
Hidden markov model - Victor Kitov

Hidden markov model

Victor Kitov

1/15



Hidden markov model - Victor Kitov

Markov model

z1, z2, ...zN - some random sequence

p(z1, z2, ...zN) = p(z1)p(z2|z1)p(z3|z1, z2)...p(zN |z1...zN−1)

Markov model of order k :

p(zn|z1, ...zn−1) = p(zn|zn−k ...zn−1)

it is simpler

but easier to estimate

Markov model of order k corresponds to Markov model of

order 1, if we consider sequences of length k :

zn−1 → z̃n−1 = (zn−1, ...zn−k)

So its enough to consider only Markov sequences of order 1

(with larger set of states).
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Hidden Markov model

At t = 1 HMM is in some random state with probability

p(y1 = i) = πi

For each time t = 1, 2, ... HMM:

is in some hidden state yt ∈ {1, 2, ...S}
generates some observable output xt with probability

p(xt |yt) = byt (xt)

From t to t + 1 HMM changes state with probability transition

matrix A = {aij}Si ,j=1
:

aij = p(yt+1 = j |yt = i)
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De�nitions

We will consider xt ∈ {1, 2, ...R}, then by (x) corresponds to

matrix B = {bir}r=1,...R
i=1,...S

Parameters of HMM θ = {π,A,B}.
Suppose our HMM process lasted for T periods.

De�ne:

X := x1x2...xT , Y := y1y2...yT
X[i,j] := xixi+1...xj , Y[i,j] := yiyi+1...yj
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Probability calculation

Then

p(X |Y ) =
T∏
t=1

byt (xt)

p(Y ) = πy1

T−1∏
t=1

aytyt+1

Together these two formulas give

p(Y ,X ) = p(Y )p(X |Y ) = πy1

T−1∏
t=1

aytyt+1

T∏
t=1

byt (xt)

Problems occur when we need to calculate P(X ) =
∑

Y p(X ,Y ),
because this contains exponentially rising with T number of terms.
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Forward algorithm

De�ne αt(i ,X ) := p(yt = i , x1...xt)
We can calculate αt recursively:

α1(j ,X ) = p(y1 = j , x1) = p(y1 = j)p(x1|y1 = j) = πjbj(x1)

αt+1(j ,X ) = p(yt+1 = j , x1...xt+1) =
S∑

i=1

p(yt = i , yt+1 = j , x1...xtxt+1)

=
S∑

i=1

p(yt = i , x1...xt)p(yt+1 = j |yt = i)p(xt+1|yt+1 = j)

=
S∑

i=1

αt(i ,X )aijbj(xt+1)

Now its trivial to calculate P(X ) =
∑S

i=1
αT (i ,X ).

Computational complexity of full forward pass X (TS2).

for t = 1, 2, ...T summation over S terms for each of S states.

It can be reduced to TM where M is the number of non-zero entries in

A if we set apriori some transitions as impossible.
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Backward algorithm

De�ne

βt(i ,X ) := p(Xt+1Xt+2...XT |yt = i)

As probability of empty event:

βT (i ,X ) = p(∅|yT = i) = 1 i = 1, 2, ...S

We can calculate βt recursively:

βt(i ,X ) = p(xt+1...xT |yt = i)

=
S∑

j=1

p(yt+1 = j |yt = i)p(xt+1|yt+1 = j)×

× p(xt+2...xT |yt+1 = j)

=
S∑

j=1

aijbj(xt+1)βt+1(j ,X )
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Properties of forward-backward calculation

S∑
i=1

αt(i ,X )β(i ,X ) = p(X ) ∀t = 1, 2, ...T

p(yt = i |X ) =
αt(i ,X )βt(i ,X )

p(X )

p(yt = i , yt+1 = j |X ) =
αt(i ,X )aijbj(xt+1)βt+1(j ,X )

p(X )

This calculation leads to numerical under�ow as αt(j ,X )→ 0
and βt(j ,X )→ 0 as T →∞.

