Metrics for scheduling problems with many machines

Lazarev A., Lemtyuzhnikova D., Werner F.

- MMPO

Moscow, 2019

Many algorithms exist to solve scheduling problems

Algorithm	Exact	Approximation
Advantage	The objective function is calculated without any error	Good speed and relative simplicity
Disadvantages	Time-consuming calculations	There are no estimates of the objective function error

Approximate polynomial scheme

- Guaranteed polynomial complexity
- Evaluation of the solutions accuracy: the accuracy value forms the complexity of the algorithm

Jobs $j \in N=\{1, \ldots, n\}$ are serviced on machines $i \in M=\{1, \ldots, m\}$. Interrupts are not allowed. The machine serves one job at a time.

- release date r_{j},
- due date d_{j},
- processing times $0 \leq p_{i j} \leq+\infty$ on machine $i \in M$.
 Relations between jobs are given by the graph G. Splitting N jobs into subsets of N_{i} jobs generates a schedule.
For each set N_{i} you need to find a sequence of orders π_{i} for the machine i.
$\operatorname{Pred}(j)$ - the set of jobs served before j according to the graph $G,(k \rightarrow j)_{\pi_{i}}$ jobs processed on i before j in the π_{i}.
A starting time s_{j} for all $j \in N_{i}, i=1, \ldots, m$.
The starting time of a job $j \in N_{i}, i=1, \ldots, m$ in the schedule π :

$$
\begin{equation*}
s_{j}(\pi)=\max \left\{r_{j}, \max _{k \in \operatorname{Pred}(j)}\left(s_{k}(\pi)+p_{i k}\right), \max _{(k \rightarrow j) \pi_{i}}\left(s_{k}\left(\pi_{i}\right)+p_{i k}\right)\right\} . \tag{1}
\end{equation*}
$$

The compliting time of a job $j \in N_{i}$ in the schedule π :

$$
C_{j}(\pi)=s_{j}(\pi)+p_{i j}, j \in N_{i}
$$

The schedule π is called feasible, if $r_{j} \leq s_{j}(\pi)$ and $C_{j}(\pi) \leq s_{k}(\pi)$ for all arcs $(j, k) \in G$.

Remark

If a schedule π is known, the starting times S can be uniquely determined and vice versa, if all starting times S (together with the sets N_{1}, \ldots, N_{m}) are known, this uniquely identifies the resulting schedule π.

The optimization criterion is to minimize the maximum lateness:

$$
L_{\max }=\min _{\pi} \max _{j \in N}\left\{C_{j}(\pi)-d_{j}\right\} .
$$

If $d_{j}=0$ for all jobs $j \in N$, the objective turns into the makespan criterion.

$$
C_{\max }=\min _{\pi} \max _{j \in N}\left\{C_{j}(\pi)\right\} .
$$

An instance of A will be called some NP - difficult subproblem of the $P\left|p r e c, r_{j}\right| L_{\text {max }}$.
Many investigated $N P$ - hard problems of the form $P\left|p r e c, r_{j}\right| L_{\text {max }}$, can be considered as an instance of A, in particular:

- $P \mid$ intree, $r_{j}, p_{j}=1 \mid C_{\max }[$ Brucker (1977)];
- $P \mid$ outtree, $p_{j}=1 \mid L_{\text {max }}[$ Brucker (1977)];
- $P 2 \mid$ chains $\mid C_{\max }[\mathrm{Du}(1991)]$;
- $P \| C_{\max }$ [Garey(1978)];
- $P 2 \| C_{\text {max }}$ [Lenstra (1977)];
- $P\left|p r e c, p_{j}=1\right| C_{\max }$ [Ullman (1975)].

Metric

Definition

A metric for A and B is a function that satisfies the properties:

$$
\begin{array}{r}
\rho(A, B)=0 \Leftrightarrow A=B \\
\rho(A, B)=\rho(B, A) \\
\rho(A, C) \leq \rho(A, B)+\rho(B, C) \tag{4}
\end{array}
$$

for all A, B, C.
For two arbitrary instances A and B of the problem $\{P, Q, R\}\left|p r e c, r_{j}\right| L_{\text {max }}$ we define the following functions:

$$
\left\{\begin{array}{l}
\rho_{d}(A, B)=\max _{j \in N}\left\{d_{j}^{A}-d_{j}^{B}\right\}-\min _{j \in N}\left\{d_{j}^{A}-d_{j}^{B}\right\} ; \\
\rho_{r}(A, B)=\max _{j \in N}\left\{r_{j}^{A}-r_{j}^{B}\right\}-\min _{j \in N}\left\{r_{j}^{A}-r_{j}^{B}\right\} ; \\
\rho_{p}(A, B)=\sum_{j \in N}\left(\max _{i \in M}\left(p_{i j}^{A}-p_{i j}^{B}\right)_{+}+\max _{i \in M}\left(p_{i j}^{A}-p_{i j}^{B}\right)_{-}\right) ; \tag{5}\\
\rho(A, B)=\rho_{d}(A, B)+\rho_{r}(A, B)+\rho_{p}(A, B),
\end{array}\right.
$$

Under the metric rho $(A, B), P\left|p r e c, r_{j}\right| L_{\text {max }}$ we will understand a function that satisfies the properties (2-5)

Definition

Let A be an instance with the set of jobs N and the precedence relation G. We say that instance B with the same set of jobs inherits the parameter x from the instance A if $x_{j}^{B}=x_{j}^{A}$ for all $j \in N$.

