
Generative machine learning models
for scenario simulation

Vadim Strizhov

Geneva, 2023

1 / 32

Generate a scenario with a probabilistic model
Terms:

scenario is a time series realization of a reconstructed stochastic
process,
machine learning selects a reconstruction model to fit data,
model generates data of same distribution.

The goal: to reconstruct true distribution of data

The method: Principal Component Analysis (as autoencoder)

Assumptions:
1 time series are relatively short,
2 variance of each time series is high,
3 covariance of some time series is high.

2 / 32

One-state scenario forecasting model

The design matrix is

yt+1
1×1

x t
1×n

y
t×1

X
t×n

,

the forecasting model ŷ = wTX ,
the forecast ŷt+1 = wTx t .

3 / 32

Singular Spectrum Analysis and state space
1 Construct the Hankel matrix with time series,

X =

⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3
...
x t

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
x1 x2 x3 . . . xn
x2 x3 x4 . . . xn+1
x3 x4 x5 . . . xn+2
...

...
...

. . .
...

xt xt+1 xt+2 . . . xt+n

⎤⎥⎥⎥⎥⎥⎦ .

2 Decompose the matrix and take the k first components,

X = X 1 + · · ·+ X n = UΛV T =
n∑︁

k=1

𝜆kukvT
k .

3 Reconstruct the time series by anti-diagonal average

x̂t = meanX (i , j), i + j = t − 1.

State space models describe the change of state x in time dx
dt = f (z)

Define the state space by vectors {x1, . . . , x t}, the phase trajectory X .

4 / 32

Model of the phase trajectory in the state space

Reduce dimensionality with the principal component analysis, autoencoder
z = W Tx where W is an orthogonal (rotation) matrix. The first principal
components are given by Singular Values Decomposition√︀

𝜆kVk = XTUk the SVD is X = UΛV T

5 / 32

The model complexity and the phase trajectory

The length is n, here a point of the phase trajectory x t ∈ Rn, the
complexity is k . The encoder is

z
1×k

= W T
k×n

x
n×1

6 / 32

Canonical correlation analysis
To control the scenario, it reconstructs dependencies in design space, target
space, and align in-between. The forecasting model is f = WΛQ.

Quadratic programming feature selection for multicorrelated signal decoding by
R. Isachenko and V. Strijov, 2022, Expert Systems

7 / 32

https://www.sciencedirect.com/science/article/abs/pii/S0957417422011988

The simplest generative model
Probabilistic principal component analysis: to reconstruct the initial data,
sample from the normal distribution

x = W Tz + 𝜇⏟ ⏞
deterministic

+ 𝜀 ∼ 𝒩 (0, 𝜎2I)⏟ ⏞
stochastic

.

Denote by p(z) distribution in latent space, and p(x | z) in the data space
given the latent variable z .

A latent space-based estimation of distribution algorithm for large-scale global
optimization by W. Dong et al., 2018, Soft Computing

8 / 32

https://link.springer.com/article/10.1007/s00500-018-3390-8

Select an optimal manifold, given a mixture

9 / 32

The simplest generative model, a mixture

Each data cluster has its own mean and variance.

PCA reveals manifolds and reduces data dimensionality. Shall we use a
deterministic or a probabilistic manifold?

Latent Variable Models by J.M.Tomczak, 2021, Chapter
10 / 32

https://link.springer.com/chapter/10.1007/978-3-030-93158-2_4

Generative versus discriminative models
The variable x is either probabilistic or deterministic.

The Bayes’ rule

p(y | x) =

p(x ,y)⏞ ⏟
p(x | y)p(y)

p(x)

Discriminative: in the logistic regression x is not a random variable,

p(y | x) =
(︀
1 + exp(−wTx)

)︀−1
.

Generative: in the naive Bayesian x is a random variable, here it is normally
distributed,

p(x | yk) =
1√︁

2𝜋𝜎2
k

exp− 1
2𝜎2

k

(x − ck)
2.

11 / 32

Neural network with stack of autoencoders

f = wT
1×1k

zk−1 ∘ W T
k−1zk−2 ∘ · · · ∘ W T

2 z1
n2×1

∘ W T
1

n1×n
x
n×1

Neural network error
Ey =

(︀
yi − f (x)

)︀2
Autoencoder reconstruction error

Ex = ‖x − r(z)‖2

Types of autoencoders
PCA

W TW = I n
skip block
W = I n

metric
xTWx > 0

multi-linear
WX

Autoencoder transform: z =
(︀
1 + exp(−W Tx + b)

)︀−1

Reconstruction decoder: x̂ = r
(︀
z(x)

)︀
12 / 32

Autoencoder: probabilistic or deterministic?

