Hidden markov model

Victor Kitov

Markov model

- $z_{1}, z_{2}, \ldots z_{N}$ - some random sequence

$$
p\left(z_{1}, z_{2}, \ldots z_{N}\right)=p\left(z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(z_{3} \mid z_{1}, z_{2}\right) \ldots p\left(z_{N} \mid z_{1} \ldots z_{N-1}\right)
$$

- Markov model of order k :

$$
p\left(z_{n} \mid z_{1}, \ldots z_{n-1}\right)=p\left(z_{n} \mid z_{n-k} \ldots z_{n-1}\right)
$$

- it is simpler
- but easier to estimate
- Markov model of order k corresponds to Markov model of order 1 , if we consider sequences of length k :

$$
z_{n-1} \rightarrow \tilde{z}_{n-1}=\left(z_{n-1}, \ldots z_{n-k}\right)
$$

So its enough to consider only Markov sequences of order 1 (with larger set of states).

Hidden Markov model

At $t=1 \mathrm{HMM}$ is in some random state with probability

$$
p\left(y_{1}=i\right)=\pi_{i}
$$

For each time $t=1,2, \ldots \mathrm{HMM}$:

- is in some hidden state $y_{t} \in\{1,2, \ldots S\}$
- generates some observable output x_{t} with probability $p\left(x_{t} \mid y_{t}\right)=b_{y_{t}}\left(x_{t}\right)$
- From t to $t+1 \mathrm{HMM}$ changes state with probability transition matrix $A=\left\{a_{i j}\right\}_{i, j=1}^{S}$:

$$
a_{i j}=p\left(y_{t+1}=j \mid y_{t}=i\right)
$$

Definitions

- We will consider $x_{t} \in\{1,2, \ldots R\}$, then $b_{y}(x)$ corresponds to matrix $B=\left\{b_{i r}\right\}_{i=1, \ldots . S}^{r=1, \ldots R}$
- Parameters of HMM $\theta=\{\pi, A, B\}$.
- Suppose our HMM process lasted for T periods.
- Define:
- $X:=x_{1} x_{2} \ldots x_{T}, Y:=y_{1} y_{2} \ldots y_{T}$
- $X_{[i, j]}:=x_{i} x_{i+1} \cdots x_{j}, Y_{[i, j]}:=y_{i} y_{i+1} \cdots y_{j}$

Probability calculation

Then

$$
\begin{aligned}
& p(X \mid Y)=\prod_{t=1}^{T} b_{y_{t}}\left(x_{t}\right) \\
& p(Y)=\pi_{y_{1}} \prod_{t=1}^{T-1} a_{y_{t} y_{t+1}}
\end{aligned}
$$

Together these two formulas give

$$
p(Y, X)=p(Y) p(X \mid Y)=\pi_{y_{1}} \prod_{t=1}^{T-1} a_{y_{t} y_{t+1}} \prod_{t=1}^{T} b_{y_{t}}\left(x_{t}\right)
$$

Problems occur when we need to calculate $P(X)=\sum_{Y} p(X, Y)$, because this contains exponentially rising with T number of terms.

Forward algorithm

- Define $\alpha_{t}(i, X):=p\left(y_{t}=i, x_{1} \ldots x_{t}\right)$
- We can calculate α_{t} recursively:

$$
\begin{aligned}
\alpha_{1}(j, X) & =p\left(y_{1}=j, x_{1}\right)=p\left(y_{1}=j\right) p\left(x_{1} \mid y_{1}=j\right)=\pi_{j} b_{j}\left(x_{1}\right) \\
\alpha_{t+1}(j, X) & =p\left(y_{t+1}=j, x_{1} \ldots x_{t+1}\right)=\sum_{i=1}^{S} p\left(y_{t}=i, y_{t+1}=j, x_{1} \ldots x_{t} x_{t+1}\right) \\
& =\sum_{i=1}^{S} p\left(y_{t}=i, x_{1} \ldots x_{t}\right) p\left(y_{t+1}=j \mid y_{t}=i\right) p\left(x_{t+1} \mid y_{t+1}=j\right) \\
& =\sum_{i=1}^{S} \alpha_{t}(i, X) a_{i j} b_{j}\left(x_{t+1}\right)
\end{aligned}
$$

Forward algorithm

- Define $\alpha_{t}(i, X):=p\left(y_{t}=i, x_{1} \ldots x_{t}\right)$
- We can calculate α_{t} recursively:

$$
\begin{aligned}
\alpha_{1}(j, X) & =p\left(y_{1}=j, x_{1}\right)=p\left(y_{1}=j\right) p\left(x_{1} \mid y_{1}=j\right)=\pi_{j} b_{j}\left(x_{1}\right) \\
\alpha_{t+1}(j, X) & =p\left(y_{t+1}=j, x_{1} \ldots x_{t+1}\right)=\sum_{i=1}^{S} p\left(y_{t}=i, y_{t+1}=j, x_{1} \ldots x_{t} x_{t+1}\right) \\
& =\sum_{i=1}^{S} p\left(y_{t}=i, x_{1} \ldots x_{t}\right) p\left(y_{t+1}=j \mid y_{t}=i\right) p\left(x_{t+1} \mid y_{t+1}=j\right) \\
& =\sum_{i=1}^{S} \alpha_{t}(i, X) a_{i j} b_{j}\left(x_{t+1}\right)
\end{aligned}
$$