Let the instance D inherit all parameters from the instance A except the values $\left\{d_{j}, r_{j}, p_{i j} \mid j \in N, i \in M\right\}$, and let $\tilde{\pi}^{D}$ be an approximate solution of the instance D satisfying the condition

$$
\begin{equation*}
L_{\max }^{B}\left(\tilde{\pi}^{B}\right)-L_{\max }^{B}\left(\pi^{B}\right) \leq \delta_{B} \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
0 \leq L_{\max }^{A}\left(\tilde{\pi}^{B}\right)-L_{\max }^{A}\left(\pi^{A}\right) \leq \rho(A, B)+\delta_{B} . \tag{7}
\end{equation*}
$$

Definition

Let \mathfrak{A} be the space, where each point represents the data of an instance of the problem $P \mid$ prec, $r_{j} \mid L_{\text {max }}$. The sub-space $\mathfrak{A} \subset \mathfrak{A}$ is called P-cone, if all instances represented by points of this sub-space can be solved by a polynomial or pseudo-polynomial algorithm. These points in $\mathfrak{\mathfrak { A }}$ are called P-points.

Definition

Let there be a point (instance) $A \notin \tilde{\mathfrak{A}}$. Using some metric ρ, we can construct a projection onto the space $\tilde{\mathfrak{A}}$ with respect to A. The resulting point (instance) $B \in \tilde{\mathfrak{A}}$ is called the projection of A by the metric ρ.

Definition

The sub-space $\tilde{\mathfrak{A}}_{\rho}^{\epsilon}(A) \in \tilde{\mathfrak{A}}$ is called an ϵ-projection of A by the metric ρ if for each of its points $x \in \tilde{\mathfrak{A}}$, the following inequality is satisfied:

$$
L_{\max }^{A}\left(\pi^{x}\right)-L_{\max }^{A}\left(\pi^{A}\right) \leq \epsilon
$$

Metric approach

- We change the parameters $\left\{\left(r_{j}^{A}, p_{j}^{A}, d_{j}^{A}\right) \mid j \in N\right\}$ of the original instance $A=\left\{G,\left(r_{j}^{A}, p_{j}^{A}, d_{j}^{A}\right)\right\}$, where $j \in N, A \notin \tilde{\mathfrak{A}}$, so that the projection of A by the metric ρ gives an instance $B=\left\{G,\left(r_{j}^{B}, p_{j}^{B}, d_{j}^{B}\right) \mid j \in N\right\}$ in the P-cone.
- We find an optimal schedule π^{B} for the instance B. According to Theorem 7 , we apply the schedule π^{B} to the initial instance A. As a result, we obtain the following estimate of the absolute error:

$$
0 \leq L_{\max }^{A}\left(\pi^{B}\right)-L_{\max }^{A}\left(\pi^{A}\right) \leq \rho(A, B)
$$

Algebraic interpretation

We consider the P -cone when the parameters of the jobs satisfy the following k linearly independent inequalities:

$$
\begin{equation*}
X R+Y P+Z D \leq H, \tag{8}
\end{equation*}
$$

where $R=\left(r_{1}, \ldots, r_{n}\right)^{T}, P=\left(p_{1}, \ldots, p_{n}\right)^{T}\left(p_{j} \geq 0\right.$ for all $\left.j \in N\right)$, $D=\left(d_{1}, \ldots, d_{n}\right)^{T}$ and X, Y, Z are matrices of dimension $k \times n$, $H=\left(h_{1}, \ldots, h_{k}\right)^{T}$ is a k-dimensional vector (the upper index ${ }^{T}$ denotes the transpose operation). Then in the class of instances (8), we determine an instance B with minimal distance $\rho(A, B)$ to the original instance A by solving the following problem:

$$
\left\{\begin{array}{l}
\left(x^{d}-y^{d}+x^{r}-y^{r}\right)+\sum_{j \in N} x_{j}^{p} \longrightarrow \min \\
y^{d} \leq d_{j}^{A}-d_{j}^{B} \leq x^{d} \quad \text { for all } j \in N, \\
y^{r} \leq r_{j}^{A}-r_{j}^{B} \leq x^{r} \quad \text { for all } j \in N, \tag{9}\\
-x_{j}^{p} \leq p_{j}^{A}-p_{j}^{B} \leq x_{j}^{p} \quad \text { for all } j \in N, \\
0 \leq x_{j}^{P} \quad \text { for all } j \in N, \\
X R^{B}+Y P^{B}+Z D^{B} \leq H .
\end{array}\right.
$$

