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1. INTRODUCTION

Obtaining exact generalization bounds remains an
open problem in statistical learning theory. The first
bounds obtained in the Vapnik–Chervonenkis (VC)
theory were highly overestimated [18, 16] and were
subjected to many improvements later [19, 10, 7, 14].
However, the cases of small samples and complex
function sets, which are of most practical interest, still
remain beyond the scope of the theory because bounds
are trivial in these cases. Overestimated bounds pro�
vide only a qualitative insight into the relation between
overfitting and the complexity of the function set and
do not always admit exact quantitative control of the
learning process. The question of whether or not over�
fitting is related to some finer and not�yet�studied
phenomena remains open.

The aim of the present study is to obtain exact
bounds for the overfitting probability, i.e., for the prob�
ability that, for a given ε ∈ (0, 1), the predictor with the
least error rate on the training sample will have an
error rate greater by ε on an independent test sample.
Note that, to date, the problem of obtaining exact
(rather than asymptotic or upper) bounds has not even
been posed in statistical learning theory and was likely
to be considered hopeless. Usually, one’s goal is to find
“tight bounds.”

Experiments [20, 22] have shown that the overfit�
ting probability depends not only on the complexity of
the set of predictors (the number of different predic�
tors in the set), but also on the diversity of these pre�

dictors. To obtain exact bounds, one should simulta�
neously take into account two fine effects: the splitting
of the set into error levels and the similarity of predic�
tors in the set. Experiments on real classification tasks
[20] have shown that neglect of the splitting may
increase the upper bound on the probability of overfit�
ting by a factor of 102–105, while neglect of the simi�
larity increases it by a factor of 103–104.

The effect of splitting is due to the fact that the num�
ber of predictors with a low error rate that are suitable
for solving a given task is usually much smaller than
the total number of predictors in the set. This is a con�
sequence of the universality of the sets used in prac�
tice, which contain predictors suitable for solving a
wide range of tasks. For each task, only a small “local�
ized” subset of predictors is relevant, where a large part
of the set actually remains idle. Taking into account
idle predictors while defining the complexity measure
of the set substantially weakens the bounds. However,
it is rather difficult to describe this effect quantitatively
because the localization of relevant predictors depends
on the specific task and the specific learning algo�
rithm.

The effect of similarity is due to the fact that, for any
predictor, many similar predictors can exist in the set.
Two predictors that differ in their error only on a single
object manifest themselves as nearly a single predictor
from the viewpoint of overfitting; hence, when evalu�
ating the complexity of the set, one should also con�
sider them as nearly a single predictor. Most of the
classifiers used in practice have a separating surface
that is continuous in the parameters; hence, the set of
these classifiers is connected. In [15], this property was
defined as the connectedness of a graph vertices of
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which are various predictors and the edges of which
connect predictors that differ in error only on a single
object. In this paper, we will show that the existence of
a path between any two predictors is not an essential
property of a set. For estimating the probability of
overfitting of a predictor, it is much more important to
know the average number of other predictors in the set
that differ from the given one in error only on a single
object.

Experiments [20, 22] have shown that the neglect
of one of these effects makes it impossible to obtain an
exact bound. Known attempts to take into account
these effects separately [7, 10, 5, 15] have not radically
improved the accuracy of bounds and have not allowed
one to approach the overfitting probabilities observed
in the experiments. The author is unaware of any
attempts to consider both effects simultaneously.

Experiments with a monotonic chain of predictors
[22]—a model of a set of predictors with a single con�
tinuous parameter—confirm that learning algorithms
that are effective in practice should necessarily possess
both splitting and similarity properties. Otherwise the
probability of overfitting would be close to one even for
a set with a few tens of predictors.

Most of the known complexity bounds, except for
Rademacher complexity bounds [9, 8] and the PAC�
Bayes [13, 12] bounds, are derived from the union
bound, which is the main cause of the overestimation.
In the present paper, we develop a combinatorial
approach that does not use the union bound and is
based on weak probabilistic assumptions [20, 22, 23].
We propose three general methods for obtaining exact
bounds: a method of generating and destroying sets
(Section 3), a recurrent method (Section 4), and a
blockwise method (Section 5). Then, we apply the
above general methods to obtain exact bounds for the
probability of overfitting in six particular cases. Most
of these cases are constructed to demonstrate the pos�
sibility of simultaneous consideration of the effects of
splitting and similarity.

This paper is an extended version of paper [23].

2. THE PROBABILITY OF OVERFITTING

Let there be given a finite set of objects � = {x1, …,
xL}, called a full, or general, sample, and a finite set A
= {a1, …, aD}, whose elements are called predictors.
There exists a binary function I: A × �  {0, 1},
called an error indicator. If I(a, x) = 1, it is said that the
predictor a makes an error on the object x. The L�

dimensional binary vector  =  is called
an error vector. An error matrix of the set A is an L × D

matrix composed of the column vectors , …, . We
assume that all column vectors are pairwise distinct.
Therefore, D = |A | ≤ 2L.

a I a xi,( )( )i 1=
L

a1 aD

The number of errors of a predictor a on a sample
X ⊆ � is defined as

and the error rate, or the empirical risk, of a predictor

a on the sample X is defined as ν(a, X) = .

Fix a natural number l < L. Denote by [�]l the set
of all l�element subsets of the general sample �. The

cardinality of this set is .

A learning algorithm is a mapping that assigns a cer�
tain predictor μX from A to an arbitrary training sample
X ∈ [�]l.

The difference δ(a, X) = ν(a, ) – ν(a, X) is called
the deviation of the error rates of the predictor a on the

samples X and  = �\X.
The deviation of the error rates of the predictor a =

μX is called the overfitting of the algorithm μ on the
sample X.

An algorithm μ is said to be overfitted on a sample X
if δμ(X) ≥ ε for a given ε ∈ (0, 1).

A learning algorithm μ is called an empirical risk
minimization (ERM) algorithm if

(1)

An ERM algorithm μ is said to be optimistic if

and pessimistic if

We assume that a sample  plays the role of a test
sample and cannot be known at the time when a learn�
ing algorithm is applied to a training sample X. There�
fore, optimistic and pessimistic ERMs cannot be
implemented in practice. However, they are of signifi�
cant theoretical interest because they provide sharp
lower and upper bounds for the probability of overfit�
ting.

Under the weak probabilistic axiom [20], we will

assume that all  partitions of the set of objects �
into an observed training sample X of length l and a

hidden test sample  of length k = L – l can be real�
ized with equal probability.

The goal of this paper is to obtain exact bounds for
the probability of overfitting for an ERM algorithm μ:

(2)

n a X,( ) I a x,( ),
x X∈

∑=

1
X

�����n a X,( )

CL
l

X

X

δμ X( ) δ μX X,( ) ν μX X,( ) ν μX X,( ).–= =

μX A X( )∈ Arg n a X,( ).
a A∈
min=

μX n a X,( ),
a A X( )∈
minarg=

μX n a X,( ).
a A X( )∈
maxarg=

X

CL
l

X

Qε P δμ X( ) ε≥[ ]≡ 1

CL
l

����� δμ X( ) ε≥[ ].

X �[ ]
l

∈

∑=
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Here and in what follows, a logical expression in
square brackets means [true] = 1 and [false] = 0.

Consider a particular case when A = {a} is a one�
element set. For a fixed predictor a that makes m =
n(a, �), m ∈ {0, …, L}, errors on the general sample,
the probability to obtain exactly s errors on a subsam�
ple of X is described by the hypergeometric probability
function

where the argument s takes integer values from s0 =
max{0, m– k} to s1 = min{m, l}. For any other integers

m and s, we agree that the binomial coefficients 

and the function (s) are zero.

Lemma 1. Suppose that a predictor a makes m = n(a,
�) errors on the general sample. Then the probability of
a large deviation of the error rates of the predictor a is
described by a hypergeometric distribution function: for
any ε ∈ [0, 1),

(3)

where sm(ε) =  is the maximal number of

errors n(a, X) on the training sample, such that δ(a, X) =

 –  ≥ ε.

Remark 1. When l, k  ∞, the right�hand side of
(3) tends to zero and provides an exact bound for the
convergence of error rates in the two samples.

Further, in the general case when |A | > 1, a hyper�
geometric distribution will also play an important role.

3. GENERATING AND DESTROYING SETS

In this section, we give exact bounds for the proba�
bility of overfitting that are based on the assumption
that, for each predictor a ∈ A, one can write explicit
conditions under which μX = a. We assume that A is a
finite set and all predictors have pairwise distinct error
vectors.

