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Spectral clustering

Community detection
I Graph:

I Nodes vj
I Edge weights wij > 0.

I Problem: Want to partition graph such that edges between
groups have low weights.
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Spectral clustering

Similarity graphs

Types of graphs:
I ε-neighborhood:

I Only include edges with distances < ε;
I Treat as unweighted: wij = Const.

I k-NN:
I Connect vi and vj if vj is a k-NN of vi .
I Weighted by similarity wij = sij .
I Directed or undirected.

I Mutual k-NN:
I Same as k-NN, but only include mutual k-NN.
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Spectral clustering

Similarity graphs
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Spectral clustering

Graph cuts

I Problem: Partition graph such that edges between groups
have low weights

I Define: W (A,B) =
∑

i∈A,j∈B wij .

I MinCut problem: Cut(A1, . . . ,Ak) =
∑k

i=1 W (Ai , Āi ).
I Choose: A1, . . . ,Ak = argminA1,...,Ak

Cut(A1, . . . ,Ak).
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Spectral clustering

MinCut
Problem: MinCut favors isolated clusters

Solution:
I Ratio cuts (RatioCut)
I Normalized cuts (Ncut)
I Lead to “balanced” clusters
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Spectral clustering

Graph terminology

Two measures of size of a subset:
I Cardinality:

|A| = # of vertices in A.

I Volume:

vol(A) =
∑
i∈A

N∑
j=1

wij .
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Spectral clustering

Cuts Accounting for Size

I Ratio cuts (RatioCut)

I k = 2: RatioCut(A, Ā) = Cut(A, Ā)
(

1
|A| + 1

|Ā|

)
.

I General k : RatioCut(A1, . . . ,Ak) = 1
2

∑k
i=1

Cut(Ai ,Āi )
|Ai | .

I Normalized cuts (Ncut)

I k = 2: NCut(A, Ā) = Cut(A, Ā)
(

1
Vol(A) + 1

Vol(Ā)

)
.

I General k : NCut(A1, . . . ,Ak) = 1
2

∑k
i=1

Cut(Ai ,Āi )
Vol(Ai )

I Problem is NP-hard!
I We need to look at relaxation.
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Spectral clustering

Graph Laplacian
Definition: L = D −W .
Facts:

I Symmetric, positive semi-definite
I Eigenvalues:

0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

I λ1 corresponds to eigenvector u = (1, . . . , 1)T .
I Invariance to self-edges:

Lii = di − wii , Lij = −wij .

I Norm in L space:

∀f ∈ RN : fTLf =
1
2

N∑
i ,j=1

wij(fi − fj)
2.
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Spectral clustering

Relationship to Identifying Connected Components

Theorem
The multiplicity k of eigenvalue 0 of L is equal to the number of
connected components.
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Spectral clustering

Spectral clustering

Three basic stages:
1. Pre-processing

I Construct a matrix representation of the graph.
2. Decomposition

I Compute eigenvalues and eigenvectors of the matrix.
I Map each point to a lower-dimensional representation based on

one or more eigenvectors.
3. Grouping

I Assign points to two or more clusters, based on the new
representation.

I Naive: thresholding (works for k = 2).
I K-means in projected space (works for any k ≥ 2).

11 / 18



Spectral clustering

Graph Laplacians and Ratio cuts
Ratio cuts for k = 2:

I Define cluster indicator variables:

fi =

{√
|Ā|/|A|, vi ∈ A,

−
√
|A|/|Ā|, vi /∈ A,

(1)

I Properties:

N∑
i=1

fi = |A|
√
|Ā|/|A| − |Ā|

√
|A|/|Ā| = 0,

‖fA‖22 = N.

I RatioCut

RatioCut(A, Ā) =
fTA LfA
|V |

.
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Spectral clustering

Relaxation
I Reformulating RatioCut problem

min
A⊂V

fTA LfA s.t. fA is def. by Eq. (1), fA ⊥ 1, ‖fA‖ =
√
N.

I Still NP-hard!
I Relaxation:

min
f∈RN

fTLf s.t. f ⊥ 1, ‖f‖ =
√
N.

I Solution: given by the vector f which is the eigenvector
corresponding to the second smallest eigenvalue of L:

λ2 = min
f∈RN

fTLf
fT f

.

13 / 18



Spectral clustering

Ratio Cuts for General k
I Define cluster indicator variables:

Fij =

{
1/
√
|Aj |, vi ∈ Aj ,

0, vi /∈ Aj .

I RatioCut: define FA =
(
Fij , i ∈ 1,N, j ∈ 1, k

)
∈ RN×k ;

FT
A FA = I:

RatioCut(A1, . . . ,Ak) =
k∑

j=1

fTAj
LfAj

= Tr
(
FT
A LFA

)
.

I Reformulating RatioCut problem

min
A1,...,Ak

= Tr
(
FT
A LFA

)
, s.t. FA is defined above and FT

A FA = I.

I Relaxation: minF∈RN×k = Tr
(
FTLF

)
, s.t.FTF = I. 14 / 18



Spectral clustering

Graph Laplacians and Norm cuts
Ratio cuts for k = 2:

I Define cluster indicator variables:

fi =

{√
vol(Ā)/vol(A), vi ∈ A,

−
√
vol(A)/vol(Ā), vi /∈ A,

(2)

I Properties:

(DfA) ⊥ 1, fTA DfA = vol(V ).

I NCut

NCut(A, Ā) =
fTA LfA
vol(V )

.
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Spectral clustering

Relaxation
I Reformulating NCut problem

min
A⊂V

fTA LfA s.t. fA is def. by Eq. (2), DfA ⊥ 1, fTA DfA = vol(V ).

I Still NP-hard!
I Relaxation:

min
f∈RN

fTLf s.t. Df ⊥ 1, fTDf = vol(V ).

or equivalently for g = D1/2f

min
g∈RN

gTD−1/2LD−1/2g s.t. g ⊥ D1/21, ‖g‖2 = vol(V ).

I Solution: given by the vector f which is the eigenvector
corresponding to the second smallest eigenvalue of
Lsym = D−1/2LD−1/2. 16 / 18



Spectral clustering

Norm Cuts for General k

I Define cluster indicator variables:

Fij =

{
1/
√

vol(Aj), vi ∈ Aj ,

0, vi /∈ Aj .

I Reformulating NCut problem

min
A1,...,Ak

= Tr
(
FT
A LFA

)
, s.t. FA is defined above and FT

A DFA = I.

I Relaxation:

min
H∈RN×k

= Tr
(
HTD−1/2LD−1/2H

)
, s.t.HTH = I.
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Spectral clustering

Spectral clustering

Which graph Laplacian to use?
I If degrees in graph vary significantly, then Laplacians are quite

different.
I In general, Lrw behaves the best.
I Volume gives better measure of within-cluster similarity than

cardinality.
I Normalized cuts has consistency results, Ratio cuts does not.
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