Support vector machines

Victor Kitov

Table of contents

(1) Optimization reminder

2 Support vector machines

- Linearly separable case
- Linearly non-separable case
(3) Addition

Kuhn-Takker conditions

Consider the optimization task:

$$
\left\{\begin{array}{l}
f(x) \rightarrow \min _{x} \tag{1}\\
g_{i}(x) \leq 0 \quad i=1,2, \ldots m
\end{array}\right.
$$

Theorem (necessary conditions for optimality):
Let

- x^{*} - be the solution to (1),
- $f\left(x^{*}\right)$ and $g_{i}\left(x^{*}\right), i=1,2, \ldots m$ - continuously differentiable at x^{*}.
- one of the conditions of regularity is satisfied

Then coefficients $\lambda_{1}, \lambda_{2}, \ldots \lambda_{m}$ exist, such that x^{*} satisfies the conditions:

$$
\begin{cases}\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{*}\right)=0 & \text { stationarity } \tag{2}\\ g_{i}\left(x^{*}\right) \leq 0 & \text { feasibility } \\ \lambda_{i} \geq 0 & \text { non-negativity } \\ \lambda_{i} g_{i}\left(x^{*}\right)=0 & \text { complementary slackness }\end{cases}
$$

Illustration of constrained optimization

Kuhn-Takker conditions

Possible regularity conditions:

- $\left\{\nabla g_{j}\left(x^{*}\right), j \in J\right\}$ - linearly independent, where J are indexes of active constraints $J=\left\{j: g_{j}\left(x^{*}\right)=0\right\}$.
- Slater condition: $\exists x$: $g_{i}(x)<0 \forall i$ (applicable only when $f(x)$ and $g_{i}(x), i=1,2, \ldots m$ are convex)

Sufficient conditions of optimality:
If $f(x)$ and $g_{i}(x), i=1,2, \ldots m$ are convex, Kuhn-Takker conditions (2) and Slater conditions become sufficient for x^{*} to be the solution of (1).

Convex optimization

Why convexity of $f(x)$ and $g_{i}(x), i=1,2, \ldots m$ is convenient:

- All local minimums become global minimums
- The set of minimums is convex
- If $f(x)$ is strictly convex and minimum exists, then it is unique.

Table of contents

(1) Optimization reminder

(2) Support vector machines

- Linearly separable case
- Linearly non-separable case
(3) Addition
(2) Support vector machines
- Linearly separable case
- Linearly non-separable case

Support vector machines

(a)

(b)

Support vector machines

Main idea
Select hyperplane maximizing the spread between classes.

Support vector machines

Objects x_{i} for $i=1,2, \ldots n$ lie at distance $b /|w|$ from discriminant hyperplane if

$$
\left\{\begin{array}{ll}
x_{i}^{T} w+w_{0} \geq b, & y_{i}=+1 \\
x_{i}^{T} w+w_{0} \leq-b & y_{i}=-1
\end{array} \quad i=1,2, \ldots N .\right.
$$

This can be rewritten as

$$
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq b, \quad i=1,2, \ldots N
$$

The margin is equal to $2 b /|w|$. Since w, w_{0} and b are defined up to multiplication constant, we can set $b=1$.

Problem statement

Problem statement:

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w \rightarrow \min _{w, w_{0}} \\
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1, \quad i=1,2, \ldots N
\end{array}\right.
$$

Problem statement

Problem statement:

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w \rightarrow \min _{w, w_{0}} \\
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1, \quad i=1,2, \ldots N .
\end{array}\right.
$$

Lagrangian:

$$
L=\frac{1}{2} w^{T} w-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(w^{T} x+w_{0}\right)-1\right)
$$

By Karush-Kuhn-Takker the solution satisfies:

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial w}=\mathbf{0}, \frac{\partial L}{\partial w_{0}}=0 \\
y_{i}\left(x_{i}^{T} w+w_{0}\right)-1 \geq 0 \\
\alpha_{i}\left(y_{i}\left(x_{i}^{T} w+w_{0}\right)-1\right)=0 \\
\alpha_{i} \geq 0, \quad i=1,2, \ldots N
\end{array}\right.
$$

Support vectors

non-informative observations: $y_{i}\left(x_{i}^{T} w+w_{0}\right)>1$

- do not affect the solution
support vectors: $y_{i}\left(x_{i}^{T} w+w_{0}\right)=1$
- lie at distance $1 /|w|$ to separating hyperplane
- affect the the solution.