We can introduce new α′t(j ,X ) and β′t(j ,X ) that don't tend to

zero.
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Feasible calculation

De�ne

α′t(i ,X ) := p(yt = i |X[1,t])

η(i ,X ) := p(yt = i , xt |X[1,t−1])

η(X ) := p(xt |X[1,t−1])

Then

η1(i ,X ) = p(y1 = i , x1) = πibi (x1)

η1(X ) = p(x1) =
S∑

s=1

η1(s,X )

α′1(i ,X ) =
η1(i ,X )

η1(X )
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Feasible calculation

For t = 1, 2, ...T − 1 :

ηt+1(i ,X ) =
S∑

j=1

α′(i ,X )aijbj(xt+1)

ηt+1(X ) =
S∑

i=1

η(i ,X )

α′t+1(i ,X ) =
ηt+1(i ,X )

ηt+1(X )
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Feasible calculation

De�ne

β′(i ,X ) :=
p(X[t+1,T ]|yt = i)

p(X[t+1,T ]|X[1,T ])

These values can be calculated recursively

β′T (i ,X ) = 1

β′t(i ,X ) =

∑S
j=1

aijbj(xt+1)β
′
t+1

(j ,X )

ηt+1(X )
, t = T − 1, ...1.
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Feasible calculation

p(yt = i |X ) = α′t(i ,X )β′t(i ,X )

p(yt = i , yt+1 = j |X ) =
α′t(i ,X )aijbj(xt+1)β

′
t+1

(j ,X )

ηt+1(X )
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Viterbi algorithm

Problem: for given X[1,T ] �nd maximum probable Y[1,T ].

full search considers ST variants, impractical!

De�ne

y∗1 , ...y
∗
T := arg max

y1,...yT

p(y1, ...yT , x1, ...xT )

εt(i ,X ) := max
y1,...yt−1,

p (y1...yt−1yt = i , x1...xt)

vt(i ,X ) := arg max
j

p(y1...yt−2, yt−1 = j , yt = i , x1...xt)

Viterbi algorithm:
based on dynamic programming approach

forward pass: calculation of εt(i ,X ) for all t = 1, 2, ...T and

i = 1, 2, ...S .
backward pass: calculation of y∗T and recursively y∗t for

t = T − 1,T − 2, ...1.
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Viterbi algorithm: forward pass

De�nitions:

εt(i ,X ) := max
y1,...yt−1,

p (y1...yt−1yt = i , x1...xt)

vt(i ,X ) := arg max
j

p(y1...yt−2, yt−1 = j , yt = i , x1...xt)

Init:

ε1(i ,X ) = p(x1, y1 = i) = πibi (x1)

For t = 1, ...T − 1:

εt+1(i ,X ) = max
y1...yt−1,j

p(x1...xtxt+1, y1...yt−1yt = j , yt+1 = i)

= max
j

max
y1...yt−1

p(y1...yt−1yt = j , x1...xt)p(xt+1yt+1 = i |y1...yt−1yt = j , x1...xt)

= max
j

max
y1...yt−1

p(y1...yt−1yt = j , x1...xt)p(xt+1yt+1 = i |yt = j)

= max
j

max
y1...yt−1

p(y1...yt−1yt = j , x1...xt)p(yt+1 = i |yt = j)p(xt+1|yt+1)

= max
j
εt(j ,X )ajibi (xt)

vt+1(i ,X ) = argmax
j
εt(j ,X )aji
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Viterbi algorithm: backward pass

De�nitions

y∗1 , ...y
∗
T := arg max

y1,...yT

p(y1, ...yT , x1, ...xT )

εt(i ,X ) := max
y1,...yt−1,

p (y1...yt−1yt = i , x1...xt)

vt(i ,X ) := arg max
j

p(y1...yt−2, yt−1 = j , yt = i , x1...xt)

Init:

p∗(X ) = max
j
ε(j ,X )

y∗T (X ) = argmax
j
ε(j ,X )

For t = T − 1,T − 2, ...1 :

y∗t (X ) = vt+1(y
∗
t+1(X ))
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