Conjecture 1. Suppose that a set A, a sample �, and
an algorithm μ are such that, for each predictor a ∈ A,
there exists a pair of non�intersecting subsets Xa ⊂ � and

 ⊂ � such that

for any X ∈ [�]l, where  = �/X.
For a predictor a, the objects from Xa are said to be

generating; the objects from , destructive; and the
remaining objects, neutral. In other words, the learn�
ing algorithm returns the predictor if and only if its

P n a X,( ) = s[ ] Cm
s CL m–

l s–
/CL

l hL
l m, s( ),≡=

Cm
s

hL
l m,

Qε P δ a X,( ) ε≥[ ] P n a X,( ) sm ε( )≤[ ]= =

=  hL
l m, s '( )

s ' s0=

sm ε( )

∑ HL
l m, sm ε( )( ),≡

l
L
��� m εk–( )

m s–
k

���������� s
l
�

Xa'

μX = a[ ] Xa X⊆[ ] Xa' X⊆[ ]=

X

Xa'

generating objects belong to the training sample and
its destroying objects are outside the training sample.
For each a ∈ A, introduce the following notation:

La = L – |Xa | –  is the number of neutral
objects,

la = l – |Xa | is the number of neutral training
objects,

ma = n(a, �) – n(a, Xa) – n(a, ) is the number of
errors on neutral objects, and

sa(ε) = (n(a, �) – εk) – n(a, Xa) is the maximum

number of errors on neutral training objects such that
δ(a, X) ≥ ε.

Lemma 2. If Conjecture 1 is valid, then the probabil�
ity to obtain a predictor a as a result of learning is

Proof. According to Conjecture 1,

This is a fraction of partitions of the general sample

� = X   such that the set of objects Xa lies com�

pletely in X and the set of objects  lies completely in

. The number of such partitions is equal to the num�
ber of ways to choose la objects from among La neutral
objects for a training subsample X\Xa, which is obvi�

ously equal to . The total number of partitions is

, and their ratio is exactly Pa.

Theorem 1. If Conjecture 1 is valid, then the proba�
bility of overfitting is given by the formula

Proof. The probability of overfitting Qε is expressed
by the formula of total probability if, for each predictor
a from A, the probability Pa to obtain it as a result of
learning and the conditional probability P(δ(a, X) ≥
ε|a) of a large deviation of error rates under the condi�
tion that a predictor a is obtained are known:

The conditional probability is given by Lemma 1
with regard to the fact that, for a fixed predictor a, the
subsets Xa and  do not take part in the partitions.
Considering La neutral objects and all possible parti�
tions of these objects into la training and La – la test
ones, we obtain

which completes the proof.

Xa'

Xa'

l
L
���

Pa P μX = a[ ]
CLa

la

CL
l

������.= =

P μX = a[ ] P Xa X⊆[ ] Xa' X⊆[ ].=

– –– X

Xa'

X

CLa

la

CL
l

Qε PaHLa

la ma,
sa ε( )( ).

a A∈

∑=

Qε PaP δ a X,( ) ε a≥( ).
a A∈

∑=

Xa'

P δ a X,( ) ε a≥( ) HLa

la ma,
sa ε( )( ),=
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Conjecture 1 imposes constraints on the sample �,
the set A, and the algorithm μ that are too restrictive.
Therefore, Theorem 1 can be applied only in special
cases. Consider a natural generalization of Conjecture
1. Suppose that, for each predictor, there exist many
pairs of generating and destroying sets.

Conjecture 2. Suppose that a set A, a sample �, and
an algorithm μ are such that, for each predictor a ∈ A,
there exists a finite set of indices Va and, for each index,

there exist subsets of objects Xav ⊂ �,  ⊂ � and coef�

ficients cav ∈ �, such that, for any X ∈ [�]l,

(4)

Introduce the following notations for each a ∈ A
and v ∈ Va:

Theorem 2. If Conjecture 2 is valid, then the proba�
bility to obtain a predictor a as a result of learning is

(5)

(6)

and the probability of overfitting is

(7)

The proof is largely similar to the proof of Lemma
2 and Theorem 1. The following theorem states that
Conjecture 2 is not restrictive at all since it is always
valid.

Theorem 3. For any �, A, and μ, there exist sets Va,

Xav, and  such that representation (4) holds, where
cav = 1 for any a ∈ A and v ∈ Va.

Proof. Fix an arbitrary predictor a ∈ A. Take, as the
index set Va, the set of all subsamples v ∈ [�]l such

that μv = a. For each v ∈ Va, set Xav = v,  = �\v,

Xav'

μX = a[ ] cav Xav X⊆[ ] Xav' X⊆[ ].
v Va∈

∑=

Lav L Xav– Xav' ,–=

lav l Xav ,–=

mav n a �,( ) n a Xav,( )– n a Xav',( ),–=

sav ε( ) l
L
��� n a �,( ) εk–( ) n a Xav,( ).–=

Pa P μX = a[ ] cavPav,

v Va∈

∑= =

Pav P Xav X⊆[ ] Xav' X⊆[ ]
CLav

lav

CL
l

�������,= =

Qε cavPavHLav

lav mav,
sav ε( )( ).

v Va∈

∑
a A∈

∑=

Xav'

Xav'

and cav = 1. Then, for any X ∈ [�]l, the following rep�
resentation of type (4) holds:

here, if μX = a, then exactly one term in this sum is
equal to unity and other terms vanish, whereas, if μX ≠
a, then all the terms vanish.

Remark 2. Theorem 2 is a typical existence theo�
rem. The method of constructing index sets Va used in
the proof of this theorem requires explicit enumera�
tion of all partitions of a sample, thus leading to com�
putationally ineffective bounds on the probability of
overfitting. However, representation (4) is not gener�
ally unique. A search for the representation for which
the cardinalities of the sets |Va |, |Xav |,  are as small
as possible remains a key problem. Below, we will show
that such representations can be obtained on the basis
of the splitting and similarity properties in the sets of
predictors.

A predictor a0 that does not make errors on a sam�
ple U ⊆ � is said to be correct on the sample U. Formula
(7) is strongly simplified if the set A contains a predic�
tor that is correct on the whole general sample.

Theorem 4. Suppose that Conjecture 2 is valid, the
algorithm μ is an ERM algorithm, and the set A contains
a predictor a0 such that n(a0, �) = 0. Then the probabil�
ity of overfitting reduces to

(8)

Proof. Consider an arbitrary predictor a ∈ A and an
arbitrary index v ∈ Va. If an object on which a makes
an error is contained in the training sample X, then the
algorithm μ cannot choose this predictor because
there exists a correct predictor a0 that does not make
errors on X. Hence, the set of objects on which the pre�
dictor a makes an error is completely contained in

. Thus, the predictor a makes no errors on neutral
objects and mav = 0. In this case, the hypergeometric

function (sav(ε)) degenerates: for sav(ε) ≥ 0, it

represents the sum of a single term equal to 1; when
sav(ε) < 0, the number of summands is zero, and the
whole sum vanishes:

Substituting this expression into (7), we obtain (8).

μX = a[ ] v = X[ ]
v Va∈

∑=

=  v = X[ ] �\v = �\X[ ]
v Va∈

∑

=  v X⊆[ ] �\v X⊆[ ];
v Va∈

∑

Xav'

Qε n a �,( ) εk≥[ ]Pa.

a A∈

∑=

Xav'

HLav

lav 0,

HLav

lav 0,
sav ε( )( ) sav ε( ) 0≥[ ] n a �,( ) εk≥[ ].= =
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4. RECURRENT METHOD

Suppose that the error vectors of all predictors from
the set A are known and pairwise distinct, and there is
a predictor in � that is correct on X. Suppose that μ is
a pessimistic ERM algorithm. Let us solve the follow�
ing problem: for each predictor a ∈ A, find all the
information necessary for calculating the overfitting
probability Qε by Theorem 2:

where Va is the index set, Xav is the set of generating

objects,  is the set of destroying objects, and cav ∈ �.

