Regression

Victor Kitov

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations
(5) Local non-linear regression
(7) Bias-variance decomposition

Linear regression

- Linear model $f(x, \beta)=\langle x, \beta\rangle=\sum_{i=1}^{D} \beta_{i} x^{i}$
- Define $X \in \mathbb{R}^{N x D},\{X\}_{i j}$ defines the j-th feature of i-th object, $Y \in \mathbb{R}^{n},\{Y\}_{i}$ - target value for i-th object.
- Ordinary least squares (OLS) method:

$$
\sum_{n=1}^{N}\left(f\left(x_{n}, \beta\right)-y_{n}\right)^{2}=\sum_{n=1}^{N}\left(\sum_{d=1}^{D} \beta_{d} x_{n}^{d}-y_{n}\right)^{2} \rightarrow \min _{\beta}
$$

Solution

Stationarity condition:

$$
2 \sum_{n=1}^{N} x_{n}\left(\sum_{d=1}^{D} \beta_{d} x_{n}^{d}-y_{n}\right)=0
$$

In matrix form:

$$
2 X^{T}(X \beta-Y)=0
$$

SO

$$
\widehat{\beta}=\left(X^{\top} X\right)^{-1} X^{T} Y
$$

This is the global minimum, because the optimized criteria is convex.

- Geometric interpretation of linear regression, estimated with OLS.

Linearly dependent features

- Solution $\widehat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} Y$ exists when $X^{T} X$ is non-degenerate
- Using property

$$
\operatorname{rank}(X)=\operatorname{rank}\left(X^{\top}\right)=\operatorname{rank}\left(X^{\top} X\right)=\operatorname{rank}\left(X X^{T}\right)
$$

- problem occurs when one of the features is a linear combination of the other
- example: constant unity feature c and one-hot-encoding $e_{1}, e_{2}, \ldots e_{K}$, because $\sum_{k} e_{k} \equiv c$
- interpretation: non-identifiability of $\widehat{\beta}$
- solved using:
- feature selection
- extraction (e.g. PCA)
- regularization.

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- $X^{T} X$ should be non-degenerate (and well-conditioned)

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations

6 Local non-linear regression
(4) Bias-variance decomposition

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$
\begin{gathered}
x \rightarrow\left[\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \ldots \phi_{M}(x)\right] \\
f(x)=\langle\phi(x), \beta\rangle=\sum_{m=0}^{M} \beta_{m} \phi_{m}(x)
\end{gathered}
$$

The model remains to be linear in w, so all advantages of linear regression remain.

Typical transformations

$\phi_{k}(x)$	comments		
$\exp \left\{-\frac{\\|x-\mu\\|^{2}}{s^{2}}\right\}$	closeness to point μ in feature space		
$x^{i} x^{j}$	interaction of features		
$\ln x_{k}$	the alignment of the distribution with heavy tails		
$F^{-1}\left(x_{k}\right)$	conversion of atypical continious distribution to uniform		

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations
(2) Local non-linear regression
(7) Bias-variance decomposition

Regularization

- Variants of target criteria $Q(\beta)$ with regularization ${ }^{2}$:

$$
\begin{array}{ll}
\sum_{n=1}^{N}\left(x_{n}^{T} \beta-y_{n}\right)^{2}+\lambda\|\beta\|_{1} & \text { Lasso } \\
\sum_{n=1}^{N}\left(x_{n}^{T} \beta-y_{n}\right)^{2}+\lambda\|\beta\|_{2}^{2} & \text { Ridge } \\
\sum_{n=1}^{N}\left(x_{n}^{T} \beta-y_{n}\right)^{2}+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{2}^{2} & \text { Elastic net }
\end{array}
$$

- Dependency of β from $\frac{1}{\lambda}$:

[^0] correlated features?

Linear monotonic regression

- We can impose restrictions on coefficients such as non-negativity:

$$
\left\{\begin{array}{l}
Q(\beta)=\|X \beta-Y\|^{2} \rightarrow \min _{\beta} \\
\beta_{i} \geq 0, \quad i=1,2, \ldots D
\end{array}\right.
$$

- Example: avaraging of forecasts of different prediction algorithms
- $\beta_{i}=0$ means, that i-th component does not improve accuracy of forecasting.

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations

6 Local non-linear regression
(7) Bias-variance decomposition

Non-quadratic loss functions ${ }^{34}$

${ }^{3}$ What is the value of constant prediction, minimizing sum of squared errors?
${ }^{4}$ What is the value of constant prediction, minimizing sum of absolute errors?