The linear programming problem (9) with $3 n+4+n$ variables $\left(r_{j}^{B}, p_{j}^{B}, d_{j}^{B}, x_{d}, y_{d}, x_{r}, y_{r}\right.$, and $\left.x_{j}^{p}, j=1, \ldots, n\right)$ and $7 n+k$ inequalities can sometimes be solved with a polynomial number (in n and k) of operations, given the specificity of the constraints of the problem (9). For problem $1\left|r_{j}\right| L_{\text {max }}$, there are two types of non-trivial P-points [Hoogeveen (1996)]:

$$
\left\{\begin{array}{l}
d_{1} \leq \ldots \leq d_{n} \tag{10}\\
d_{1}-r_{1}-p_{1} \geq \ldots \geq d_{n}-r_{n}-p_{n}
\end{array}\right.
$$

An optimal solution of problem $1\left|r_{j}\right| L_{\text {max }}$ can be found in $O\left(n^{3} \log n\right)$ operations. The linear programming problem (9) can be solved in $O(n \log n)$ operations. The minimum absolute error of the maximum lateness can be found in polynomial time, in this case with $O(n)$ operations.

$$
\begin{equation*}
\max _{k \in N}\left\{d_{k}-r_{k}-p_{k}\right\} \leq d_{j}-r_{j} \quad \text { for all } j \in N . \tag{11}
\end{equation*}
$$

An optimal schedule can be found in $O\left(n^{2} \log n\right)$ operations.

New types of P-point were found [Lazarev (2019)]

$$
\begin{gathered}
r_{i} \leq r_{j} \Rightarrow d_{i} \geq d_{j} \quad \text { for all } i, j \in N \\
d_{j}-p_{j} \leq d_{\min }(N) \quad \text { for all } j \in N,
\end{gathered}
$$

algorithm of solution with complexity $O\left(n^{2}\right)$ operations

$$
r_{i} \leq r_{j} \Rightarrow d_{i}-p_{i} \geq d_{j} \quad \text { for all } i, j \in N, \quad i \neq j
$$

solution algorithm with complexity $O(n \log n)$ operations

Assume that the instance B inherits all parameters from the instance A except the due dates $\left\{d_{j} \mid j \in N\right\}$, and let $\tilde{\pi}^{B}$ be an approximate solution for the instance B satisfying the condition

$$
\begin{equation*}
0 \leq L_{\max }^{B}\left(\tilde{\pi}^{B}\right)-L_{\max }^{B}\left(\pi^{B}\right) \leq \delta_{B} \tag{12}
\end{equation*}
$$

where π^{B} is an optimal solution, i.e., it satisfies the condition

$$
\begin{equation*}
L_{\max }^{B}\left(\pi^{B}\right) \leq L_{\max }^{B}(\pi) \quad \text { for all } \quad \pi \tag{13}
\end{equation*}
$$

Then we obtain

$$
0 \leq L_{\max }^{A}\left(\tilde{\pi}^{B}\right)-L_{\max }^{A}\left(\pi^{A}\right) \leq \rho_{d}(A, B)+\delta_{B}
$$

Let there be some instance A of a problem $\alpha^{A}\left|\beta^{A}\right| L_{\text {max }}$ belonging to the class of NP-hard problems and a known approximate schedule $\tilde{\pi}^{B}$ (or even an optimal one π^{B}) for the instance B for the problem $\alpha^{A}\left|\beta^{A}\right| C_{\max }$ with an absolute error not exceeding $\delta_{B} \geq 0$. In the instance B, we have $d_{j}^{B}=0$ for all $j \in N$ and thus, from Lemma 13, we obtain the following bound:

$$
0 \leq L_{\max }^{A}\left(\tilde{\pi}^{B}\right)-L_{\max }^{A}\left(\pi^{A}\right) \leq \rho_{d}(A, B)+\delta_{B}=\max _{j \in N}\left\{d_{j}^{A}\right\}-\min _{j \in N}\left\{d_{j}^{A}\right\}+\delta_{B}
$$

In fact, the obtained estimate allows to estimate the transition from the objective function $L_{\text {max }}$ to the makespan $C_{\text {max }}$.

Conclusions:

- For the first time introduced metrics in the scheduling with which we can build approximate polynomial algorithms and obtain absolute error estimate of the objective function.
- In fact, the best use of previously found polynomial solvable sub-cases of the studied problem occurs.
- With this approach, it is possible to quantify the textbfmeasure of polynomial unsolvability of the problem.

Plans:

- comparison of the metric approach with other approaches ($B \& B$, dynamic programming, etc.).)
- the use of a metric algorithm to other problems of discrete optimization

Thank you for your attention!

