Word senses. 1

Victor Kitov

v.v.kitov@yandex.ru

¹With materials used from "Speech and Language Processing", D. Jurafsky and J. H. Martin.

Word senses and their relationships

Table of Contents

Word senses and their relationships

2 WordNet thesaurus

3 Word sense disambiguation

4 Computing senses similarity

Lemma, wordform, meaning

- Lexical semantics field of study about meaning of words.
- Wordform word in different forms
 - e.g. carpets; sing, sang, sung
- Lemma word in its standardized form
 - e.g.: carpets->carpet; sing,sang,sung->sing
- The same word can have many word senses (meanings):
 - bank financial institution
 - Instead, a *bank* can hold the investments in a custodial account in the client's name.
 - bank building where financial institution is located
 - Please turn right after the bank.
 - bank sloping side of a river
 - But as agriculture burgeons on the east *bank*, the river will shrink even more.
 - bank repository for various biological entities
 - Taken from the blood bank

Multiple senses

- This sense ambiguity causes problems in:
 - speech synthesys (different meanings may be pronounced differently)
 - information retrieval, question answering (return not what was requested), machine translation
- Word sense disambiguation the task of determining which sense of a word is being used in particular context.
- Bank usages are called homographs (омографы) different senses but spelled the same.

homonimy vs. polysemy

- Completely unrelated senses called homonimy (омонимия)
 - e.g. bank=financial institution and bank=sloping side of a river
- Related senses are called **polysemy** (полисемия,
 - многозначность)
 - e.g. bank=financial institution and bank=building where financial institution is located
- Examples of polysemy:
 - Author (Jane Austen wrote Emma) ↔ Works of Author (I really love Jane Austen)
 - Tree (Plums have beautiful blossoms) ↔ Fruit (I ate a preserved plum yesterday)
- Distinguish between homonimy and polysemy by trying to use both senses in one sentence:
 - Which of those flights serve breakfast?
 - Does Midwest Express serve Philadelphia?
 - Test: Does Midwest Express serve breakfast and Philadelphia?
 BAD!

Word senses from dictionary

- Dictionary definitions:
 - right adj. located nearer the right hand esp. being on the right when facing the same direction as the observer.
 - left adj. located nearer to this side of the body than the right.
 - red n. the color of blood or a ruby.
 - blood n. the red liquid that circulates in the heart, arteries and veins of animals.
- Problems with definitions:
 - right explicit self-reference,
 - left implicit self-reference
 - red, blood reference each other
- We can't extract automatically exact meanings, but we can extract meaning relations:
 - left-right are connected and oppose each other
 - blood is a liquid
 - red is a color, may be applied to blood
- WordNet free database of sense relations

Word senses and their relationships

Same-opposite relation

- Synonyms words with the same meaning
 - couch/sofa, car/automobile, ...
- Antonyms words with opposite meaning
 - adjectives:long/short big/little fast/slow cold/hot dark/light
 - reversives (реверсивные смыслы), describe change or movement in opposite directions
 - rise/fall up/down, in/out

Word senses and their relationships

General-specific relation

- Hyponim more specific sense
 - car is a hyponym of vehicle
 - dog is a hyponym of animal
 - mango is a hyponym of fruit
- Hyperonim more general sense
 - vehicle is a hyperonym for car
 - animal is a hyperonym for dog
 - fruit is a hyperonym for mango

Word senses and their relationships

Part-whole relation

- Meronim part of sense
 - a leg is a meronym of chair
 - a wheel is a meronym of car
- Holonym contains sense
 - a chair is a holonym of leg
 - a car is a holonym for wheel

WordNet thesaurus

Table of Contents

2 WordNet thesaurus

- 3 Word sense disambiguation
- 4 Computing senses similarity

WordNet thesaurus

WordNet

- WordNet free database of word senses and their relations
 - three separate databases, one-for nouns, one-for verbs and one-for adjectives and adverbs
- synset (for synonym set) the set of near-synonyms
 - e.g. {fool2, chump1, gull1, mark9, patsy1, fall guy1, sucker1, soft touch1, mug2}
 - number is the sense number for given word

WordNet thesaurus

Sense relations in WordNet for nouns

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to concept instances	$composer^1 \rightarrow Bach^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Substance Meronym		From substances to their subparts	$water^1 \rightarrow oxygen^1$
Substance Holonym		From parts of substances to wholes	$gin^1 \rightarrow martini^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivationally		Lemmas w/same morphological root	$destruction^1 \iff destro$
Related Form			

WordNet thesaurus

Sense relations in WordNet for verbs

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From events to subordinate event (often via specific manner)	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \rightarrow sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \iff decrease^1$
Derivationally	Lemmas with same morphological root	$destroy^1 \iff destruction^1$
Related Form		