Let us renumber the predictors in the order of non�
decreasing n(a, �)—the number of errors on the gen�
eral sample: A = {a0, …, aD}. It is obvious that n(a0,
�) = 0. Denote by μd a pessimistic ERM algorithm
that chooses predictors only from the subset Ad = {a0,
…, ad}. Consider a procedure of successive addition of
predictors that upgrades from algorithm μd – 1 to algo�
rithm μd at every step. Suppose that, for any predictor
at, t < d, information �(at) with respect to the algo�
rithm μd – 1 is already calculated. Let us calculate
information �(ad) and update the information �(at),
t < d with respect to the algorithm μd. Note that such
an update is necessary because the predictor ad can
“take away some partitions” from each of the preced�
ing predictors at.

Lemma 3. The algorithm μd chooses the predictor ad
if and only if all the objects on which ad makes an error
fall into the test sample:

Proof. If at least one object on which ad makes an
error belongs to the training sample X, then the algo�
rithm μd chooses a predictor with a smaller number of
errors on X. Such a predictor indeed exists; for exam�
ple, this is a0. Thus, the condition  ⊆  is necessary
for the algorithm μd to choose the predictor ad. Let us
show that it is also a sufficient condition. To this end,
it suffices to show that if there are several predictors in
Ad that do not make errors on the trainings sample X,
then the algorithm chooses precisely ad among these
predictors. Since the set Ad is ordered, the predictor ad

makes the maximum number of errors on �, and,
among the predictors with the same number of errors
on �, it has the maximal number. Therefore, accord�
ing to the definition of a pessimistic ERM algorithm,
the predictor ad will be chosen by the algorithm μd

from Ad whenever  ⊆ .

Suppose that, immediately before the addition of
the predictor ad, the selection conditions for each pre�
ceding predictor at were expressed in the form (4):

� a( ) Xav Xav' cav, ,〈 〉
v Va∈ ,=

Xav'

μdX = ad[ ] Xd' X⊆[ ],=

Xd' xi �: I ad xi,( ) = 1∈{ }.=

Xd' X

Xd' X

μd 1– X = at[ ] ctv Xtv X⊆[ ] Xtv' X⊆[ ] , t
v Vt∈

∑ d.<=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

Jtv(d – 1)

After the addition of the predictor ad, these condi�
tions are changed. They are supplemented with the
requirement that the set  should not lie completely

in the test sample ; otherwise, the algorithm μd will
choose the predictor ad instead of at:

(9)

To obtain an update rule for the information �(at),
it suffices to reduce expression (9) to the form (4). This
will be done in the following lemma.

Lemma 4. The update of the information �(at), t < d,
after the addition of the predictor ad reduces to the veri�
fication of the following three conditions for every v ∈ Vt

such that Xtv ∩  = ∅:

(i) if \  = {xi} is a one�element set, then xi is
added to Xtv;

(ii) if  > 1, then the index set Vt is incre�
mented with a new element (denote it by w), taking ctw =

–ctv, Xtw = Xtv,  =  ∪ ;

(iii) if  = 0, then the index v is removed from
the index set Vt; accordingly, the whole triple

 is removed from �(at).

Proof. If Xtv ∩  ≠ ∅, then it follows from Xtv ⊆ X

that the set  does not completely belong to the test

sample . Hence, the triple  does not
need any update:

If Xtv ∩  = ∅, then three cases are possible

depending on the cardinality of the set \ .

The first case: \  = {xi} is a one�element set.

Then the following chain of equalities holds: [  

] = [xi ∉ ] = [xi ∈ X]. Substituting this into (9), we
obtain

The second case:  > 1. Then

(10)

Thus, one more term appears in the expression for
[μdX = at]; this is equivalent to adding one more index
(denote it by w) to the set Vt, such that ctw = –ctv, Xtw =

Xtv, and  =  ∪ .

Xd'

X

μdX = at[ ] μd 1– X = at[ ] Xd' X⊆[ ]=

=  ctv Xtv X⊆[ ] Xtv' X⊆[ ] Xd' X⊆[ ], t
v Vt∈

∑ d.<

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

Jtv(d)

–

–

Xd'

Xd' Xtv'

Xd' \Xtv'

Xtw' Xtv' Xd'

Xd' \Xtv'

Xtv Xtv' ctv, ,〈 〉

Xd'

Xd'

X Xtv Xtv' ctv, ,〈 〉

Jtv d( ) Xtv X⊆[ ] Xtv' X⊆[ ] Jtv d 1–( ).= =

Xd'

Xd' Xtv'

Xd' Xtv'

Xd' ⊆–

X X

Jtv d( ) Xtv  xi{ } X⊆[ ] Xtv' X⊆[ ].= – ––

Xd' \Xtv'

Jtv d( ) Xtv X⊆[ ] Xtv' X⊆[ ] 1 Xd' X⊆[ ]–( )=

=  Jtv d 1–( ) Xtv X⊆[ ] Xtv' Xd'∪ X⊆[ ].–

Xtw' Xtv' Xd'
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Finally, the third case:  = 0. Then repre�
sentation (10) remains valid; however, the difference
Jtv(d) turns out to be zero because  ∪  = .
The vanishing of Jtv(d) is equivalent to removing the
index v from the index set Vt together with the removal

of the corresponding triple  from the
information �(at).

Lemmas 3 and 4 and Theorem 4 allow one to
recurrently calculate the probability of overfitting Q

ε
.

At every dth step, d = 0, …, D, a predictor ad is added,
and the information �(ad) is calculated; then, for
every t, t = 0, …, d – 1, the information �(at) and the
probabilities Ptv are updated. Based on the updated
information, the current bound for Q

ε
 is recalculated.

After the last Dth step, the current bound for Q
ε
 should

coincide with the exact value of the probability of
overfitting.

This procedure may be computationally inefficient
if condition (ii) of Lemma 4 is fulfilled too often. Every
time this condition is fulfilled, one more term is added
to the sum (7). Hence, the number of terms may
increase exponentially with respect to the number of
predictors D. The following theorem allows one to
trade off between the computing time and the accu�
racy of the upper bound of Q

ε
.

Theorem 5. Let, in Lemma 4, condition (ii) hold and
ctv = 1. If the index set Vt is not incremented, then the
calculated value of Q

ε
 will be an upper bound of the prob�

ability of overfitting.
Proof. The increment of the index set Vt when ctv =

1 and ctw = –1 leads to a decrease by Ptw ≥ 0 in the cur�
rent calculated value of Q

ε
. The neglect of the incre�

ment leads to the elimination, from the sum (8), of the
negative term –Ptw and, possibly, of a few other posi�
tive and negative terms that appear in this sum as a
result of further updates of the triple 
under condition (iii). Each such update arises as a
result of addition of a certain predictor ad, d > t, that

Xd' \Xtv'

Xtv' Xd' Xtv'

Xtv Xtv' ctv, ,〈 〉

Xtw Xtw' ctw, ,〈 〉

takes away a part of the partitions from the predictor

at, thus reducing the term Ptw to the value :

The elimination from the sum (8) of the negative
term –Ptw together with all the subsequent terms that

update the triple  can only increase the
resulting value of Q

ε
. The theorem is proved.

Remark 3. One can similarly prove that if the index
set Vt is not incremented under condition (ii) when ctv
= –1, then the calculated value of Q

ε
 provides a lower

bound for the probability of overfitting.

If one never increments the index set under condi�
tion (ii) of Lemma 4, then one obtains a simplified
recurrent procedure for calculating the probability of
overfitting. In this case, triples  with neg�
ative values of ctw will never appear, each predictor ad

will correspond to a single triple, and all the index sets
Vd, d = 0, …, D, will consist of a single element.
According to Theorem 5, the calculated value of Q

ε

will be an upper bound of the probability of overfitting.
This bound can be expressed in explicit form in terms
of a splitting and similarity profile of the set A.

A subset of predictors Am = {a ∈ A: n(a, �) = m} is
called the m�th layer of the set A. The partition of A =
A0  …  AL is called a splitting of the set of predictors A.

The connectivity q(a) of a predictor a ∈ A is the
number of predictors in the next layer that make errors
on the same objects as a:

Thus, the connectivity q(a) is the number of error
vectors in A that are worse than a on some object.

For every predictor a ∈ A, denote by Ea the set of
objects of the general sample � on which the predictor
makes an error: Ea = {xi ∈ �: I(a, xi) = 1}. It is obvious
that n(a, �) = |Ea |.

P̃tw

P̃tw P Xtw X⊆[ ] Xtw' X⊆[ ] Xd' X⊆[ ] Ptw.≤= –

Xtw Xtw' ctw, ,〈 〉
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Fig. 1. Linearly separable general sample and the connectivity graph of a set of linear classifiers.
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A graph of connectivity, or simply a graph of the set
of predictors A, is a directed graph whose vertices cor�
respond to predictors and the edges (a, a') connect
pairs of predictors such that Ea'\Ea = 1. Then, the con�
nectivity q(a) of the predictor a is the number of edges
of the graph that emanate from the vertex a.

