integral
invariants

degree of approximation of coordinate functions and integral invariants.

An in-context rotation-invariant algorithm that yields substantially better
results than isolated recognition and can be extended to other
transformations.
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Isolated Characters Recognition

Optimization of the “jet scale”

Coordinate Functions

The optimal µ for approximation of coordinate functions was found to
minimize classification error.

The original characters in the dataset were considered without any
distortions.

The characters were approximated with a corresponding value of µ in the
range from 0 to 0.2.
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Isolated Characters Recognition

Optimization of the “jet scale”

Integral Invariants

The optimal µ for approximation of integral invariants was found to
minimize the average relative error in coefficients of the original and
rotated samples

∑

ij

∣

∣

∣
cij − c ′ij

∣

∣

∣

∑

ij |cij |

where cij is the j-th coefficient of the i -th original sample, and c ′ij is the
corresponding coefficient of the sample, rotated on an angle.

The whole collection of original samples was rotated by an angle between
0 and 2π with the step of π/9.

The integral invariants were approximated with LS series for different
values of µ ∈ (0, 0.2] with the step of 0.002.
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Isolated Characters Recognition

Optimization of the “jet scale”

Complexity of Handwritten Characters

We considered the possibility that the optimal value of µ might depend
on the nature of the characters to be recognized.

We took the notion of a sample’s complexity as

η =

d
∑

i=1

(X
1/i
i + Y

1/i
i ), |Xi | ≤ 1 and |Yi | ≤ 1

where Xi and Yi are normalized coefficients of approximation of the
sample with orthogonal polynomials

The sample complexity function is derived from the fact that coefficients
of higher degree are typically greater for “complex” characters –
characters that contain large number of loops and/or amount of
curvature.
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Isolated Characters Recognition

Optimization of the “jet scale”

Degree of Approximation

Small degree leads to high approximation error.

High degree may cause extreme oscillation at the edges of an interval.

The optimal degree of the truncated series was determined to minimize
the

recognition error for coordinate functions
approximation error for integral invariants.

The images are from http://www.cs.laurentian.ca/badams/numeric/runge/runge.html

http://www.cs.laurentian.ca/badams/numeric/runge/runge.html
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In-Context Characters Recognition

In-context transformation-invariant recognition

Recognition of distorted math symbols without context is sometimes
impossible

“<” vs ∠, “|” vs “/”, “∪” vs “⊂

We use context to improve distortion-independent classification, taking
advantage of the fact that samples written by a person typically exhibit
similar degree of transformation.

We consider the case of rotation (shear and other transformations may be
handled similarly).
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In-Context Characters Recognition

The algorithm
Input: A set of n rotated test samples and an angle β of the maximum
possible rotation angle of the samples.
Output: A set of n recognized samples and the angle γ of rotation of the
samples.
for i = 1 to n

Approximate coordinate functions with LS polynomials.
Normalize the sample with respect to position and size.
Approximate I0 and I1 with LS polynomials.
With LS coefs of I0 and I1, find T closest CHNNk . These T classes serve
as candidates for the i -th sample in the sequence.

end for.
// continued on next slide
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In-Context Characters Recognition

The algorithm, cont.
for α = −β to β by step of 1 degree

Compute

εα =
n
∏

i=1

D1
iα

∑p
j=1D

j
iα

where D
j
iα is the Euclidean distance to the j-th closest CHNNk among the

candidate classes T for the sample i in the sequence, rotated by angle α,
and p is a parameter to be evaluated. Distance D is computed in the space
of coefficients of LS polynomials of coordinate functions.

end for

Find εγ = min−β≤α≤β εα
return n and γ.
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Experimental Results

Isolated Symbol Classification

Coordinate functions

The figure shows the error of recognition using coefficients of X and Y .

Figure: Recognition error of non-transformed characters for different values of µ

≈ 2.4% error is reached for µ = 0.04.
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Experimental Results

Isolated Symbol Classification

Optimal µ for characters with different complexities

We found that the optimal µ is not strongly correlated with the
complexity of characters.

Results of Spearman and Kendall tau-a correlation tests are respectively:
ρµ,η(13) = 0.52, p = 0.047 and τµ,η(13) = 0.38, p = 0.053..
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Experimental Results

Integral Invariants

I0

Figure: Average relative error in coefficients of I0 depending on µ
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Experimental Results

Integral Invariants

I1

(a)

Figure: Average relative error in coefficients of I1 depending on µ
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Experimental Results

Integral Invariants

I2

(a)

Figure: Average relative error in coefficients of I2 depending on µ
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Experimental Results

Degree of Approximation

Table: Recognition error (Rec.Err.), maximum approximation error (Max.Err.)
and average relative error (Avg.Err.) for different degrees of approximation d ,
µ = 0.04

d 9 10 11 12 13 14 15
Rec.Err. % 2.57 2.49 2.46 2.43 2.44 2.45 2.46
Max.Err. 707 539 539 484 475 494 500
Avg.Err.(×10−3) 1.9 1.6 1.4 1.2 1.1 1.0 1.2

We find degree 12 to be the optimum for recognition of symbols in our
collection.
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Experimental Results

In-Context Classification

Parameters
There are 3 parameters that in-context recognition rate can depend on:

Number p of closest classes in computation of error likelihood.

Rotation angle.

Size n of the set of characters.
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Experimental Results

In-Context Classification

Evaluatoin of p

We fixed the parameter n = 3.

Performed classification for values p of 2, 3 and 4.

We found that p has almost no effect on recognition error.

We took p = 3 and continued the experiments.
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Experimental Results

In-Context Classification

Evaluation of n and the rotation angle

Figure: Recognition error (%) for different size of context n and different angles
of rotation (in radians)
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Conclusion

Conclusion

Conclusion
We have developed

Orientation and shear-independent algorithm of recognition of
handwritten characters.

Size normalization of samples, when shear (and more generally,
affine) transformations take place.

Mixed parameterization of coordinate functions that allows to
obtain high recognition rate.

Shear-invariant algorithm that in conjunction with
rotation-invariance (introduced in the previous work) allows to
model recognition of samples, subjected to the most common
affine transformations.

Optimization of recognition of characters by themselves and in
groups.
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