- Now its trivial to calculate $P(X)=\sum_{i=1}^{S} \alpha_{T}(i, X)$.
- Computational complexity of full forward pass $X\left(T S^{2}\right)$.
- for $t=1,2, \ldots T$ summation over S terms for each of S states.
- It can be reduced to $T M$ where M is the number of non-zero entries in A if we set apriori some transitions as impossible.

Backward algorithm

Define

$$
\beta_{t}(i, X):=p\left(X_{t+1} X_{t+2} \ldots X_{T} \mid y_{t}=i\right)
$$

As probability of empty event:

$$
\beta_{T}(i, X)=p\left(\emptyset \mid y_{T}=i\right)=1 \quad i=1,2, \ldots S
$$

We can calculate β_{t} recursively:

$$
\begin{aligned}
\beta_{t}(i, X)= & p\left(x_{t+1} \cdots x_{T} \mid y_{t}=i\right) \\
= & \sum_{j=1}^{S} p\left(y_{t+1}=j \mid y_{t}=i\right) p\left(x_{t+1} \mid y_{t+1}=j\right) \times \\
& \quad \times p\left(x_{t+2} \ldots x_{T} \mid y_{t+1}=j\right) \\
= & \sum_{j=1}^{S} a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}(j, X)
\end{aligned}
$$

Properties of forward-backward calculation

$$
\begin{aligned}
\sum_{i=1}^{S} \alpha_{t}(i, X) \beta(i, X) & =p(X) \quad \forall t=1,2, \ldots T \\
p\left(y_{t}=i \mid X\right) & =\frac{\alpha_{t}(i, X) \beta_{t}(i, X)}{p(X)} \\
p\left(y_{t}=i, y_{t+1}=j \mid X\right) & =\frac{\alpha_{t}(i, X) a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}(j, X)}{p(X)}
\end{aligned}
$$

- This calculation leads to numerical underflow as $\alpha_{t}(j, X) \rightarrow 0$ and $\beta_{t}(j, X) \rightarrow 0$ as $T \rightarrow \infty$.
- We can introduce new $\alpha_{t}^{\prime}(j, X)$ and $\beta_{t}^{\prime}(j, X)$ that don't tend to zero.

Feasible calculation

Define

$$
\begin{aligned}
\alpha_{t}^{\prime}(i, X) & :=p\left(y_{t}=i \mid X_{[1, t]}\right) \\
\eta(i, X) & :=p\left(y_{t}=i, x_{t} \mid X_{[1, t-1]}\right) \\
\eta(X) & :=p\left(x_{t} \mid X_{[1, t-1]}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\eta_{1}(i, X) & =p\left(y_{1}=i, x_{1}\right)=\pi_{i} b_{i}\left(x_{1}\right) \\
\eta_{1}(X) & =p\left(x_{1}\right)=\sum_{s=1}^{s} \eta_{1}(s, X) \\
\alpha_{1}^{\prime}(i, X) & =\frac{\eta_{1}(i, X)}{\eta_{1}(X)}
\end{aligned}
$$

Feasible calculation

For $t=1,2, \ldots T-1$:

$$
\begin{aligned}
\eta_{t+1}(i, X) & =\sum_{j=1}^{S} \alpha^{\prime}(i, X) a_{i j} b_{j}\left(x_{t+1}\right) \\
\eta_{t+1}(X) & =\sum_{i=1}^{S} \eta(i, X) \\
\alpha_{t+1}^{\prime}(i, X) & =\frac{\eta_{t+1}(i, X)}{\eta_{t+1}(X)}
\end{aligned}
$$

Feasible calculation

Define

$$
\beta^{\prime}(i, X):=\frac{p\left(X_{[t+1, T]} \mid y_{t}=i\right)}{p\left(X_{[t+1, T]} \mid X_{[1, T]}\right)}
$$

These values can be calculated recursively

$$
\begin{aligned}
\beta_{T}^{\prime}(i, X) & =1 \\
\beta_{t}^{\prime}(i, X) & =\frac{\sum_{j=1}^{S} a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}^{\prime}(j, X)}{\eta_{t+1}(X)}, \quad t=T-1, \ldots 1 .
\end{aligned}
$$

Feasible calculation

$$
\begin{aligned}
p\left(y_{t}=i \mid X\right) & =\alpha_{t}^{\prime}(i, X) \beta_{t}^{\prime}(i, X) \\
p\left(y_{t}=i, y_{t+1}=j \mid X\right) & =\frac{\alpha_{t}^{\prime}(i, X) a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}^{\prime}(j, X)}{\eta_{t+1}(X)}
\end{aligned}
$$