(2) Support vector machines
- Linearly separable case
- Linearly non-separable case

Linearly non-separable case

Linearly non-separable case

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w \rightarrow \min _{w, w_{0}} \\
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1, \quad i=1,2, \ldots N
\end{array}\right.
$$

Linearly non-separable case

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w \rightarrow \min _{w, w_{0}} \\
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1, \quad i=1,2, \ldots N
\end{array}\right.
$$

Problem

Constraints become incompatible and give empty set!

Linearly non-separable case

No separating hyperplane exists. Errors are permitted by including slack variables ξ_{i} :

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w+C \sum_{i=1}^{N} \xi_{i} \rightarrow \min _{w, \xi} \\
y_{i}\left(w^{T} x_{i}+w_{0}\right) \geq 1-\xi_{i}, i=1,2, \ldots N \\
\xi_{i} \geq 0, i=1,2, \ldots N
\end{array}\right.
$$

- Parameter C is the cost for misclassification and controls the bias-variance trade-off.
- It is chosen on validation set.
- Other penalties are possible, e.g. $C \sum_{i} \xi_{i}^{2}$.

Linearly non-separable case

Lagrangian:

$$
L=\frac{1}{2} w^{T} w+C \sum_{i} \xi_{i}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(w^{T} x_{i}+w_{0}\right)-1+\xi_{i}\right)-\sum_{i=1}^{N} r_{i} \xi_{i}
$$

By Karush-Kuhn-Takker conditions, the solution satisfies constraints:

$$
\left\{\begin{array}{l}
\frac{\partial L_{p}}{\partial w}=\mathbf{0}, \frac{\partial L_{p}}{\partial w_{0}}=0, \frac{\partial L_{p}}{\partial \xi_{i}}=0 \\
\xi_{i} \geq 0, \alpha_{i} \geq 0, r_{i} \geq 0 \\
y_{i}\left(x_{i}^{T} w+w_{0}\right) \geq 1-\xi_{i} \\
\alpha_{i}\left(y_{i}\left(w^{T} x_{i}+w_{0}\right)-1+\xi_{i}\right)=0 \\
r_{i} \xi_{i}=0, \quad i=1,2, \ldots N
\end{array}\right.
$$

Classification of training objects

- Non-informative objects:
- $y_{i}\left(w^{T} x_{i}+w_{0}\right)>1$
- Support vectors SV:
- $y_{i}\left(w^{\top} x_{i}+w_{0}\right) \leq 1$
- boundary support vectors $\widetilde{S V}$:
- $y_{i}\left(w^{T} x_{i}+w_{0}\right)=1$
- violating support vectors:
- $y_{i}\left(w^{T} x_{i}+w_{0}\right)>0$: violating support vector is correctly classified.
- $y_{i}\left(w^{T} x_{i}+w_{0}\right)<0$: violating support vector is misclassified.

Solving Karush-Kuhn-Takker conditions

$$
\begin{align*}
& \frac{\partial L}{\partial w}=\mathbf{0}: w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \tag{3}\\
& \frac{\partial L}{\partial w_{0}}=0: \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& \frac{\partial L}{\partial \xi_{i}}=0: C-\alpha_{i}-r_{i}=0 \tag{4}
\end{align*}
$$

Substituting these constraints into L, we obtain the dual problem ${ }^{1}$:

$$
\left\{\begin{array}{l}
L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \rightarrow \max _{\alpha} \tag{5}\\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\left.0 \leq \alpha_{i} \leq C \quad \text { (using (4) and that } \alpha_{i} \geq 0, r_{i} \geq 0\right)
\end{array}\right.
$$

${ }^{1}$ Dual Lagrangian is maximized because original Lagrangian has saddlepoint in optimum, \min for w, w_{0}, ξ_{i} and \max for ${ }_{29} \alpha_{i}, r_{i}$.

Comments on support vectors

- non support vectors: $y_{i}\left(w^{\top} x_{i}+w_{0}\right)>1<=>\xi_{i}=0$, $y_{i}\left(w^{\top} x_{i}+w_{0}\right)-1+\xi_{i}>0=>\alpha_{i}=0$
- support vectors $S V$ will have $\alpha_{i}>0$.
- non-boundary support vectors $S V \backslash \tilde{S V}: y_{i}\left(w^{T} x_{i}+w_{0}\right)<1$ $<=>\xi_{i}>0=>r_{i}=0<=>\alpha_{i}=C$.
- boundary support vectors $\widetilde{\mathcal{S V}}: y_{i}\left(w^{\top} x_{i}+w_{0}\right)=1=>\xi_{i}=0$
- since $\alpha_{i} \in[0, C], \alpha_{i} \in(0, C)$ for boundary support vectors.