Encoder g𝜑 translates the original high-dimensional x to the
low-dimensional latent z .
Decoder f𝜃 reconstructs original x̂ ∼ x with the loss function(︂

x − f𝜃
(︀
g𝜑(x)

)︀⏟ ⏞
low-dim latent z

)︂2

From Autoencoder to Beta-VAE by L.Weng, 2018, GitHub
13 / 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Variational autoencoder

Encoder q(z | x) = NNenc(x , 𝜑) outputs 𝜇𝜑(x) and 𝜎phi(x) Decoder
px | z , 𝜃) = NNdec outputs x of similar distribution.

It is probabilistic decoder: conditional probability p𝜃(x | z) defines a
generative model, similar to decoder f𝜃(x | z) and probabilistic encoder:
the approximation function q𝜑(z | x) similar to g𝜑(z | x).

From Autoencoder to Beta-VAE by L.Weng, 2018, GitHub
14 / 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Variational autoencoder

Pobability to generate real-data samples 𝜃 = argmax
∑︀m

i=1 log p𝜃(x i) the
data generation procedure uses encoding vector
p𝜃(x i) =

∫︀
p𝜃(x i | z)p𝜃(z)dz Approximate it with q𝜑(z | x)

To generate a sample x i that looks like real data
1 sample z i from the prior distribution p𝜃(z)
2 then generate x i from the conditional distribution p𝜃(x | z = z i)

From Autoencoder to Beta-VAE by L.Weng, 2018, GitHub
15 / 32

https://lilianweng.github.io/posts/2018-08-12-vae/

Graphical model of the Variational autoencoder

Loss function to teach the network parameters

LVAE(𝜑,𝜃) = log p𝜃(x) + DKL
(︀
q𝜑(z | x) ‖ p𝜃(z | x)

)︀⏟ ⏞
distributions look similar

=

−Ez∼q𝜑(z |x) log p𝜃(x | z) + DKL
(︀
q𝜑(z | x) ‖ p𝜃(z)

)︀
,

�̂�, �̂� = argmin LVAE

Design of Variational Autoencoder for Generation of/ by A,. Das et al., 2021,
Innovation in Power Eng.

16 / 32

https://link.springer.com/chapter/10.1007/978-981-16-7076-3_39

Multi-modal distribution of data and
uni-modal prior

Forward and reversed KL divergence

DKL
(︀
p ‖ q

)︀
=

∫︁ ∞

−∞
p(x) log

p(x)
q(x)

dx

matches two distributions in different ways.

Variational Bayes by E. Jang, 2016, source
17 / 32

https://blog.evjang.com/2016/08/variational-bayes.html

The normalizing flow is a superposition
The flow f1, . . . , fK must be

1 easily invertible,
2 its Jacobian determinant is easy to compute.

The target distribution log pK (zK) = log p0(z0)−
∑︀K

i=1 log
(︁
det dfi (z i−1)

dz i−1

)︁
.

Let z0 = f −1
1 (z1). Change variables in the pdf so p1(z1) = p0(z0)

(︁
det

df −1
1 (z1)
dz1

)︁
.

Flow-based Deep Generative Models by L.Weng, 2018, GitHub
18 / 32

https://lilianweng.github.io/posts/2018-10-13-flow-models/

An example of the flow: piecewise bijective

A monotone function maps sections of data domain to the base
distribution.

To invert the function, sample the base distribution with a gating network.
Use a mixture of experts network.

Normalizing Flows: review by I. Kobyzin et al., 2020, IEEE
19 / 32

https://arxiv.org/pdf/1908.09257.pdf

Diffusion models: learn slowly by adding noise

Given the data distribution x0 ∼ q(x) set:
1 forward diffusion process x t =

√
1 − 𝛽tx t−1 +

√
𝛽tz t , sampling i.i.d.

z1, . . . , zT ∼ 𝒩 (0, I),
2 sampling q(x t−1|x t) and learning parameters 𝜃 of U-Net p𝜃(x t−1|x t),
3 reverse diffusion process p𝜃(x0:T) = p(xT)

∏︀T
t=1 p𝜃(x t−1|x t),

4 slow learning gives p𝜃(x t−1|x t) = 𝒩 (x t−1;𝜇𝜃(x t , t),Σ𝜃(x t , t)).

Denoising diffusion probabilistic models by J. Ho, 2020 ArXiv
20 / 32

https://arxiv.org/abs/2006.11239

An example of training a diffusion model

Deep unsupervised learning by J. Sohl-Dickstein et al., 2015, ArXiv 21 / 32

https://arxiv.org/abs/1503.03585

Building complex generative models
The main challenge is to estimate the normalizing constant

Z𝜃 =

∫︁
exp

(︀
f𝜃(x)

)︀
dx

Unknown data
distribution

Model distribution

Approximate unknown true distribution with a neural
network

Normalizing for Gaussian distribution Z𝜇 = 2𝜋− d
2

Score-based generative modeling through SDEs by Yang Song et al., 2020, ArXiv
22 / 32

Score-based generative model via Neural SDEs
SDE smoothly transforms a complex data distribution to a known prior
distribution by slowly injecting noise.

