
Deep Generative Models

Roman Isachenko

Moscow Institute of Physics and Technology

2019

1 / 28



Flows

log p(x|θ) = log p(f (x,θ)) + log

∣∣∣∣det

(
∂f (x,θ)

∂x

)∣∣∣∣
Definition
Normalizing flow is a differentiable, invertible mapping from data x
to the noise z.

I Normalizing - convert data distribution to noise.
I Flow - sequence of such mapping is also a flow

z = fK ◦ · · · ◦ f1(x); x = f −1
1 ◦ · · · ◦ f −1

K (z) = g1 ◦ · · · ◦ gK (z)

p(x) = p(fK ◦ · · · ◦ f1(x))

∣∣∣∣det

(
∂fK ◦ · · · ◦ f1(x)

∂x

)∣∣∣∣ =

= p(fK ◦ · · · ◦ f1(x))
K∏

k=1

∣∣∣∣det

(
∂fk
∂fk−1

)∣∣∣∣ .
2 / 28



Flows

I Likelihood is given by z = f (x,θ) and change of variables.

I Sampling of x is performed by sampling from a base
distribution p(z) and applying x = f −1(z,θ) = g(z,θ).

I Latent representation is given by z = f (x,θ).

https://arxiv.org/pdf/1605.08803.pdf

3 / 28

https://arxiv.org/pdf/1605.08803.pdf


RevNets, 2017

I Modern neural networks are trained
via backpropagation.

I Residual networks are state of the
art in image classification.

I Backpropagation requires storing
the network activations.

Problem
Storing the activations imposes an increasing memory burden.
GPUs have limited memory capacity, leading to constraints often
exceeded by state-of-the-art architectures (with thousand layers).

https://arxiv.org/pdf/1707.04585.pdf

4 / 28

https://arxiv.org/pdf/1707.04585.pdf


RevNets, 2017

NICE{
z1 = x1;

z2 = x2 + F(x1,θ);
⇔

{
x1 = z1;

x2 = z2 −F(z1,θ).

RevNet{
y1 = x1 + F(x2,θ);

y2 = x2 + G(y1,θ);
⇔

{
x2 = y2 −F(y1,θ);

x1 = y1 − G(x2,θ).

https://arxiv.org/pdf/1707.04585.pdf

5 / 28

https://arxiv.org/pdf/1707.04585.pdf


RevNets, 2017

I If the network contains non-reversible blocks (poolings,
strides), activations for this blocks should be stored.

I To avoid storing activations in the modern frameworks, the
backward pass should be manually redefined.

https://arxiv.org/pdf/1707.04585.pdf

6 / 28

https://arxiv.org/pdf/1707.04585.pdf


i-RevNet, 2018

Hypothesis

The success of deep convolutional networks is based on
progressively discarding uninformative variability about the input
with respect to the problem at hand.

I It is difficult of recovering images from their hidden
representations.

I Information bottleneck principle: an optimal representation
must reduce the MI between an input and its representation
to reduce uninformative variability + maximize the MI
between the output and its representation to preserve each
class from collapsing onto other classes.

https://arxiv.org/pdf/1802.07088.pdf

7 / 28

https://arxiv.org/pdf/1802.07088.pdf


i-RevNet, 2018

Hypothesis

The success of deep convolutional networks is based on
progressively discarding uninformative variability about the input
with respect to the problem at hand.

Idea
Build a cascade of homeomorphic layers (i-RevNet), a network that
can be fully inverted up to the final projection onto the classes, i.e.
no information is discarded.

https://arxiv.org/pdf/1802.07088.pdf

8 / 28

https://arxiv.org/pdf/1802.07088.pdf


i-RevNet, 2018

https://arxiv.org/pdf/1802.07088.pdf

9 / 28

https://arxiv.org/pdf/1802.07088.pdf


Glow, 2018

https://arxiv.org/pdf/1807.03039.pdf

10 / 28

https://arxiv.org/pdf/1807.03039.pdf


Glow, 2018

https://arxiv.org/pdf/1807.03039.pdf

11 / 28

https://arxiv.org/pdf/1807.03039.pdf


Glow, 2018

https://arxiv.org/pdf/1807.03039.pdf

12 / 28

https://arxiv.org/pdf/1807.03039.pdf


Glow, 2018

Invertible 1x1 conv
Cost to compute det(W) is O(c3).
LU-decomposition reduces the cost to O(c):

W = PL(U + diag(s)).

https://arxiv.org/pdf/1807.03039.pdf

13 / 28

https://arxiv.org/pdf/1807.03039.pdf


Glow, 2018

Face interpolation

https://arxiv.org/pdf/1807.03039.pdf

14 / 28

https://arxiv.org/pdf/1807.03039.pdf


Glow, 2018

Face attributes manipulation

https://arxiv.org/pdf/1807.03039.pdf

15 / 28

https://arxiv.org/pdf/1807.03039.pdf


Neural ODE, 2018

How did it become possible to train neu-
ral networks with hundreds of layers?
Skip connections eliminates explod-
ing/vanishing gradients.

https://arxiv.org/pdf/1806.07366.pdf

16 / 28

https://arxiv.org/pdf/1806.07366.pdf


Neural ODE, 2018

Consider ODE

dz(t)

dt
= f (z(t),θ); z(t0) = z0.

Euler update step

z(t + ∆t) = z(t) + ∆tf (z(t),θ).

Residual block

zt+1 = zt + f (zt ,θ).

It is exactly Euler update step for solving ODE with ∆t = 1!
Euler update step is unstable and trivial.

https://arxiv.org/pdf/1806.07366.pdf

17 / 28

https://arxiv.org/pdf/1806.07366.pdf


Neural ODE, 2018

Residual block

zt+1 = zt + f (zt ,θ).