WordNet thesaurus

Hyperonim path 1

```
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                  => living thing, animate thing,
                     => whole, unit
                        => object, physical object
                           => physical entity
                              => entity
               => causal agent, cause, causal agency
                  => physical entity
                     => entity
```

WordNet thesaurus

Hyperonim path 2

```
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument
    => device
    => instrumentality, instrumentation
        => artifact, artefact
            => whole, unit
            => object, physical object
                => physical entity
                => entity
```

Word senses. - Victor Kitov Word sense disambiguation

Table of Contents

2 WordNet thesaurus

3 Word sense disambiguation

4 Computing senses similarity

Word sense disambiguation

Word sense disambiguation

Word sense disambiguation - match sense to word in context.

- lexical sample task: for small set of words find out their senses from lexicon of predefined senses.
 - solved with usual classifiers
- all-words task: disambiguate all words in the text, given lexicon of all senses.
 - similar to POS tagging
 - but-enormous number of classes! individual class set for each word!
 - not sufficient data to fit individual classifier for each word

All words task

- Popular dataset for all-words task SemCor
 - it is a subset of the Brown Corpus consisting of over 234,000 words
 - each word manually tagged with WordNet senses
- Features for solving this task-based on words around target word in context.
 - collocational features: info about words at specific relative positions with respect to target word
 - small context used for collocational features +-1,2,3 words.
 - wordform, its root and part-of-speech are usually extracted.
 - **bag-of-words features**: info about occurence of words in context with no respect to their relative position
 - vocabulary is pre-selected as some useful subset of words
 - usually ignore stopwords, punctuation, numbers
 - usually only frequent words are accounted for
 - context for baf-of-words features may be wider.

Word sense disambiguation

Details

- When labelled data is insufficient, we may use Wikipedia
 - extract words with contexts, for which we hve links to their descriptions
 - need to match descriptions to WordNet senses.
- Evaluation metric is usually accuracy
- Baseline predict for each word its most common sense

Problems

- Supervised learning is most effective when we have enough data
- Datasets for distinction of meaning for particular words exist:
 - **line-hard-serve corpus** containing 4,000 sense-tagged examples of line as a noun, hard as an adjective and serve as a verb
 - **interest corpus** with 2,369 sense-tagged examples of interest as a noun
- Dataset, where sense was disambiguated for all words SemCor.
- For all words labelling data will still be insufficient
 - beause we need to fit individual model for each word
- Knowledge-based methods use dictionary or thesaurus to match meaning description and context of each word.

Dictionary methods

function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense \leftarrow most frequent sense for word

max-overlap $\leftarrow 0$

 $context \leftarrow set of words in sentence$

for each sense in senses of word do

```
signature \leftarrow set of words in the gloss and examples of sense
```

```
overlap \leftarrow COMPUTEOVERLAP(signature, context)
```

if *overlap* > *max-overlap* then

```
max-overlap \leftarrow overlap
```

best-sense \leftarrow sense

end

```
return(best-sense)
```

Word sense disambiguation

Modifications of Lesk algorithm

- Match descriptions of senses:
 - example: pine cone
 - descriptions of senses:
 - pine 1 kinds of evergreen tree with needle-shaped leaves
 - 2 waste away through sorrow or illness
 - cone 1 solid body which narrows to a point
 - 2 something of this shape whether solid or hollow
 - 3 fruit of certain evergreen trees
 - for cone 3 is selected (due to overlap in evergreen, pine)

Word sense disambiguation

Modifications of Lesk algorithm

- Weight overlapping word scores by
 - In p(w_i) probability of word in concatenated descriptions & examples
 - $IDF(w_i) = \ln \frac{N_{doc}}{N_i}$ where
 - *N_{doc}*-total number of documents
 - N_i- number of documents, containing word w_i
 - each document is sense description or usage example sentence.
- Augment description of sense with words from labelled dataset («corpus Lesk»)
- Features, extracted by Lesk (various overlaps), can be added to any other supervised classifier

Word sense disambiguation

Graph-based methods

- We build a graph (V, E) for given sentence $w_1 w_2 ... w_n$.
 - Initial nodes V all possible senses for each word in the sentence from WordNet
 - Expand these senses with V' WordNet senses that connect V to each other
 - depth-first search with small max depth
- Example subgraph for «drink milk»:

Word sense disambiguation

Graph-based methods

- Likelihood of each word sense from V may be measured by some node centrality measure:
 - e.g. degree (the number of edges into the node), PageRank, etc.
- Alternatively we may select the most central subgraph, consisting of senses for each word.