A splitting and similarity profile of a set A is an L × L

matrix , where Δmq is the number of pre�
dictors in the mth layer with connectivity q.

Example 1. Figure 1 (left) shows a two�dimensional
linearly separable sample of length L = 10 that consists
of objects of two classes, with five objects in each class.
The figure on the right shows the connectivity graph of
the set of linear classifiers for a given sample. The ver�
tical axis enumerates layers m. The only vertex of the
graph at m = 0 corresponds to the classifier that sepa�
rates two classes without errors. The next layer m = 1
contains five classifiers that separate the sample with
one error. The layer m = 2 contains eight classifiers
with two errors, etc.

Theorem 6. Suppose that the error vectors of all the
predictors of the set A are pairwise distinct, A contains a
predictor that is correct on �, and Δmq is the number of
predictors in the m�th layer with connectivity q. Then the
following upper bound is valid:

(11)

Proof. Consider a simplified recurrent procedure
that gives an upper bound on the probability of overfit�
ting. For each predictor a ∈ A, a unique triple

 is constructed in which the destroying set

 coincides with Ea and the generating set consists of
all objects that are added when satisfying condition (i)
of Lemma 4. These are those and only those objects xi

for which there exists a predictor a' ∈ A that makes one
error more than a. Obviously, \  = Ea'\Ea = {xi} is
a one�element set. The number of such objects xi coin�
cides with the value of the connectivity q(a). Thus,

 = n(a, �) and |Xa | = q(a) for an arbitrary predictor
a ∈ A. Hence, bound (8) is rewritten as

According to bound (11), the maximal contribu�
tion to the probability of overfitting is made by predic�

Δmq( )m 0=
L

 q 0=
L

Qε Δmq
CL m– q–

l q–

CL
l

��������������� .

q 0=

L

∑
m εk[ ]=

L

∑≤

Xa Xa' 1, ,〈 〉

Xa'

Xa '' Xa'

Xa'

Qε n a �,( ) εk≥[ ]
CLa

la
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l

������
a A∈

∑≤

=  n a X,( ) εk≥[ ]
CL n a �,( )– q a( )–

l q a( )–

CL
l

��������������������������

a A∈

∑

=  n a �,( ) = m[ ] q a( ) = q[ ]
a A∈

∑
CL m– q–

l q–

CL
l

���������������.

q 0=

L

∑
m εk=

L

∑

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Δmq

tors with a smaller number of errors, starting with m =
⎡εk⎤. As m increases, the combinatorial multiplier

 decreases exponentially.

The increase in the connectivity q improves the
bound. In the experiments with linear classifiers, the
mean value of connectivity q was proportional to the
dimension of the space (the number of features) with
the proportionality factor close to unity [3]. Generally,
an increase in the dimension of the space gives rise to
two opposite phenomena: on the one hand, the num�
ber of predictors in each layer increases, which leads to
the increase in Q

ε
; on the other hand, the connectivity

q increases, which decreases the growth rate of Q
ε
.

Preliminary experiments have shown that the split�
ting and similarity profiles Δmq for a certain set of pre�
dictors are separable to a high degree of accuracy:
Δmq ≈ Δmλq, where Δm is the number of different pre�
dictors in the mth layer and λq is the fraction of predic�
tors of the mth layer that have connectivity q. It is rea�

sonable to call the vector  a splitting profile,

and the vector , a similarity profile of the set of
predictors A. The similarity profile satisfies the nor�
malization condition λ0 + … + λL = 1.

In terms of the splitting and similarity profiles, the
bound (11) is rewritten as

(12)

The first part of this bound is the VC bound
expressed in terms of the splitting profile [17, 2],
which is valid when the ERM algorithm always finds a
predictor that makes no error on the training sample.
In the present situation, this is the case, because the set
A contains a correct predictor, n(a0, �) = 0. The sec�
ond part of the bound is a correction for connectivity.
It decreases exponentially as q increases, thus making
the bound much more accurate than the classical VC�
type bounds.

5. BLOCKWISE BOUND

Suppose that the error vectors of all predictors from
the set A = {a1, …, aD} are known and pairwise distinct.
Assume that μ is a pessimistic ERM algorithm: when
n(a, X) attains its minimum on several predictors, μ
chooses a predictor with larger n(a, ), and if there
are several such predictors, then it chooses a predictor
with a larger ordinal number.

The values of I(ad, xi) form a binary L × D error
matrix the columns of which are error vectors of the
predictors and the rows of which correspond to
objects. Denote by b = (b1, …, bD) an arbitrary binary

CL m– q–
l q–

CL
l

���������������

Δm( )m 0=
L

λq( )q 0=
L

Qε   Δm
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l

CL
l

����������
m εk=

k

∑ λq
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vector of dimension D. The sample � is partitioned
into disjoint blocks so that all the objects in a block
correspond to the same row b = (b1, …, bD) in the error
matrix:

Denote by B the set of binary vectors b that corre�
spond to nonempty blocks Ub. It is obvious that  ≤
min{L, 2D}.

Denote mb = .

To each training sample X ∈ [�]l, we assign an inte�
ger�valued vector  such that sb =  is
the number of objects in the block Ub that fall into the
training sample. Denote the set of all such vectors cor�
responding to all possible training samples by S. Obvi�
ously, S can also be defined in a different way:

Let us write the numbers of errors of the predictor
ad made on the training sample X and on the test sam�

ple  as sums over blocks:

Thus, the choice of a predictor by an algorithm μ
depends only on how many objects sb from each block
fall into the training sample and does not depend on
what these objects are. Define the function d*: S 
{1, …, D} as the number of a predictor chosen by algo�
rithm μ from the training sample. If μ is a pessimistic
ERM algorithm, we set

(13)

where f(d) denotes the set of values of d such

that the function f(d) attains its minimum.

Theorem 7. Suppose that µ is a pessimistic ERM and
the error vectors of all predictors a ∈ A are pairwise dis�
tinct. Then the probability to obtain a predictor ad as a
result of learning is

(14)

Ub xi � I ad xi,( ) = bd d = 1 … D, ,,∈{ }.=

B

Ub

sb( )b B∈ X Ub∩

S s = sb( )b B∈ sb = 0 … mb sb = l
b B∈

∑, , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

X

n ad X,( ) bd X Ub∩
b B∈

∑ bdsb,

b B∈

∑= =

n ad X,( ) bd X Ub∩
b B∈

∑ bd mb sb–( ).
b B∈

∑= =

A s( ) Argmin bdsb,

b B∈

∑=

A ' s( ) Argmax bd mb sb–( ),
b B∈

∑=

d* s( ) max d: d A ' s( )∈{ },=

d = 1, …, D

d ∈ A(s)

Argmin
d = 1, …, D

P μX = ad[ ] 1

CL
l

����� Cmb

sb

b B∈

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

d* s( ) = d[ ],
s S∈

∑=

while the probability of overfitting is

(15)

Proof. To an arbitrary set of values  from S,

there corresponds a set of samples X ∈ [�]l such that
 = sb. The number of such samples is given by

the product  because, for every block Ub, there

exist  ways to select sb objects into the subsample

X ∩ Ub.
Since the conditions μX = ad and d*(s) = d are

equivalent, the probability to obtain a predictor ad as a
result of learning is expressed as

Now, let us write the probability of overfitting:

The deviation of error rates of the predictor ad can
be expressed as a sum over blocks:

Then, the expression for the probability of overfit�
ting is rewritten as

This implies the required formula (15).
Remark 4. If the set B contains vectors b that corre�

spond to empty blocks Ub, then formulas (14) and (15)
remain valid because then mb = sb = 0.