Viterbi algorithm

- Problem: for given $X_{[1, T]}$ find maximum probable $Y_{[1, T]}$. - full search considers S^{T} variants, impractical!
- Define

$$
\begin{aligned}
y_{1}^{*}, \ldots y_{T}^{*} & :=\underset{y_{1}, \ldots y_{T}}{\arg \max } p\left(y_{1}, \ldots y_{T}, x_{1}, \ldots x_{T}\right) \\
\varepsilon_{t}(i, X) & :=\max _{y_{1}, \ldots y_{t-1},} p\left(y_{1} \ldots y_{t-1} y_{t}=i, x_{1} \ldots x_{t}\right) \\
v_{t}(i, X) & :=\underset{j}{\arg \max _{j}} p\left(y_{1} \ldots y_{t-2}, y_{t-1}=j, y_{t}=i, x_{1} \ldots x_{t}\right)
\end{aligned}
$$

- Viterbi algorithm:
- based on dynamic programming approach
- forward pass: calculation of $\varepsilon_{t}(i, X)$ for all $t=1,2, \ldots T$ and $i=1,2, \ldots S$.
- backward pass: calculation of y_{T}^{*} and recursively y_{t}^{*} for $t=T-1, T-2, \ldots 1$.

Viterbi algorithm: forward pass

Definitions:

$$
\begin{aligned}
& \varepsilon_{t}(i, X):=\max _{y_{1}, \ldots y_{t-1},} p\left(y_{1} \ldots y_{t-1} y_{t}=i, x_{1} \ldots x_{t}\right) \\
& v_{t}(i, X):=\underset{j}{\arg \max } p\left(y_{1} \ldots y_{t-2}, y_{t-1}=j, y_{t}=i, x_{1} \ldots x_{t}\right)
\end{aligned}
$$

Init:

$$
\varepsilon_{1}(i, X)=p\left(x_{1}, y_{1}=i\right)=\pi_{i} b_{i}\left(x_{1}\right)
$$

For $t=1, \ldots T-1$:

$$
\begin{aligned}
\varepsilon_{t+1}(i, X) & =\max _{y_{1} \ldots y_{t-1}, j} p\left(x_{1} \ldots x_{t} x_{t+1}, y_{1} \ldots y_{t-1} y_{t}=j, y_{t+1}=i\right) \\
& =\max _{j} \max _{y_{1} \ldots y_{t-1}} p\left(y_{1} \ldots y_{t-1} y_{t}=j, x_{1} \ldots x_{t}\right) p\left(x_{t+1} y_{t+1}=i \mid y_{1} \ldots y_{t-1} y_{t}=j, x_{1} \ldots x_{t}\right) \\
& =\max _{j} \max _{y_{1} \ldots y_{t-1}} p\left(y_{1} \ldots y_{t-1} y_{t}=j, x_{1} \ldots x_{t}\right) p\left(x_{t+1} y_{t+1}=i \mid y_{t}=j\right) \\
& =\max _{j} \max _{y_{1} \ldots y_{t-1}} p\left(y_{1} \ldots y_{t-1} y_{t}=j, x_{1} \ldots x_{t}\right) p\left(y_{t+1}=i \mid y_{t}=j\right) p\left(x_{t+1} \mid y_{t+1}\right) \\
& =\max _{j} \varepsilon_{t}(j, X) a_{j i} b_{i}\left(x_{t}\right) \\
v_{t+1}(i, X) & =\arg \max _{j} \varepsilon_{t}(j, X) a_{j i}
\end{aligned}
$$

Viterbi algorithm: backward pass

Definitions

$$
\begin{aligned}
y_{1}^{*}, \ldots y_{T}^{*} & :=\underset{y_{1}, \ldots y_{T}}{\arg \max } p\left(y_{1}, \ldots y_{T}, x_{1}, \ldots x_{T}\right) \\
\varepsilon_{t}(i, X) & :=\max _{y_{1}, \ldots y_{t-1}} p\left(y_{1} \ldots y_{t-1} y_{t}=i, x_{1} \ldots x_{t}\right) \\
v_{t}(i, X) & :=\underset{j}{\arg \max } p\left(y_{1} \ldots y_{t-2}, y_{t-1}=j, y_{t}=i, x_{1} \ldots x_{t}\right)
\end{aligned}
$$

Init:

$$
\begin{aligned}
p^{*}(X) & =\max _{j} \varepsilon(j, X) \\
y_{T}^{*}(X) & =\arg \max _{j} \varepsilon(j, X)
\end{aligned}
$$

For $t=T-1, T-2, \ldots 1$:

$$
y_{t}^{*}(X)=v_{t+1}\left(y_{t+1}^{*}(X)\right)
$$