Word sense disambiguation

Semi-supervized sense disambiguation

- Supervised and corpus Lesk sense disambiguation algorithms work better when we have larger training set.
- To expand training set we may use semi-supervised learning:

```
hand label small training set TRAIN
while prefomance on validation improves:
   train classifier C with TRAIN
   apply classifier to test data TEST
   subset of test examples S, where C is most confident:
      label with class predictions
      remove S from TEST
      add S to TRAIN
```

Word sense disambiguation

Example

- Disambiguation of 2 senses of plant: plant=tree and plant=factory.
 - A=labelled objects with tree, B=labelled objects with factory, ? test objects.
 - (a) initial step, (b) next step of semi-supervised learning

Word sense disambiguation

Semi-supervised method: discussion

- Semi-supervised learning works, because word contexts are very versatile, consisting of many words, but presence of each word is very informative.
- Heuristics to assist labelling of training set:
 - for each word select context word very indicative of some sense and label based on presence of this indicative word, e.g.
 - plant together with life most often means «tree»
 - plant together with manufactiring most often means «factory»
 - if word was used in some sense in discourse, then it would typically be used in the same sense in other parts of discourse.

Word sense disambiguation

Unsupervised sense induction

- Expensive
 - to create senses thesaurus
 - to label each word
- Unsupervised sense induction: senses for each word are created automatically with clustering.
 - If too many objects use random subsample for clustering
 - Topic models can be applied instead of clustering..

Word sense disambiguation

Alogrithm

- Training:
 - For each word-position of word *w* in a corpus, compute a context vector c.
 - Cluster context vectors c for each word w. Each cluster=possible sense of w.
 - Ompute centroid of each cluster. Each centroid s_j is a sense vector.
- Testing:
 - For word-position, containing word w in a corpus, compute a context vector c.
 - Retrieve all sense vectors s_j for w.
 - Assign word-position to the sense represented by the sense vector s_i most close to c.

Word senses. - Victor Kitov Computing senses similarity

Table of Contents

Word senses and their relationships

2 WordNet thesaurus

- 3 Word sense disambiguation
- 4 Computing senses similarity

Computing senses similarity

Word sences similarity

- Semantic similarity = how much two senses share in semantic meaning
- Example:
 - bank=fin. institution is similar to fund
 - bank=riverside is similar to *slope*
- Semantic similarity between words:

$$egin{aligned} extsf{sim}(w_1,w_2) &= \max & extsf{sim}(s_1,s_2) \ & s_1 \in extsf{senses}(w_1) \ & s_2 \in extsf{senses}(w_2) \end{aligned}$$

Computing senses similarity

Word similarity applications

- Applications of sematic similarity between words:
 - information retrieavel: find words similar to query
 - question answering: find words relevant to question
 - summarization, machine translation: can we substitute one word with another?
 - automatic essay grading

Minimum path length

- Consider WordNet graph with only hyponim/hyperonim relations
- Define *MinPathLength*(c₁, c₂)-min path length, connecting senses c₁ and c₂ on the thesaurus graph, similarity:

$$sim(c_1, c_2) = rac{1}{1 + \mathsf{MinPathLength}(c_1, c_2)}$$

Computing senses similarity

Minimum path length

- Each edge has weight 1, but in reality semantic weight should be different
 - upper in the graph difference in senses is larger
 - lower in the graph difference in senses is lower
 - we can add weights based on proximity to root of the graph
- Alternatively we can calculate weight of eachstep based on corpus statistics.

Using corpus statistics

- Suppose we have text corpus with labelled sense for each word. We can calculate p(c) for each sense c.
 - if sense appears it counts for itself and all more general senses.
- Define $LCS(c_1, c_2)$ [lowest common subsumer of senses c_1 and c_2] the most specific common concept-hyperonim both for c_1 and c_2 .
- Define information revealed by random event E be $-\ln P(E)$
- Measures for sense similarity:

$$sim(c_1, c_2) = -\ln p(LCS(c_1, c_2))$$

$$sim(c_1, c_2) = \frac{-2\ln p(LCS(c_1, c_2))}{-\ln p(c_1) - \ln p(c_2)}$$

$$sim(c_1, c_2) = \frac{1}{-2\ln p(LCS(c_1, c_2)) + \ln p(c_1) + \ln p(c_2)}$$

Using dictionary definition

- Let def(c) be definition of sense c.
- We may measure similarity between c_1 and c_2 by counting number of words appearing in their definitions:

$$sim(c_1, c_2) = OVERLAP(def(c_1), def(c_2))$$

- each word can contribute nun=uniform weight, say IDF(w)
- we may also take into account overlap between:
 - sentences with sense usages
 - words with given sense
- we may calculate overlap between definitions of hyponims and hyperonims of c_1 and c_2 .