Remark 5. Direct calculations by formulas (14) and
(15) may require considerable time exponential in the
sample length L. In the worst case, when all Ub are
one�element blocks, the set S consists of all possible
Boolean vectors of length L that contain exactly l
units. In this case, the number of terms in (14) and

Qε = 1

CL
l

����� Cmb

sb

b B∈

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

bd* s( ) mbl sbL–( )
b B∈

∑ εkl≥ .

s S∈

∑

sb( )b B∈

X Ub∩

Cmb

sb

b B∈

∏

Cmb

sb

P μX = ad[ ] 1

CL
l

����� d* s( ) = d[ ]

X �[ ]
l

∈

∑=

=  1

CL
l

����� Cmb

sb

b B∈

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

d* s( ) = d[ ].
s S∈

∑

Qε P δμ X( ) ε≥[ ] P μX = ad[ ] δ ad X,( ) ε≥[ ].
d 1=

D

∑= =

δ ad X,( ) 1
k
�� bd mb sb–( )

b B∈

∑
1
l
�� bdsb

b B∈

∑–=

=  1
lk
��� bd mbl sbL–( ).

b B∈

∑

Qε
1

CL
l

����� Cmb

sb

b B∈

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

d* s( ) = d[ ]
d 1=

D

∑
s S∈

∑=

× bd mbl sbL–( )
b B∈

∑ εlk≥ .



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 20  No. 3  2010

EXACT COMBINATORIAL BOUNDS 277

(15) is . Calculations by Theorem 7 are only effec�
tive when the number of blocks |B | is small, in partic�
ular, when the number of predictors is small.

6. A TWO�ELEMENT SET OF PREDICTORS

Consider a particular case of a two�element set A =
{a1, a2}. Even this simple case illustrates both the over�
fitting phenomenon itself and the effects of splitting
and similarity, which reduce the probability of overfit�
ting. An exact estimate for the probability of overfitting
in this special case was obtained in [21]. Consider a
shorter proof based on the blockwise method. Set B =
(1.1), (1.0), (0.1), (0.0).

Suppose that, in a sample �, there are m11 objects
on which both predictors make an error, m10 objects on
which only a1 makes an error, m01 objects on which
only a2 makes an error, and m00 = L – m11 – m10 – m01

objects on which both predictors give a correct answer:

Theorem 8. Suppose that µ is a pessimistic ERM
algorithm and the set consists of two predictors, A = {a1,
a2}. Then the following exact bound is valid for any ε ∈
[0, 1):

(16)

Proof. Let us apply Theorem 7.

The set S consists of integer�valued vectors s = (s11,
s10, s01, s00) such that s11 + s10 + s01 + s00 = l. Therefore,

the sum  is transformed into a triple sum

, and s00 is expressed in terms of other

components of the vector s.

The number d*(s) of a predictor chosen by algo�
rithm μ from the training sample is 1 when s10 < s01 and
2 when s10 ≥ s01.

Now, we substitute the values of mb, sb, and d*(s)
into (15):

CL
l

a1 1 … 1 1 … 1 0 … 0 0 … 0, , , , , , , , , , ,( ),=

a2 1 … 1, , 0 … 0, , 1 … 1, , 0 … 0, ,, , ,( ).=

⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

m11 m10 m01 m00

Qε

Cm11

s11 Cm10

s10 Cm01

s01 CL m11– m10– m01–
l s11– s10– s01–

CL
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���������������������������������������������������

s01 0=

m01

∑
s10 0=

m10

∑
s11 0=

m11

∑=

× s10 s01<[ ] s11 s10
l
L
��� m11 m10 εk–+( )≤+⎝

⎛

+ s10 s01≥[ ] s11 s01
l
L
��� m11 m01 εk–+( )≤+ ⎠

⎞ .

s S∈

∑

s01 0=

m01

∑
s10 0=

m10

∑
s11 0=

m11

∑

This implies the required equality (16).
In the case of m10 = m01 = L/2, when the predictors

are maximally different and equally bad, the value of
Q

ε
 is maximal and is twice the value of Q

ε
 of an individ�

ual predictor (3). Hence, we can conclude that overfit�
ting arises whenever a choice out of several alternatives
is made by incomplete information, even if there are
only two alternatives. If the two predictors are very
similar, or if one of them is much better than the other,
then the overfitting vanishes. Thus, the effects of split�
ting and similarity reduce the probability of overfitting
even in the case of two predictors [21].

7. A LAYER OF A BOOLEAN CUBE

Consider a set A consisting of all  predictors that
make exactly m errors on the general sample � and have
pairwise distinct error vectors. Since all possible error
vectors form a Boolean cube of size L, the error vectors
of the set A form the mth layer of the Boolean cube.

Theorem 9. Suppose that µ is a pessimistic ERM
algorithm and A is the m�th layer of a Boolean cube.
Then

for any ε ∈ [0, 1].
Proof. If m ≤ k, then the empirical risk attains its

minimum on an a ∈ A such that all m errors fall into the
test sample and no error falls into the training sample.

Then ν(a, ) = , ν(a, X) = 0, and

If m > k, then the empirical risk attains its mini�
mum on the a ∈ A that makes errors on all test objects.
Then

Combining two mutually exclusive cases m ≤ k and
m > k, we complete the proof.

Thus, the probability of overfitting takes values of
either 0 or 1. Although this result is trivial and, in a
sense, negative, it allows one to draw a few important
conclusions. First, the predictors of the lowest layers,
m < ⎡εk⎤, do not contribute to overfitting. Second, the
lowest layer of the set of predictors, which contains
predictors with the number of errors not less than ⎡εk⎤,
should not contain all such predictors. The ERM

bd* s( ) mbl sbL–( )
b B∈

∑ εlk≥

=  d* s( ) = 1[ ] m10 m11+( )l s10 s11+( )L– εlk≥[ ]

+ d* s( ) = 2[ ] m01 m11+( )l s01 s11+( )L– εlk≥[ ].
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Qε εk m L εl–≤ ≤[ ]=

X m
k
���
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algorithm within a too rich set of predictors leads to
overfitting.

8. AN INTERVAL OF A BOOLEAN CUBE

Suppose that the error vectors of all predictors from
A are pairwise distinct and form an interval of rank m
in an L�dimensional Boolean cube. This means that
the objects are divided into three groups: m0 “internal”
objects, on which none of the predictors makes errors;
m1 “noise” objects, on which all predictors make
errors; and m “boundary” objects, on which all 2m

variants of making an error are realized. There are no
other objects: m0 + m1 + m = L.

An interval of a Boolean cube possesses the proper�
ties of splitting and similarity and can be considered as
a model of practically used sets of predictors. The
number of predictors in this interval is 2m. The predic�
tors make from m1 to m1 + m errors. None of the layers
of the Boolean cube is completely contained in A,
except for a particular case of no interest where m = L
and A coincides with the Boolean cube. The parameter
m characterizes the complexity, or the “dimension,”
of this set.

For the sake of greater generality, consider a set of
predictors At formed by t lower layers of a Boolean
cube interval. The number of different error vectors in

At is  +  + … + . The predictors make from
m1 to m1 + t errors. The parameter t can take values of
0, …, m. This model set is of interest in that it allows
one to analyze the effect of splitting on the probability
of overfitting by considering how Q

ε
 depends on the

number of lower layers t.

Theorem 10. Suppose that µ is a pessimistic ERM
algorithm and A is the set of t lower layers of a Boolean
cube interval with m boundary and m1 noise objects.
Then, for any ε ∈ [0, 1], the probability of overfitting is
given by

Proof. Denote by X0, X1, and S the sets of all inter�
nal, noise, and boundary objects, respectively, and by
s0, s1, and s, the numbers of internal, noise, and
boundary objects, respectively, that fall into the train�
ing sample X.

Since the algorithm μ is pessimistic, it always
chooses a predictor from A that makes no errors on all
training boundary objects but makes errors on all test
boundary objects. Therefore,

Cm
0 Cm

1 Cm
t

Qε

Cm
s Cm1

s1 CL m– m1–
l s– s1–

CL
l

�����������������������������
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∑
s 0=
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× s1
l
L
��� m1 min t m s–,{ } εk–+( )≤ .

The number of partitions X   such that 

= s0,  = s1, and  = s is .

Hence, the probability of overfitting can be repre�
sented as

To obtain the assertion of the theorem, it suffices to
apply the relations m0 + m1 + m = L and s0 + s1 + s = l
and transform the inequality in square brackets to s1 ≤

(m1 + min{t, m – s} – εk).

Figure 2 shows the probability of overfitting Q
ε
 as a

function of the error level t = m1, …, m1 + m. The three
experiments differ by the length of the general sample

(200, 400, 1000), while the proportions of  = 0.2 and

 = 0.05 are preserved; in other words, the general

sample contains 20% of boundary and 5% of noise
objects in all three cases. The diagrams also demon�
strate the contributions of layers to the value of the
functional Q

ε
. Only the lower layers make nonzero

contributions. The ruggedness of the graphs is attrib�

uted to the fact that, in view of the relation  = ,

every second layer makes no contribution to Q
ε
.

