Regression

Victor Kitov

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

- Linear model $f(x,\beta) = \langle x,\beta \rangle = \sum_{i=1}^{D} \beta_i x^i$
- Define $X \in \mathbb{R}^{NxD}$, $\{X\}_{ij}$ defines the *j*-th feature of *i*-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ target value for *i*-th object.
- Ordinary least squares (OLS) method:

$$\sum_{n=1}^{N} \left(f(x_n,\beta) - y_n \right)^2 = \sum_{n=1}^{N} \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right)^2 \to \min_{\beta}$$

Solution

Stationarity condition:

$$2\sum_{n=1}^{N} x_n \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n\right) = 0$$

In matrix form:

$$2X^{T}(X\beta - Y) = 0$$

so

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

This is the global minimum, because the optimized criteria is convex.

Geometric interpretation of linear regression, estimated with OLS.

Linearly dependent features

- Solution $\widehat{\beta} = (X^T X)^{-1} X^T Y$ exists when $X^T X$ is non-degenerate
- Using property $rank(X) = rank(X^T) = rank(X^TX) = rank(XX^T)$
 - problem occurs when one of the features is a linear combination of the other
 - example: constant unity feature c and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$
 - interpretation: non-identifiability of $\widehat{\beta}$
 - solved using:
 - feature selection
 - extraction (e.g. PCA)
 - regularization.

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- $X^T X$ should be non-degenerate (and well-conditioned)

Nonlinear transformations

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Nonlinear transformations

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$\mathbf{x} \rightarrow [\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots \phi_M(\mathbf{x})]$$

$$f(\boldsymbol{x}) = \langle \phi(\boldsymbol{x}), eta
angle = \sum_{m=0}^{M} eta_m \phi_m(\boldsymbol{x})$$

The model remains to be linear in w, so all advantages of linear regression remain.

Nonlinear transformations

Typical transformations

$\phi_k(x)$	comments
$\left[\exp\left\{-\frac{\ x-\mu\ ^2}{s^2}\right\} \right]$	closeness to point μ in feature space
x ⁱ x ^j	interaction of features
$\ln x_k$	the alignment of the distribution
	with heavy tails
$F^{-1}(x_k)$	conversion of atypical continious
(<i>L</i> _k)	distribution to uniform ¹

Regularization & restrictions.

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- Interest Interest
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

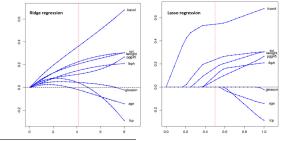
Regularization & restrictions.

Regularization

• Variants of target criteria $Q(\beta)$ with regularization²:

$$\begin{array}{ll} \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda ||\beta||_1 & \text{Lasso} \\ \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda ||\beta||_2^2 & \text{Ridge} \\ \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda_1 ||\beta||_1 + \lambda_2 ||\beta||_2^2 & \text{Elastic net} \end{array}$$

• Dependency of β from $\frac{1}{\lambda}$:



²Derive solution for ridge regression. Will it be uniquely defined for correlated features? ^{11/29}

Regularization & restrictions.

Linear monotonic regression

 We can impose restrictions on coefficients such as non-negativity:

$$egin{cases} {m{\mathcal{Q}}(eta)=||m{X}eta-m{Y}||^2
ightarrow \mathsf{min}_eta}\ {m{eta}_i\geq \mathbf{0}, \quad i=\mathbf{1},\mathbf{2},...m{D}} \end{cases}$$

- Example: avaraging of forecasts of different prediction algorithms
- β_i = 0 means, that *i*-th component does not improve accuracy of forecasting.

Different loss-functions

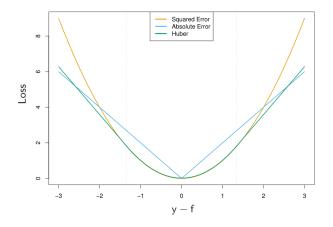
Table of contents

- 2 Nonlinear transformations
- 8 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Regression - Victor Kitov

Different loss-functions

Non-quadratic loss functions³⁴



³What is the value of constant prediction, minimizing sum of squared errors? ⁴What is the value of constant prediction, minimizing sum of absolute errors? Different loss-functions

Conditional non-constant optimization

• For $x, y \sim P(x, y)$ and prediction being made for fixed x:

$$\arg\min_{f(x)} \mathbb{E}\left\{\left.(f(x) - y)^2\right|x\right\} = \mathbb{E}[y|x]$$

$$rgmin_{f(x)} \mathbb{E}\left\{ \left| f(x) - y \right| \left| x \right\} = median[y|x]
ight\}$$