Conditional non-constant optimization

- For $x, y \sim P(x, y)$ and prediction being made for fixed x :

$$
\arg \min _{f(x)} \mathbb{E}\left\{(f(x)-y)^{2} \mid x\right\}=\mathbb{E}[y \mid x]
$$

$\arg \min _{f(x)} \mathbb{E}\{|f(x)-y| \mid x\}=\operatorname{median}[y \mid x]$

Minimization of expected squared error

- Let $x, y \sim P(x, y)$ and $\mathbb{E}[y \mid x]$ exist. Then

$$
\begin{align*}
& \arg \min _{f(x)} \mathbb{E}\left\{(f(x)-y)^{2} \mid x\right\}=\mathbb{E}[y \mid x] \\
& \mathbb{E}\left\{(f(x)-y)^{2} \mid x\right\}= \mathbb{E}\left\{(f(x)-\mathbb{E}[y \mid x]+\mathbb{E}[y \mid x]-y)^{2} \mid x\right\} \\
&= \mathbb{E}\left\{(f(x)-\mathbb{E}[y \mid x])^{2} \mid x\right\}+\mathbb{E}\left\{(\mathbb{E}[y \mid x]-y)^{2} \mid x\right\} \\
&+2 \mathbb{E}\{(f(x)-\mathbb{E}[y \mid x])(\mathbb{E}[y \mid x]-y) \mid x\}= \\
&=(f(x)-\mathbb{E}[y \mid x])^{2}+\mathbb{E}\left\{(\mathbb{E}[y \mid x]-y)^{2} \mid x\right\} \tag{1}
\end{align*}
$$

Minimization of expected squared error

We used

$$
\begin{aligned}
& \mathbb{E}\{(f(x)-\mathbb{E}[y \mid x])(\mathbb{E}[y \mid x]-y) \mid x\}= \\
& (f(x)-\mathbb{E}[y \mid x]) \mathbb{E}\{\mathbb{E}[y \mid x]-y \mid x\} \equiv 0
\end{aligned}
$$

Minimum of (1) is achieved at $f(x)=\mathbb{E}[y \mid x]$.

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations
(6) Local non-linear regression
(7) Bias-variance decomposition

Weighted account for observations ${ }^{5}$

- Weighted account for observations

$$
\sum_{n=1}^{N} w_{n}\left(x_{n}^{T} \beta-y_{n}\right)^{2}
$$

- Weights may be:
- increased for incorrectly predicted objects
- algorithm becomes more oriented on error correction
- decreased for incorrectly predicted objects
- they may be considered outliers that break our model

[^1]
Robust regression

- Initialize $w_{1}=\ldots=w_{N}=1 / N$
- Repeat:
- estimate regression $\widehat{y}(x)$ using observations $\left(x_{i}, y_{i}\right)$ with weights w_{i}.
- for each $i=1,2, \ldots N$:
- re-estimate $\varepsilon_{i}=\widehat{y}\left(x_{i}\right)-y_{i}$
- recalculate $w_{i}=K\left(\left|\varepsilon_{i}\right|\right)$
- normalize weights $w_{i}=\frac{w_{i}}{\sum_{n=1}^{N} w_{n}}$

Comments: $K(\cdot)$ is some decreasing function, repetition may be

- predefined number of times
- until convergence of model parameters.

Robust classification

- Initialize $w_{1}=\ldots=w_{N}=1 / N$
- Repeat:
- estimate classifier disriminant functions $\left\{g_{y}(\cdot)\right\}_{y=1, \ldots c}$ using observations $\left(x_{i}, y_{i}\right)$ with weights w_{i}.
- for each $i=1,2, \ldots N$:
- re-estimate $M_{i}=g_{y_{i}}\left(x_{i}\right)-\max _{y \neq y_{i}} g_{y}\left(x_{i}\right)$
- recalculate $w_{i}=K\left(M_{i}\right)$
- normalize weights $w_{i}=\frac{w_{i}}{\sum_{n=1}^{w_{i}} w_{n}}$

Comments: $K(\cdot)$ is some increasing function, repetition may be

- predefined number of times
- until convergence of model parameters.

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations
(6) Local non-linear regression
(7) Bias-variance decomposition

Local constant regression

- Names: Nadaraya-Watson regression, kernel regression
- For each x assume $f(x)=$ const $=\alpha, \alpha \in \mathbb{R}$.

$$
Q\left(\alpha, X_{\text {training }}\right)=\sum_{i=1}^{N} w_{i}(x)\left(\alpha-y_{i}\right)^{2} \rightarrow \min _{\alpha \in \mathbb{R}}
$$

- Weights depend on the proximity of training objects to the predicted object:

$$
w_{i}(x)=K\left(\frac{\rho\left(x, x_{i}\right)}{h}\right)
$$

- From stationarity condition $\frac{\partial Q}{\partial \alpha}=0$ obtain optimal $\widehat{\alpha}(x)$:

$$
f(x, \alpha)=\widehat{\alpha}(x)=\frac{\sum_{i} y_{i} w_{i}(x)}{\sum_{i} w_{i}(x)}=\frac{\sum_{i} y_{i} K\left(\frac{\rho\left(x, x_{i}\right)}{h}\right)}{\sum_{i} K\left(\frac{\rho\left(x, x_{i}\right)}{h}\right)}
$$

Comments

Under certain regularity conditions $g(x, \alpha) \xrightarrow{P} E[y \mid x]$ Typically used kernel functions ${ }^{6}$:

$$
\begin{aligned}
K_{G}(r) & =e^{-\frac{1}{2} r^{2}}-\text { Gaussian kernel } \\
K_{P}(r) & =\left(1-r^{2}\right)^{2} \mathbb{I}[|r|<1]-\text { quartic kernel }
\end{aligned}
$$