In this experiment it turned out that 20% of bound�
ary objects represents such a powerful interval that the
probability of overfitting reaches a value of 1 too rap�
idly. The probability of overfitting is close to zero only
if one takes the lowest layers of the interval, which
amount to at most 2% of the sample length.

This implies two conclusions. First, a good gener�
alization is hardly possible if the sample contains a
considerable number of boundary objects on which
predictors can make errors in all possible ways. The
fraction of such objects is actually added to the value of
overfitting. Second, an interval of a Boolean cube is
not a quite adequate model of real sets. The hypothesis
on the existence of boundary objects seems reason�
able. However, it is likely that, in real problems, the
predictors of the set by no means realize all variants of
making errors on boundary objects. Perhaps a model
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in which one somehow introduces a characteristic of
the “degree of boundariness” of objects and estimates
the distribution of this characteristic over the sample
would be more adequate.

9. A MONOTONIC CHAIN 
OF PREDICTORS

A monotonic chain of predictors seems to be the
simplest model set that possesses the properties of
splitting and similarity. A monotonic chain is gener�
ated by a one�parameter connected set of predictors
under the assumption that continuous variation of the
parameter away from its optimal value can only
increase the number of errors made on the general
sample.

Introduce a Hamming distance between the error
vectors of predictors:

A set of predictors a0, a1, …, aD is called a chain if
ρ(ad – 1, ad) = 1, d = 1, …, D. A chain of predictors is
said to be monotonic if n(ad, �) = m + d for some m ≥
0. The predictor a0 is said to be the best in the chain.

Example 2. Let � be a set of points in �n and A be
a set of linear classifiers—parametric mappings from
� into {–1, +1} of the form

ρ a a ',( ) I a xi,( ) I a ' xi,( )– , a∀ a',
i 1=

L

∑ A.∈=

with parameter w ∈ �n. Suppose that a loss function is
given by I(a, x) = [a(x, w) ≠ y(x)], where y(x) is the true
classification of the object x and the set of objects in �

is linearly separable; i.e., there exists a w* ∈ �
n
 such

that a classifier a(x, w*) makes no errors on �. Then,
under some additional technical assumptions, the set
of classifiers {a(x, w* + tδ): t ∈ [0, +∞)} obtained by
shifting or rotating the direction vector w of the sepa�
rating hyperplane forms a monotonic chain for any

given vector δ ∈ �
n
 except for some finite set of vec�

tors. In this case, m = 0.

Theorem 11. Let A = {a0, a1, …, aD} be a monotonic
chain and L ≥ m + D. Then

when D ≥ k and
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Fig. 2. Probability of overfitting Q
ε
 as a function of the number of errors for ε = 0.05. Top: l = k = 100, m1 = 10, and m = 40;

middle: l = k = 200, m1 = 20, and m = 80; and bottom: l = k = 500, m1 = 50, and m = 200.
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when D < k, where Pd is the probability to obtain a pre�

dictor ad by algorithm μ and sd(ε) = (m + d – εk).

Proof. Let us renumber the objects so that each
predictor ad, d = 1, …, D, makes an error on the objects
x1, …, xd. Obviously, the best predictor a0 makes no
error on any of these objects. The numbering of other
objects does not matter because the predictors are
indistinguishable on these objects.

For the sake of clarity, let us partition the sample �
into three blocks:

There are three possible cases for the predictor ad.
1. If k < d, then the number of errors made by ad on

the objects {x1, …, xd} is greater than the length of the
test sample. A part of errors will certainly fall into the
training subsample X, and the algorithm μ chooses
another predictor. In this case,

2. If d = D < k, then the algorithm μ chooses the
worst predictor in the chain aD if and only if all the

Pd
CL d– 1–

l 1–

CL
l

��������������, d 0 … D 1, PD–, ,
CL D–

l

CL
l

����������,= = =

l
L
���

a0 (  0, 0, 0, … 0, 0, …, 0, 1, …, 1  );=

a1 (  1, 0, 0, … 0, 0, …, 0, 1, …, 1  );=

a2 (  1, 1, 0, … 0, 0, …, 0, 1, …, 1  );=

a3 (  1, 1, 1, … 0, 0, …, 0, 1, …, 1  );=

aD (  1, 1, 1, … 1, 0, …, 0, 1, …, 1  ).=

x1 x2 x3 xD
m

…………

μX = ad[ ] 0.=

objects {x1, …, xD} are contained in the test subsample

. In this case,

3. In all the other cases, the algorithm μ chooses
the predictor ad only if all the objects {x1, …, xd} are

contained in the test subsample , while the object
xd + 1 is contained in the training subsample X. In this
case,

Now we can apply Theorem 1.
If D ≥ k, then the predictor ad corresponds to the

following set of parameters (to simplify the notation,
we will use single subscripts (Ld) instead of double ones
( )): Ld = L – d – 1, ld = l – 1, md = m + d – d = m,

and sd(ε) = (m + d – εk). Hence we obtain the asser�

tion of the theorem in the case of D ≥ k.
If D < k, then the predictors a0, … aD – 1 have the

same values of the parameters as for D ≥ k. For the
worst predictor aD, only the parameter lD = l is differ�
ent. Hence, we obtain the assertion of the theorem in
the case of D < k.

Remark 6. During the proof of the theorem, it is
useful to check if the probabilities Pd are calculated
correctly and their sum is one. In the cases of D ≥ k and
D < k, this verification is made somewhat differently
using well�known combinatorial identities.

We compared the exact bound from Theorem 11
with the result of empirical measurement of Q

ε
 by the

Monte Carlo method using N = 1000 random parti�
tions. The experimental results shown in Fig. 3 are
obtained for l = k = 100 and m = 20, i.e., in the case

X

μX = ad[ ] x1 … xD, , X∈[ ].=

X

μX = ad[ ] xd 1+ X∈[ ] x1 … xd, , X∈[ ].=

Lad
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Fig. 3. (left) Bounds for the probability of overfitting Q
ε
 as a function of ε: exact bound from Theorem 9.1 and four bounds cal�

culated by the Monte Carlo method using 1000 random partitions: for optimistic (lower curve), pessimistic, and randomized
ERM. The upper curve corresponds to the bound for a uniform functional R

ε
. (right) The factor of overestimation of the uniform

functional R
ε
/Q

ε
. All the charts are plotted for l = k = 100 and m = 20.
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when the best predictor in the chain makes 10% of
errors on the general sample. The optimistic ERM
algorithm yields a noticeably underestimated bound
for Q

ε
, whereas the pessimistic and randomized

bounds are very close (see the left�hand diagram in
Fig. 3). This means that, for the given set, the pessi�
mistic bound is very tight and is “more reasonable”
than the optimistic one.

In this experiment, we also estimated the probabil�
ity of large uniform deviation of error rates, which
underlies many generalization bounds, e.g., VC
bounds [6]:

It is obvious that this functional provides an overes�
timated upper bound for the probability of overfitting,
Q

ε
 ≤ R

ε
. The right�hand chart in Fig. 3 shows that the

uniform functional R
ε
 may give a bound overestimated

hundreds of times for the probability of overfitting.

The left�hand chart in Fig. 4 shows that the func�
tional R

ε
 continues to grow with the number of predic�

tors in a monotonic chain, whereas the probability of
overfitting Q

ε
 reaches a horizontal asymptote after

5⎯8 predictors. Thus, the uniform convergence prin�
ciple, which was originally introduced in the VC the�
ory [18, 17] and is widely used in statistical learning
theory, may give highly overestimated bounds for split
sets of predictors.

A term in the sum over all a ∈ A in formula (7) is
called a contribution Q

ε
(a) of a predictor a to the prob�

ability of overfitting Q
ε
. The right�hand chart in Fig. 4

shows that only predictors of 5–8 lower layers make a
significant contribution to the probability of overfit�
ting. Apparently, a similar result is characteristic not

Rε P δ a X X, ,( )
a A∈
max ε≥[ ].=

only of monotonic chains but also of any sets of pre�
dictors when the splitting effect takes place.

The main conclusion is that a monotonic chain of
predictors is hardly overfitted. This fact can serve as a
basis for the procedures of one�dimensional optimiza�
tion, which are frequently used in machine learning
for choosing a certain critical parameter in hold�out
model selection, for example, a regularization con�
stant or the width of a smoothing window.