What happens as we add more layers and take smaller steps?
In the limit, we parameterize the continuous dynamics of hidden
units using an ODE specified by a neural network:

dz(t)

dt
= f (z(t), t,θ); z(t0) = x; z(t1) = y.

Loss function

L(y) = L(z(t1)) = L

(
z(t0) +

∫ t1

t0

f (z(t), t,θ)dt

)
= L (ODESolve(z(t0), f , t0, t1,θ))

https://arxiv.org/pdf/1806.07366.pdf
18 / 28

https://arxiv.org/pdf/1806.07366.pdf


Neural ODE, 2018
Benefits

I memory efficient;

I adaptive computation;

I parameter efficient;

I scalable and invertible normalizing flows.

https://arxiv.org/pdf/1806.07366.pdf

19 / 28

https://arxiv.org/pdf/1806.07366.pdf


Neural ODE, 2018

Loss function

L(y) = L(z(t1)) = L (ODESolve(z(t0), f , t0, t1,θ))

How to train such model? How to fit θ? How to compute
efficiently ∂L

∂θ? – Pontryagin theorem!

Adjoint function

a(t) =
∂L(z(t))

∂z(t)

Theorem

da(t)

dt
= −a(t)T

∂f (z(t), t,θ)

∂z(t)

https://arxiv.org/pdf/1806.07366.pdf

20 / 28

https://arxiv.org/pdf/1806.07366.pdf


Neural ODE, 2018

Theorem

da(t)

dt
= −a(t)T

∂f (z(t), t,θ)

∂z(t)
; a(t) =

∂L(z(t))

∂z(t)

To obtain a(t) along the trajectory we could solve this ODE

backward in time, starting from the initial value a(t1) = ∂L(z(t1))
∂z(t1) .

Theorem

dL

dθ
= −

∫ t1

t0

a(t)T
∂f (z(t), t,θ)

∂θ
dt.

All these gradients could be computed at once.

https://arxiv.org/pdf/1806.07366.pdf

21 / 28

https://arxiv.org/pdf/1806.07366.pdf


Continuous NF, 2018

Discrete NF

zt+1 = f (zt ,θ); log p(zt+1) = log p(zt)− log

∣∣∣∣det
∂f (zt ,θ)

∂zt

∣∣∣∣ .
Function f should be bijective!

Theorem

∂ log p(z(t))

∂t
= −trace

(
∂f

∂z(t)

)
.

Function f is not necessary bijective! (uniformly Lipschitz
continuous in z and continuous in t).

https://arxiv.org/pdf/1806.07366.pdf

22 / 28

https://arxiv.org/pdf/1806.07366.pdf


Continuous NF, 2018

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

trace

(
∂f

∂z

)
dt.

https://arxiv.org/pdf/1806.07366.pdf

23 / 28

https://arxiv.org/pdf/1806.07366.pdf


FFJORD, 2018

https://arxiv.org/pdf/1810.01367.pdf

24 / 28

https://arxiv.org/pdf/1810.01367.pdf


FFJORD, 2018

Hutchinson’s trace estimator

trace(A) = Ep(ε)

[
εTAε

]
; E[ε] = 0; Cov(ε) = I .

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

trace

(
∂f

∂z

)
dt

= log p(z(t0))−
∫ t1

t0

Ep(ε)

[
εT

∂f

∂z
ε

]
dt

= log p(z(t0))− Ep(ε)

∫ t1

t0

[
εT

∂f

∂z
ε

]
dt.

This reduces the cost from quadratic to linear.

https://arxiv.org/pdf/1810.01367.pdf

25 / 28

https://arxiv.org/pdf/1810.01367.pdf


FFJORD, 2018

https://arxiv.org/pdf/1810.01367.pdf

26 / 28

https://arxiv.org/pdf/1810.01367.pdf


FFJORD, 2018

https://arxiv.org/pdf/1810.01367.pdf

27 / 28

https://arxiv.org/pdf/1810.01367.pdf


References
I RevNet: The Reversible Residual Network: Backpropagation Without Storing Activations

https://arxiv.org/abs/1707.04585
Summary: RevNet allows not to store network activations. Each layer’s activations can be computed from
the next layer’s activations. RevNets are composed of a series of reversible blocks. Could enable training
larger and more powerful networks with limited computational resources.

I i-RevNet: Deep Invertible Networks
https://arxiv.org/abs/1802.07088
Summary: Invertible reversible networks. Remove noninvertible blocks (max-pooling, strides) from
RevNets. Loss of information is not a necessary condition to learn representations that generalize well on
complicated problems, such as ImageNet.

I Glow: Better Reversible Generative Models
https://arxiv.org/abs/1807.03039
Summary: Extension of RealNVP. Suggests 1x1 reversible convolutions instead of reversing channel
ordering. 1x1 conv is square matrix which could be easily be inversed. Compares 1x1 conv with reversing
and fixed shuffling.

I Neural Ordinary Differential Equations
https://arxiv.org/abs/1806.07366
Summary: New interpretation of resnets as special case of ode. Discrete sequence of layers are replaced
with continuous dynamic. ODESolver is used for backpropagation. Pontryagin theorem gives the analog of
the chain rule. Continuous version of normalizing flow is constructed.

I FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
https://arxiv.org/abs/1810.01367
Summary: Continuous version of NF is investigated. Jacobian computation cost is reduced to O(D) by
using Hutchinson’s trace estimator.

28 / 28

https://arxiv.org/abs/1707.04585
https://arxiv.org/abs/1802.07088
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1810.01367