Different loss-functions

٢

Minimization of expected squared error

Let
$$x,y\sim \mathcal{P}(x,y)$$
 and $\mathbb{E}[y|x]$ exist. Then $rg\min_{f(x)}\mathbb{E}\left\{\left.(f(x)-y)^2\right|x
ight\}=\mathbb{E}[y|x]$

$$\mathbb{E}\left\{\left(f(x)-y\right)^{2}\middle|x\right\} = \mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]+\mathbb{E}[y|x]-y\right)^{2}\middle|x\right\}$$
$$= \mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]\right)^{2}\middle|x\right\} + \mathbb{E}\left\{\left(\mathbb{E}[y|x]-y\right)^{2}\middle|x\right\}$$
$$+2\mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]\right)\left(\mathbb{E}[y|x]-y\right)\middle|x\right\} =$$
$$= \left(f(x)-\mathbb{E}[y|x]\right)^{2} + \mathbb{E}\left\{\left(\mathbb{E}[y|x]-y\right)^{2}\middle|x\right\}$$
(1)

Regression - Victor Kitov

Different loss-functions

Minimization of expected squared error

We used

$$\mathbb{E} \left\{ \left(f(x) - \mathbb{E}[y|x] \right) \left(\mathbb{E}[y|x] - y
ight) | x
ight\} = \left(f(x) - \mathbb{E}[y|x]
ight) \mathbb{E} \left\{ \mathbb{E}[y|x] - y | x
ight\} \equiv \mathbf{0}$$

Minimum of (1) is achieved at $f(x) = \mathbb{E}[y|x]$.

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Weighted account for observations⁵

• Weighted account for observations

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2$$

- Weights may be:
 - increased for incorrectly predicted objects
 - algorithm becomes more oriented on error correction
 - · decreased for incorrectly predicted objects
 - they may be considered outliers that break our model

⁵Derive solution for weighted regression.

Robust regression

- Initialize $w_1 = ... = w_N = 1/N$
- Repeat:
 - estimate regression $\hat{y}(x)$ using observations (x_i, y_i) with weights w_i .
 - for each *i* = 1, 2, ...*N*:
 - re-estimate $\varepsilon_i = \widehat{y}(x_i) y_i$
 - recalculate $w_i = K(|\varepsilon_i|)$
 - normalize weights $w_i = \frac{w_i}{\sum_{n=1}^N w_n}$

Comments: $K(\cdot)$ is some *decreasing* function, repetition may be

- predefined number of times
- until convergence of model parameters.

Robust classification

- Initialize $w_1 = ... = w_N = 1/N$
- Repeat:
 - estimate classifier disriminant functions {g_y(·)}_{y=1,...C} using observations (x_i, y_i) with weights w_i.
 - for each *i* = 1, 2, ...*N*:
 - re-estimate $M_i = g_{y_i}(x_i) \max_{y
 eq y_i} g_y(x_i)$
 - recalculate $w_i = K(M_i)$
 - normalize weights $w_i = \frac{w_i}{\sum_{n=1}^N w_n}$

Comments: $K(\cdot)$ is some *increasing* function, repetition may be

- predefined number of times
- until convergence of model parameters.

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
 - **D** Bias-variance decomposition

Local constant regression

- Names: Nadaraya-Watson regression, kernel regression
- For each x assume $f(x) = const = \alpha, \ \alpha \in \mathbb{R}$.

$$Q(lpha, X_{training}) = \sum_{i=1}^{N} w_i(x)(lpha - y_i)^2
ightarrow \min_{lpha \in \mathbb{R}}$$

 Weights depend on the proximity of training objects to the predicted object:

$$w_i(x) = \mathcal{K}\left(rac{
ho(x,x_i)}{h}
ight)$$

• From stationarity condition $\frac{\partial Q}{\partial \alpha} = 0$ obtain optimal $\widehat{\alpha}(x)$:

$$f(\boldsymbol{x},\alpha) = \widehat{\alpha}(\boldsymbol{x}) = \frac{\sum_{i} y_{i} w_{i}(\boldsymbol{x})}{\sum_{i} w_{i}(\boldsymbol{x})} = \frac{\sum_{i} y_{i} \mathcal{K}\left(\frac{\rho(\boldsymbol{x},\boldsymbol{x}_{i})}{h}\right)}{\sum_{i} \mathcal{K}\left(\frac{\rho(\boldsymbol{x},\boldsymbol{x}_{i})}{h}\right)}$$