To reverse the SDE compute the score ∇x log pt(x) of the distribution at each t.

Score-based generative modeling through SDE by Y. Song, 2022, ArXiv
23 / 32

https://arxiv.org/pdf/2011.13456.pdf

Create a test generative model
A 30-second project. Request for a code

Define the model

Run with a useful optimizer

This code is generated by ChatGPT 3.5
24 / 32

https://chat.openai.com/

The generated time series

This code is generated by ChatGPT 3.5
25 / 32

https://chat.openai.com/

To program a simple project
Set an object to sample
describe a type of relations between time series (none, multi-linear, metric)

1 a point in a phase trajectory
2 set of points in trajectories
3 a dynamic graph in a graph trajectory
4 CCA source and target trajectories

Set a generation model to tune
put forward a hypothesis on data distribution; it makes optimization criteria to tune NN

1 variational auto-encoder
2 normalizing flow model
3 diffusion probabilistic model

Set an external utility function
it selects a type of model and structure of the neural network
Select performance measurement routine and dataset

26 / 32

Generative model for Canonical Correlation
Analysis

1 Approximates both spaces, design and target
2 Reduce the dimensionality of spaces, select the connected data
3 Select a subset of target time series

27 / 32

Convergent cross mapping as a distance function

The time series y depends on the time series x , if in the
neighbourhood (x , x ′) ∈ Hx there exists a Lipschitz continuous map

𝜙Hx → Hy such that 𝜌Hy

(︀
𝜙(x , x ′)

)︀
> L𝜌Hx (x , x

′).

28 / 32

High variance and high co-variance in time series

Dynamic graph reflects dependencies between the time series.

To reconstruct the dependencies
1 define distance between points of the phase trajectories,
2 make low-rank decomposition, prune the dependency graph,
3 reconstruct time series.

29 / 32

Convolution with an engineered utility function

There given the histogram {xi , gi} and the utility function L(z , x), for
example, |z − x | or (z − x)2. Find the forecast x̂ as

x̂ = argmin
z∈{x1,...,xm}

m∑︁
i=1

giL(z , xi).
30 / 32

Tools to create generative models

General purpose
1 PyTorch, TensorFlow (Keras, TFP), and JAX
2 DCGAN, Torch-GAN and Conditional GAN
3 Google AutoML

Generative models and collections
1 Pytae: most common variational autoencoder models
2 UNet diffusion: denoising diffusion probabilistic model in PyTorch
3 PGMC: collection of generative models in PyTorch

CCA and Graph networks
1 DeepCCA: deep canonical correlation analysis
2 DGCCA: deep generalized canonical correlation analysis:
3 pyRiemann: Biosignals classification with Riemannian geometry

31 / 32

https://github.com/clementchadebec/benchmark_VAE
https://github.com/lucidrains/denoising-diffusion-pytorch/tree/main
https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/Michaelvll/DeepCCA
https://github.com/arminarj/deepgcca-pytorch
https://pyriemann.readthedocs.io/en/latest/

Articles to read
1 Introduction to Probabilistic Programming by A. Das, 2020, ayandas
2 Foundation of Variational Autoencoder (VAE) by A. Das, 2020,

ayandas
3 From Autoencoder to Beta-VAE by L. Weng, 2018, GitHub
4 Flow-based Deep Generative Models by L. Weng, 2018, GitHub
5 Normalizing Flows: review by I. Kobyzin et al., 2020, IEEE
6 Variational Inference with Normalizing Flows by D.J. Rezende, S.

Mohamed, 2015, ArXiv
7 Score-Based Generative Modeling through Stochastic Differential

Equations by Y. Song et al., 2015, ArXiv
8 Denoising diffusion probabilistic models by J. Ho, 2020 ArXiv
9 Deep unsupervised learning using Nonequilibrium Thermodynamics by

J. Sohl-Dickstein et al., 2015, ArXiv
10 An Intuitive Tutorial to Gaussian Processes Regression by J. Wang,

2020, ArXiv
32 / 32

 https://ayandas.me/blog-tut/2020/05/05/probabilistic-programming.html
https://ayandas.me/blog-tut/2020/01/01/variational-autoencoder.html
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://arxiv.org/pdf/1908.09257.pdf
https://arxiv.org/pdf/1505.05770.pdf
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2009.10862