Solution

(1) Solve (5) to find optimal dual variables α_{i}^{*}
(2) Using (3) and that $\alpha_{i}^{*}=0$ for non support vectors, find optimal w

$$
w=\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i}^{*} y_{i} x_{i}
$$

(3) w_{0} can be found from any edge equality for boundary support vector:

$$
\begin{equation*}
y_{i}\left(x_{i}^{T} w+w_{0}\right)=1, \forall i \in \widetilde{\mathcal{S V}} \tag{6}
\end{equation*}
$$

Solution for w_{0}

By multiplyting (6) by y_{i} obtain

$$
x_{i}^{T} w+w_{0}=y_{i} \quad \forall i \in \widetilde{\mathcal{S V}}
$$

By summing over all $i \in \widetilde{\mathcal{S V}}$ for more robust solution we obtain

$$
n_{S \tilde{S V}} w_{0}=\sum_{j \in S \tilde{S V}}\left(y_{j}-x_{j}^{T} w\right)=\sum_{j \in S \tilde{S V}} y_{j}-\sum_{j \in S \tilde{S V}} x_{j}^{T} \sum_{i \in \mathcal{S V}} \alpha_{i}^{*} y_{i} x_{i}
$$

where $n_{\tilde{S V}}$ is the number of boundary support vectors.
Finall solution for w_{0} :

$$
w_{0}=\frac{1}{n_{\tilde{S V}}}\left(\sum_{i \in \tilde{S V}} y_{j}-\sum_{j \in \tilde{S V}} \sum_{i \in \mathcal{S V}} \alpha_{i}^{*} y_{i} x_{j}^{T} x_{i}\right)
$$

Making predictions

(1) Solve dual task to find $\alpha_{i}^{*}, i=1,2, \ldots N$

$$
\left\{\begin{array}{l}
\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \rightarrow \max _{\alpha} \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\left.0 \leq \alpha_{i} \leq C \quad \text { (using (4) and that } \alpha_{i} \geq 0, r_{i} \geq 0\right)
\end{array}\right.
$$

(2) Find optimal w_{0} :

$$
w_{0}=\frac{1}{n_{\tilde{S} V}}\left(\sum_{j \in \tilde{S V}} y_{j}-\sum_{j \in \tilde{S V}} \sum_{i \in \mathcal{S V}} \alpha_{i}^{*} y_{i}\left\langle x_{i}, x_{j}\right\rangle\right)
$$

(3) Make prediction for new x :

$$
\widehat{y}=\operatorname{sign}\left[w^{\top} x+w_{0}\right]=\operatorname{sign}\left[\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i}^{*} y_{i}\left\langle x_{i}, x\right\rangle+w_{0}\right]
$$

Making predictions

(1) Solve dual task to find $\alpha_{i}^{*}, i=1,2, \ldots N$

$$
\left\{\begin{array}{l}
L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \rightarrow \max _{\alpha} \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\left.0 \leq \alpha_{i} \leq C \quad \text { (using (4) and that } \alpha_{i} \geq 0, r_{i} \geq 0\right)
\end{array}\right.
$$

(2) Find optimal w_{0} :

$$
w_{0}=\frac{1}{n_{\tilde{S V}}}\left(\sum_{j \in \tilde{S V}} y_{j}-\sum_{j \in \tilde{S V} V} \sum_{i \in \mathcal{S V}} \alpha_{i}^{*} y_{i}\left\langle x_{i}, x_{j}\right\rangle\right)
$$

(3) Make prediction for new x :

$$
\widehat{y}=\operatorname{sign}\left[w^{T} x+w_{0}\right]=\operatorname{sign}\left[\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i}^{*} y_{i}\left\langle x_{i}, x\right\rangle+w_{0}\right]
$$

- On all steps we don't need exact feature representations, only scalar products $\left\langle x, x^{\prime}\left\langle\frac{1}{2} / 29\right.\right.$

Kernel trick generalization

(1) Solve dual task to find $\alpha_{i}^{*}, i=1,2, \ldots N$

$$
\left\{\begin{array}{l}
L_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right) \rightarrow \max _{\alpha} \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\left.0 \leq \alpha_{i} \leq C \quad \text { (using (4) and that } \alpha_{i} \geq 0, r_{i} \geq 0\right)
\end{array}\right.
$$