10. A UNIMODAL CHAIN OF PREDICTORS

A unimodal chain of predictors is a more realistic
model of a one�parameter connected set of predictors
compared with a monotonic chain. Here it is assumed
that the deviation of a real parameter to either greater
or smaller values from its optimal value, correspond�
ing to the best predictor a0, leads to an increase in the
number of errors.

A set of predictors a0, a1, …, aD, , …,  is called
a unimodal chain if the left branch a0, a1, …, aD and the

right branch a0, , …,  are monotonic chains. The
predictor a0 is said to be the best in the unimodal chain.
Denote by m = n(a0, �) the number of errors of the
best predictor.

Example 3 (continuation of Example 2). Suppose

that a set of objects � ⊂ �
n
 is linearly separable; i.e.,

there exists a linear classifier a(x, w*) with parameter

w* ∈ �
n
 that makes no errors on �. Then, the set of

classifiers {a(x, w* + tδ): t ∈ �} forms a unimodal

chain for almost any direction vector δ ∈ �
n
.

Consider a unimodal chain with branches of equal
length, D = D'. Renumber the objects so that each pre�
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dictor ad, d = 1, …, D makes an error on the objects

x1, …, xd and each predictor , d = 1, …, D makes an

error on the objects , …, . Assume that the sets of

objects {x1, …, xD} and { , …, } are disjoint. It is
obvious that the best predictor a0 makes no error on
any of these objects. The numbering of other objects
does not matter because the predictors are indistin�
guishable on these objects.

We will assume that if the empirical risk attains its
minimum on several predictors with the same number
of errors on both the training and general samples,
then the algorithm μ chooses a predictor from the left
branch.

Theorem 12. Let A = {a0, a1, …, aD, , …, } be a
unimodal chain, k ≤ D, and 2D + m ≤ L. Then the prob�
ability to obtain each predictor of the chain as a result of
training is

the probability of overfitting for sd(ε) = (m + d – εk)

is expressed as

Proof. Introduce auxiliary variables:

The conditions β1, …, βD are mutually exclusive;

moreover, one of them is valid if and only if x1 ∈ .
Hence,

ad'

x1' xd'

x1' xD'

a1' aD'

P0 P μX = a0[ ]
CL 2–

l 2–

CL
l

���������,= =

Pd P μX = ad[ ]
CL d– 1–

l 1– CL 2d– 2–
l 1––

CL
l

�����������������������������������,= =

Pd' P μX = ad'[ ]
CL d– 1–

l 1– CL 2d– 1–
l 1––

CL
l

�����������������������������������;= =

l
L
���

Qε

CL 2–
l 2–

CL
l

���������HL 2–
l 2– m, s0 ε( )( )=

+ 2
CL d– 1–

l 1–

CL
l

��������������HL d– 1–
l 1– m, sd ε( )( )

⎝
⎜
⎛

d 1=

k

∑

–
CL 2d– 2–

l 1–

CL
l

����������������HL 2d– 2–
l 1– m, sd ε( )( )

CL 2d– 1–
l 1–

CL
l

����������������HL 2d– 1–
l 1– m, sd ε( )( )–

⎠
⎟
⎞

.

βd xd 1+ X∈[ ] x1 … xd, , X∈[ ], d 1 … D 1,–, ,= =

βD x1 … xD X∈, ,[ ],=

βd' xd 1+' X∈[ ] x1' … xd', , X∈[ ], d 1 … D 1,–, ,= =

βD' x1' … xD' X∈, ,[ ].=

X

x1 X∈[ ] β1 … βD+ + + 1.=

Analogously,

If the left and right branches were considered as
separate monotonic chains, then one could assert that
[μX = ad] = βd and [μX = ] = . However, in the
case of a unimodal chain, the conditions for obtaining
the predictors ad and  have a more complicated
form. If the condition βd and simultaneously one of

the conditions  …,  are satisfied, then the algo�

rithm μ chooses one of the predictors , …, 
from the right branch according to the convention that
the algorithm should choose the worst predictor
among all those that make the minimal number of
errors on X. Similarly, if the condition  and simulta�
neously one of the conditions βd, …, βD are satisfied,
then the algorithm μ chooses one of the predictors
ad …, aD from the left branch. Notice that the predic�
tors of the left branch have priority. Thus, the condi�
tions for obtaining all the predictors of the unimodal
chain are expressed in terms of auxiliary variables as
follows:

Let us determine the probabilities of all the predic�
tors of the chain by applying Theorem 2.

x1' X∈[ ] β1' … βD'+ + + 1.=

ad' βd'

ad'

βd 1+' βD'

ad 1+' aD'

βd'

μX = a0[ ] x1 x1', X∈[ ]=

=  1 β1– …– βD–( ) 1 β1'– …– βD'–( ),

μX = ad[ ] βd 1 βd 1+'– …– βD'–( ),=

d 1 … D 1,–, ,=

μX = ad'[ ] βd' 1 βd– …– βD–( ),=

d 1 … D 1,–, ,=

μX = aD[ ] βD,=

μX = aD'[ ] βD' 1 βD–( ).=

P0 P μX = a0[ ] P x1 x1', X∈[ ]
CL 2–

l 2–

CL
l

���������,= = =

Pd P μX = ad[ ] P xd 1+ X∈[ ] x1 … xd X∈, ,[ ]= =

– P xd 1+ xt 1+', X∈[ ] x1 … xd x1' … xt', , , , , X∈[ ]
t d 1+=

k d–

∑

=  1

CL
l

����� CL d– 1–
l 1– CL d– t– 2–

l 2–

t d 1+=

k d–

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

 = 
CL d– 1–

l 1– CL 2d– 2–
l 1––

CL
l

�����������������������������������,

Pd' P μX = ad'[ ] P xd 1+' X∈[ ] x1' … xd', , X∈[ ]= =

– P xd 1+' xt 1+, X∈[ ] x1' … xd' x1 … xt, , , , , X∈[ ]
t d=

k d–

∑
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Now, let us write the probability of overfitting using
Theorem 2.

This expression can be simplified if we notice that

Substituting these expressions into the formula for
Q

ε
, we obtain the required bound.
A natural generalization of monotonic and unimo�

dal chains of predictors are multidimensional mono�
tonic and unimodal grids of predictors. They model
multidimensional parametric sets of predictors with
splitting and similarity. Note that exact bounds for the
probability of overfitting for h�dimensional mono�
tonic and unimodal grids were obtained by Botov in
[1]. Another multidimensional generalization—pen�
cils of h monotonic chains—was considered by Frey
in [4].

11. UNIT NEIGHBORHOOD 
OF THE BEST PREDICTOR

Another example of a connected set is given by a
unit neighborhood of the best predictor. This is an
extreme particular case when predictors are maximally
close to each other, and the classical bounds based on

=  1
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l

����� CL d– 1–
l 1– CL d– t– 2–

l 2–
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⎛ ⎞
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l

����������������HL 2d– 1–
l 1– m, sd ε( )( ).

counting the number of different predictors are highly
overestimated. Moreover, this is a set of predictors that
form two lower layers in an arbitrary connected set with
a single best predictor.

A set of predictors A = {a0, a1, …, aD} is called a unit
neighborhood of the predictor a0 if all error vectors ad

are pairwise distinct, n(ad, �) = n(a0, �) + 1, and
ρ(a0, ad) = 1 for any d = 1, …, D. The predictor a0 is
said to be the best in the neighborhood, or the center of
the neighborhood.

Assume that if the empirical risk attains its mini�
mum on several predictors with the same number of
errors on both the training and general samples, then
the algorithm μ chooses a predictor with a smaller
number.

Theorem 13. Let A = {a0, a1, …, aD} be a unit neigh�
borhood of the predictor a0, m = n(a0, �), and L ≥ m +
D. Then

where Pd is the probability to obtain a predictor ad as a
result of learning.

Proof. Let us renumber the objects so that each
predictor ad, d = 1, …, D makes an error on the object
xd. Obviously, the best predictor a0 makes no error on
any of these objects. The numbering of other objects
does not matter because the predictors are indistin�
guishable on these objects.