Comments

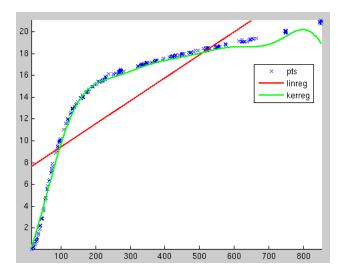
Under certain regularity conditions $g(x, \alpha) \xrightarrow{P} E[y|x]$ Typically used kernel functions⁶:

$$egin{array}{rcl} \mathcal{K}_G(r) &=& e^{-rac{1}{2}r^2}- ext{Gaussian kernel} \ \mathcal{K}_P(r) &=& (1-r^2)^2\mathbb{I}[|r|<1]- ext{quartic kernel} \end{array}$$

- The specific form of the kernel function does not affect the accuracy much
- h controls the adaptability of the model to local changes in data
 - how h affects under/overfitting?
 - h can be constant or depend on x (if concentration of objects changes significantly)

⁶Compare them in terms of required computation.

Example



Local linear regression

• Local (in neighbourhood of x_i) approximation $f(x) = x^T \beta$

• Solve for
$$w_n(x) = K\left(\frac{\rho(x,x_n)}{h}\right)$$
:

$$Q(\beta,\beta_0|X_{training}) = \sum_{n=1}^{N} w_n(x) \left(x^T \beta - y_n\right)^2 \to \min_{\beta \in \mathbb{R}}$$

Local linear regression

• Local (in neighbourhood of x_i) approximation $f(x) = x^T \beta$

• Solve for
$$w_n(x) = K\left(\frac{\rho(x,x_n)}{h}\right)$$
:

$$Q(\beta,\beta_0|X_{training}) = \sum_{n=1}^{N} w_n(x) \left(x^T \beta - y_n\right)^2 \to \min_{\beta \in \mathbb{R}}$$

- Advantages of local linear regression:
 - compared to local constant kernel linear regression better predicts:
 - local local minima and maxima
 - linear change at the edges of the training set

Bias-variance decomposition

Table of contents

- 2 Nonlinear transformations
- 3 Regularization & restrictions.
- 4 Different loss-functions
- 5 Weighted account for observations
- 6 Local non-linear regression
- Bias-variance decomposition

Bias-variance decomposition

Bias-variance decomposition

- True relationship $y = f(x) + \varepsilon$
- This relationship is estimated using random training set $(X, Y) = \{(x_n, y_n), n = 1, 2...N\}$
- Recovered relationship $\hat{f}(x)$, x-some fixed constant
- Noise ε is independent of any X, Y, $\mathbb{E}\varepsilon = 0$ and $Var[\varepsilon] = \sigma^2$

Bias-variance decomposition

$$\mathbb{E}_{X,Y,arepsilon}\{[\widehat{f}(x)-y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\}-f(x)
ight)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x)-\mathbb{E}_{X,Y}\widehat{f}(x)]^2
ight\}+\sigma^2$$

- Intuition: $MSE = bias^2 + variance + irreducible error$
 - darts intuition

Bias-variance decomposition

Proof of bias-variance decomposition

Define for brevity of notation f = f(x), $\widehat{f} = \widehat{f}(x)$, $\mathbb{E} = \mathbb{E}_{X,Y,\varepsilon}$.

$$\mathbb{E}\left(\widehat{f}-f\right)^{2} = \mathbb{E}\left(\widehat{f}-\mathbb{E}\widehat{f}+\mathbb{E}\widehat{f}-f\right)^{2} = \mathbb{E}\left(\widehat{f}-\mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f}-f\right)^{2} \\ + 2\mathbb{E}\left[(\widehat{f}-\mathbb{E}\widehat{f})(\mathbb{E}\widehat{f}-f)\right] \\ = \mathbb{E}\left(\widehat{f}-\mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f}-f\right)^{2}$$

We used that $(\mathbb{E}\hat{f} - f)$ is a constant w.r.t. X, Y and hence $\mathbb{E}\left[(\hat{f} - \mathbb{E}\hat{f})(\mathbb{E}\hat{f} - f)\right] = (\mathbb{E}\hat{f} - f)\mathbb{E}(\hat{f} - \mathbb{E}\hat{f}) = \mathbf{0}.$

$$\mathbb{E}\left(\widehat{f} - y\right)^2 = \mathbb{E}\left(\widehat{f} - f - \varepsilon\right)^2 = \mathbb{E}\left(\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 - 2\mathbb{E}\left[\left(\widehat{f} - f\right)\varepsilon\right]$$
$$= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 + \sigma^2$$

Here $\mathbb{E}\left[(\widehat{f} - f)\varepsilon\right] = \mathbb{E}\left[(\widehat{f} - f)\right] \mathbb{E}\varepsilon = \underset{29/29}{0}$ since ε is independent of X, Y.