(2) Find optimal w_{0} :

$$
w_{0}=\frac{1}{n_{\tilde{S V}}}\left(\sum_{j \in \tilde{S V}} y_{j}-\sum_{j \in \tilde{S V}} \sum_{i \in \mathcal{S V}} \alpha_{i}^{*} y_{i} K\left(x_{i}, x_{j}\right)\right)
$$

(3) Make prediction for new x :

$$
\widehat{y}=\operatorname{sign}\left[w^{\top} x+w_{0}\right]=\operatorname{sign}\left[\sum_{i \in \mathcal{S} \mathcal{V}} \alpha_{i}^{*} y_{i} K\left(x_{i}, x_{j}\right)+w_{0}\right]
$$

- We replaced $\left\langle x, x^{\prime}\right\rangle \rightarrow K\left(x, x^{\prime}\right)$ for $K\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle$ for some feature transformation $\phi(\cdot)$.

Another view on SVM

Optimization problem:

$$
\left\{\begin{array}{l}
\frac{1}{2} w^{T} w+C \sum_{i=1}^{N} \xi_{i} \rightarrow \min _{w, \xi} \\
y_{i}\left(w^{T} x_{i}+w_{0}\right)=M_{i}\left(w, w_{0}\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0, i=1,2, \ldots N
\end{array}\right.
$$

can be rewritten as

$$
\frac{1}{2 C}|w|^{2}+\sum_{i=1}^{N}\left[1-M_{i}\left(w, w_{0}\right)\right]_{+} \rightarrow \min _{w, \xi}
$$

Thus SVM is linear discriminant function with cost approximated with $\mathcal{L}(M)=[1-M]_{+}$and L_{2} regularization.

Sparsity of solution

- SVM solution depends only on support vectors
- This is also clear from loss function, satisfying $\mathcal{L}(M)=0$ for $M \geq 1$.
- objects with margin ≥ 1 don't affect solution!
- Sparsity causes SVM to be less robust to outliers
- because outliers are always support vectors

Multiclass classification

C classes $\omega_{1}, \omega_{2}, \ldots \omega_{C}$.

- One-against-all:
- build C binary classifiers, classifying class ω_{i} against other classes
- select the class with highest margin
- One-against-one:
- build C(C-1)/2 classifiers, classifying class ω_{i} against ω_{j}.
- select the class having maximum votes
- Multiclass variant of initial algorithm

Table of contents

(1) Optimization reminder

2 Support vector machines

- Linearly separable case
- Linearly non-separable case
(3) Addition

SVM regression

Predict real-valued output with

$$
\widehat{y}(x)=w^{T} x+w_{0}
$$

where parameters w, w_{0} are found from

$$
\left\{\begin{array}{l}
\left(x^{T} x_{n}+w_{0}\right)-y_{n} \leq \varepsilon+\xi_{n} \\
y_{n}-\left(x^{T} x_{n}+w_{0}\right) \leq \varepsilon+\tilde{\xi}_{n} \\
\xi_{n}, \tilde{\xi}_{n} \geq 0, \quad n=1,2, \ldots N . \\
\frac{1}{2} w^{T} w+C \sum_{n=1}^{N}\left(\xi_{n}+\tilde{\xi}_{n}\right) \rightarrow \min _{w, w_{0}, \xi_{n}, \tilde{\xi}_{n}}
\end{array}\right.
$$

Gives ε-insensitive loss!

Multiclass SVM

C discriminant functions are built simultaneously:

$$
g_{k}(x)=\left(w^{k}\right)^{T} x+w_{0}^{k}
$$

Linearly separable case:

$$
\left\{\begin{array}{l}
\sum_{k=1}^{C}\left(w^{k}\right)^{T} w^{k} \rightarrow \min _{w} \\
\left(w^{y(i)}\right)^{T} x+w_{0}^{y(i)}-\left(w^{k}\right)^{T} x-w_{0}^{k} \geq 1 \quad \forall k \neq y(i), \\
i=1,2, \ldots N .
\end{array}\right.
$$

Linearly non-separable case:

$$
\left\{\begin{array}{l}
\sum_{k=1}^{C}\left(w^{k}\right)^{T} w^{k}+C \sum_{i=1}^{N} \xi_{i} \rightarrow \min _{w} \\
\left(w^{y(i)}\right)^{T} x+w_{0}^{y(i)}-\left(w^{k}\right)^{T} x-w_{0}^{k} \geq 1-\xi_{i} \quad \forall k \neq y(i), \\
\xi_{i} \geq 0, \quad i=1,2, \ldots N .
\end{array}\right.
$$

Is slower, but shows similar accuracy to usual SVM.