For the sake of clarity, we partition the sample �
into three blocks:

It is easily seen that the set of partitions for which
the algorithm μ chooses a predictor ad is represented as

Qε P0HL D–
l D– m, l

L
��� m εk–( )⎝ ⎠
⎛ ⎞=

+ PdHL d–
l d– 1+ m, l

L
��� m 1 εk–+( )⎝ ⎠
⎛ ⎞ ,

d 1=

D

∑

P0
CL D–

k

CL
k

����������, Pd
CL d–

k 1–

CL
k

���������, d 1 … D,, ,= = =

a0 (  0, 0, 0, … 0, 0, …, 0, 1, …, 1  );=

a1 (  1, 0, 0, … 0, 0, …, 0, 1, …, 1  );=

a2 (  0, 1, 0, … 0, 0, …, 0, 1, …, 1  );=

a3 (  0, 0, 1, … 0, 0, …, 0, 1, …, 1  );=

aD (  0, 0, 0, … 1, 0, …, 0, 1, …, 1  ).=

x1 x2 x3 xD
m

…………

μX = a0[ ] x1 … xD X∈, ,[ ],=

μX = ad[ ] x1 … xd 1– X∈, ,[ ] xd X∈[ ],=

d 1 … D., ,=
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The parameters that should be substituted into the
formula of Theorem 1 are as follows:

Substituting these parameters into the formula of
Theorem 1, we obtain the bound required.

Remark 7. We can easily verify that the probabilities
Pd are determined correctly.

CONCLUSIONS

In this paper, we have proposed three general
methods for obtaining exact bounds for the probability
of overfitting. To illustrate the application of these
methods, we considered six model sets of predictors: a
pair of predictors, a layer and an interval of a Boolean
cube, a monotonic and a unimodal chain, and a unit
neighborhood. For the interval and the monotonic
chain, we presented the results of numerical experi�
ments that illustrate the effects of splitting and similar�
ity on the probability of overfitting.

A penalty for the accuracy of bounds has two draw�
backs, the elimination of which still remains an open
problem.

First, to date, exact bounds have been obtained
only for a number of artificial cases. The model sets of
predictors are defined directly by their error matrices,
regardless of any applied problem or any practical set
of predictors. It seems reasonable to assume that a
gradual generalization of these models will make it
possible to analyze the probability of overfitting as a
function of the dimensional characteristics of the low�
est layers in predictor sets and then adapt these results
to practical situations. This approach to the develop�
ment of combinatorial learning theory seems to be the
most realistic.

Second, the bounds obtained are unobserved ones;
i.e., they depend on the hidden testing subsample of
the general sample. Examples of transition from unob�
served bounds to observed ones (which are calculated
only using the training sample) can be found in [11,
10]. It is reasonable to assume that a similar approach
can also be applied to combinatorial bounds. We did
not consider this problem in the present study.

L0 L D, l0– l D, m0– m,= = =

s0 ε( ) l
L
��� m εk–( ),=

Ld L d, ld– l d– 1, md+ m,= = =

sd ε( ) l
L
��� m 1 εk–+( ), d 1 … D., ,= =

Pd

d 0=

D

∑
1

CL
k

����� CL D–
k CL D–

k 1– … CL 1–
k 1–+ ++( ) 1.= =
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k

CL D–
k

–

ACKNOWLEDGMENTS

This work was supported by the Russian Founda�
tion for Basic Research (project no. 08�07�00422) and
by the Program “Algebraic and Combinatorial Meth�
ods in Mathematical Cybernetics” of the Department
of Mathematics, Russian Academy of Sciences.

REFERENCES

1. P. V. Botov, “Exact Bounds for the Probability of Over�
fitting for Monotone and Unimodal Sets of Predic�
tors,” in Proceedings of the 14th Russian Conference on
Mathematical Methods of Pattern Recognition (MAKS
Press, Moscow, 2009), pp. 7–10.

2. K. V. Vorontsov, “Combinatorial Approach to Estimat�
ing the Quality of Learning Algorithms,” in Mathemat�
ics Problems of Cybernetics Ed. by O.B. Lupanov (Fiz�
matlit, Moscow, 2004), Vol. 13, pp. 5–36.

3. D. A. Kochedykov, “Similarity Structures in Sets of
Classifiers and Generalization Bounds,” in Proceedings
of the 14th Russian Conference on Mathematical Methods
of Pattern Recognition (MAKS Press, Moscow, 2009),
pp. 45–48.

4. A. I. Frey, “Exact Bounds for the Probability of Overfit�
ting for Symmetric Sets of Predictors,” in Proceedings
of the 14th Russian Conference on Mathematical Methods
of Pattern Recognition (MAKS Press, Moscow, 2009),
pp. 66–69.

5. E. T. Bax, “Similar Predictors and VC Error Bounds,”
Tech. Rep. CalTech�CS�TR97�14: 6 1997.

6. S. Boucheron, O. Bousquet, and G. Lugosi, “Theory of
Classification: A Survey of Some Recent Advances,”
ESIAM: Probab. Stat., No. 9, 323–375 (2005).

7. R. Herbrich and R. Williamson, “Algorithmic Lucki�
ness,” J. Machine Learning Res., No. 3, 175–212
(2002).

8. V. Koltchinskii, “Rademacher Penalties and Structural
Risk Minimization,” IEEE Trans. Inf. Theory 47 (5)
1902–1914 (2001).

9. V. Koltchinskii and D. Panchenko, “Rademacher Pro�
cesses and Bounding the Risk of Function Learning,”
in High Dimensional Probability, II, Ed. by D.E. Gine
and J Wellner (Birkhauser, 1999) pp. 443–457.

10. J. Langford, “Quantitatively Tight Sample Complexity
Bounds,” Ph.D. Thesis (Carnegie Mellon Thesis,
2002).

11. J. Langford and D. McAllester, “Computable Shell
Decomposition Bounds,” in Proceedings of the 13th
Annual Conference on Computer Learning Theory (Mor�
gan Kaufmann, San Francisco, CA, 2000), pp. 25–34.

12. J. Langford and J. Shawe�Taylor, “PAC�Bayes and
Margins,” in Advances in Neural Information Processing
Systems 15 (MIT Press, 2002), pp. 439–446.

13. D. McAllester, “PAC�Bayesian Model Averaging,” in
COLT: Proceedings of the Workshop on Computational
Learning Theory (Morgan Kaufmann, San Francisco,
CA, 1999).

14. P. Philips, “Data�Dependent Analysis of Learning Sys�
tems,” Ph.D. Thesis (The Australian National Univer�
sity, Canberra, 2005). 



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 20  No. 3  2010

EXACT COMBINATORIAL BOUNDS 285

15. J. Sill, “Monotonicity and Connectedness in Learning
Systems,” Ph.D. Thesis (California Inst. Technol.,
1998).

16. V. Vapnik, Estimation of Dependencies Based on Empiri�
cal Data (Springer, New York, 1982).

17. V. Vapnik, Statistical Learning Theory (Wiley, New
York, 1998).

18. V. Vapnik and A. Chervonenkis, “On the Uniform Con�
vergence of Relative Frequencies of Events to Their
Probabilities,” Theory Probab. Its. Appl. 16 (2), 264–
280 (1971).

19. N. Vayatis and R. Azencott, “Distribution�dependent
Vapnik–Chervonenkis Bounds,” Lecture Notes in Com�
puter Science 1572 230–240 (1999).

20. K. V. Vorontsov, “Combinatorial Probability and the
Tightness of Generalization Bounds,” Pattern Recognit.
Image Anal. 18 (2), 243–259 (2008).

21. K. V. Vorontsov, “On the Influence of Similarity of
Classifiers on the Probability of Overfitting,” in Pattern
Recognition and Image Analysis: New Information Tech�

nologies (PRIA�9) (Nizhni Novgorod, 2008), Vol. 2,
pp. 303–306.

22. K. V. Vorontsov, “Splitting and Similarity Phenomena
in the Sets of Classifiers and Their Effect on the Proba�
bility of Overfitting,” Pattern Recognit. Image Anal. 19
(3), 412–420 (2009).

23. K. V. Vorontsov, “Tight Bounds for the Probability of
Overfitting,” Dokl. Math. 80 (3) 793–796 (2009).

Konstantin Vorontsov. Born 1971.
Graduated from the Faculty of Applied
Mathematics and Control, Moscow
Institute of Physics and Technology, in
1994. Received candidate’s degree in
1999 and doctoral degree in 2010. Cur�
rently is with the Dorodnicyn Comput�
ing Centre, Russian Academy of Sci�
ences. Scientific interests: statistical
learning theory, machine learning, data
mining, probability theory, and combina�

torics. Author of 75 papers. Homepage: www.ccas.ru/voron. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