- The specific form of the kernel function does not affect the accuracy much
- h controls the adaptability of the model to local changes in data
- how h affects under/overfitting?
- h can be constant or depend on x (if concentration of objects changes significantly)

[^2]
Example

Local linear regression

- Local (in neighbourhood of x_{i}) approximation $f(x)=x^{\top} \beta$
- Solve for $w_{n}(x)=K\left(\frac{\rho\left(x, x_{n}\right)}{h}\right)$:

$$
Q\left(\beta, \beta_{0} \mid X_{\text {training }}\right)=\sum_{n=1}^{N} w_{n}(x)\left(x^{T} \beta-y_{n}\right)^{2} \rightarrow \min _{\beta \in \mathbb{R}}
$$

Local linear regression

- Local (in neighbourhood of x_{i}) approximation $f(x)=x^{\top} \beta$
- Solve for $w_{n}(x)=K\left(\frac{\rho\left(x, x_{n}\right)}{h}\right)$:

$$
Q\left(\beta, \beta_{0} \mid X_{\text {training }}\right)=\sum_{n=1}^{N} w_{n}(x)\left(x^{T} \beta-y_{n}\right)^{2} \rightarrow \min _{\beta \in \mathbb{R}}
$$

- Advantages of local linear regression:
- compared to local constant kernel linear regression better predicts:
- local local minima and maxima
- linear change at the edges of the training set

Table of contents

(1) Linear regression
(2) Nonlinear transformations
(3) Regularization \& restrictions.
(4) Different loss-functions
(5) Weighted account for observations
6) Local non-linear regression
(7) Bias-variance decomposition

Bias-variance decomposition

- True relationship $y=f(x)+\varepsilon$
- This relationship is estimated using random training set $(X, Y)=\left\{\left(x_{n}, y_{n}\right), n=1,2 \ldots N\right\}$
- Recovered relationship $\widehat{f}(x), x$-some fixed constant
- Noise ε is independent of any $X, Y, \mathbb{E} \varepsilon=0$ and $\operatorname{Var}[\varepsilon]=\sigma^{2}$

Bias-variance decomposition

$$
\begin{aligned}
\left.\mathbb{E}_{X, Y, \varepsilon}\{\widehat{f}(x)-y(x)]^{2}\right\}= & \left(\mathbb{E}_{X, Y}\{\widehat{f}(x)\}-f(x)\right)^{2} \\
& +\mathbb{E}_{X, Y}\left\{\left[\widehat{f}(x)-\mathbb{E}_{X, Y} \widehat{f}(x)\right]^{2}\right\}+\sigma^{2}
\end{aligned}
$$

- Intuition: $M S E=$ bias $^{2}+$ variance + irreducible error
- darts intuition

Proof of bias-variance decomposition

Define for brevity of notation $f=f(x), \widehat{f}=\widehat{f}(x), \mathbb{E}=\mathbb{E}_{X, Y, \varepsilon}$.

$$
\begin{aligned}
\mathbb{E}(\widehat{f}-f)^{2}= & \mathbb{E}(\widehat{f}-\mathbb{E} \widehat{f}+\mathbb{E} \widehat{f}-f)^{2}=\mathbb{E}(\widehat{f}-\mathbb{E} \widehat{f})^{2}+(\widehat{\mathbb{E}} \widehat{f}-f)^{2} \\
& +2 \mathbb{E}[(\hat{f}-\mathbb{E} \widehat{f})(\mathbb{E} \widehat{f}-f)] \\
& =\mathbb{E}(\widehat{f}-\mathbb{E} \widehat{f})^{2}+(\widehat{\mathbb{E}} \widehat{f}-f)^{2}
\end{aligned}
$$

We used that $(\hat{\mathbb{E}}-f)$ is a constant w.r.t. X, Y and hence $\mathbb{E}[(\widehat{f}-\mathbb{E} \widehat{f})(\widehat{\mathbb{E}}-f)]=(\widehat{\mathbb{E}}-f) \mathbb{E}(\widehat{f}-\widehat{\mathbb{E}} \widehat{f})=0$.

$$
\begin{aligned}
\mathbb{E}(\widehat{f}-y)^{2} & =\mathbb{E}(\hat{f}-f-\varepsilon)^{2}=\mathbb{E}(\hat{f}-f)^{2}+\mathbb{E} \varepsilon^{2}-2 \mathbb{E}[(\hat{f}-f) \varepsilon] \\
& =\mathbb{E}(\hat{f}-\mathbb{E} \widehat{f})^{2}+(\mathbb{E} \hat{f}-f)^{2}+\sigma^{2}
\end{aligned}
$$

Here $\mathbb{E}[(\widehat{f}-f) \varepsilon]=\mathbb{E}[(\widehat{f}-f)] \mathbb{E} \varepsilon=0$ since ε is independent of X, Y.

[^0]: ${ }^{2}$ Derive solution for ridge regression. Will it be uniquely defined for

[^1]: ${ }^{5}$ Derive solution for weighted regression.

[^2]: ${ }^{6}$ Compare them in terms of requiredscomputation.

