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1. Generalized precedents 
Generalized precedents (GPs) are computational tools that allow using on unified basis 
different a priori, directly observable or preferable for one reason or another, local 
regularities in data. 

A good example is in the field of Image Processing, where one of the important tasks is the 
restoration of images deformed by interference of smear type. The a priori  information in 
this case is that the bright points of the original image appear as smear lines. This prepares 
the basis for efficient reconstruction of the smear parameters and for subsequent 
restoration of the image as a whole. 

At the same time, other local regularities can be more complicated. For example, they may 
represent typical geometric specialties of the training sample considered as spatial object. 
So, in the simplest case such specialties are subsets of a certain shape that are rather 
densely filled with objects of the training sample. We consider such clusters as independent 
and self-sufficient objects of higher level – Basic Clusters (BC).

2. Typical basic clusters
Typical local patterns repetitive in the data structure act as multi-dimensional texture and 
can determine additional individual characteristics of classes. These characteristics could 
be used in the problem of joint processing, when the set of new objects is formed of 
representative groups from different classes. In this case, multi-dimensional textural 
features of classes can be added to N basic features. Use of BC yield many other 
opportunities. Some of the last are listed below:



• smaller clusters could contain enough share of training objects whatever basic structure of 
clusters is chosen; 

• densely filled smaller clusters provide obtaining detailed decision rule;

• basic clusters represent inherent local dependencies in data and can be considered as
precedents of dependencies themselves; 

• when using dependencies as new objects, the feature space can be transformed to simpler 
parametric space, and volume of training data can be reduced.

3. Examples:
• One-dimensional parameter of space-filling curve (such as Peano curve) corresponds to 

vertices of quad-tree.

• Parametric approximation of the sample by normal mixture

∑ Сi = ∑ μi exp(-0.5(xi-x)Tσ-1(xi-x)) 

with constant covariance matrix σ. Each component N(xi,σ) represents compact spatial         
cluster.

• Approximation by Elementary Logical Regularities of the 1st kind (ELR-1). Corresponding 
clusters of hyper-parallelepipeds in RN are described each by conjunction L = &Ri , 
Ri=(Ai<xi<Bi), that is interpreted as joint manifestation of feature values  x=(x1,x2,…,xN) on 
intervals (Ai<xi<Bi).

• ELRs of the second kind (ELR-2) correspond to the linear constraints of general form Li = &jRji

, Rji=(njin, xn)<Thrji , where nji is the normal vector to the j-th facet of the i-th convex hull, Thrji is 
the boundary threshold.



In the first three examples just limited number of parameters is used for description of cluster 
and its filling. Dimensions of new parametric spaces are 1+1, N+1 and 2N+1:

• in positional tree cluster is coded by one integer and one real parameter; 
• In normal mixture cluster is represented by the couple (хi, μi);
• ELR-1 is described by 2N border marks Ai, Bi and the weight of regularity L;
• in the fourth case one has to deal with parameters of all hull’s facets in use, and it’s 

necessary to maximally reduce this value using coherent ELR-2s.

4. Parameterization and basic clusters. Hough transform in higher 
dimensions.

All of mentioned clusters have simple parameterization and represent some local or partial 
dependency in data. 

Typicality of a local dependency itself, as well as repeating values of its parameters, can be 
detected through the analysis of the secondary clustering structure in corresponding 
parametric spaces.

This  outlined scheme has obvious correlations with methodology and application of transforms 
of Hough type in IP and SA. But there are serious differences.

1. The main difference is that in this case the parameterized model may correspond to a cluster 
in abstract feature space of arbitrary dimension.

2. It is equally important that the role of primary spatial differentiation can play variety of 
procedures used for identification significant clusters, the shape of which is given in advance 
and changes within controlled limits. In particular, this is right for many well-studied methods 
of approximation the empirical distribution by a set of elements of certain type, just as in 
the case of Gaussian mixture.

3. There is another significant difference from the classical scheme of Hough transform: building 
the best approximation is essentially non-local process, the outcome of which depends on 
the geometry of the whole sample.



5. Non-locality

Let’s analyze the last difference in more detail. At primary glance, non-locality can devalue all the 
constructions presented above. But it is also obvious that the presence of local relationships 
and dependencies among parameters of objects is not exclusive or rare event.

In fact, some features of data can be known a priori, and this directly affects the choice of the 
shape of basic clusters. For example, in IP, when working with images damaged by linear 
smear, lineament is usually chosen as basic cluster. 

Thus one uses a priori knowledge, but there is more unbiased way to select the basic form of 
clusters, which corresponds to inherent local dependencies in data. As criteria we can use a 
set of functionals assessing the accuracy of the description of the training sample on the 
basis of particular types of basic clusters: 

• Let Bs, s=1,2,…,S, is a set of cluster descriptions that could claim to be the basic. Each object 
Bs contains parameters of cluster shape that may be relevant to the task of detecting 
differences between classes λ = 1,2, ..., l. Let Qz, z=1,2,…,Z, is a set of quality criteria that are 
applied in approximation task for representation of class Kλ, λ=1,2,…,l, using basic clusters of 
certain shape Bs. 

• Thus, we keep in denotation just two variables we need for setting the criterion Qz=Qz(s, λ), 
s=1,2,…,S, λ =1,2,…,l, with which we establish S×Z-matrix of votes for selection this or that 
shape of cluster as basic. Applying the shape set Bs, s=1,2,…,S, and the list of criteria Qz(s, λ), 
z=1,2,…,Z, to λ-th class Xλ⊂X of the training sample, we obtain a set of matrices qsz(λ), 
λ=1,2,…,l, containing votes for basic shape Bs for class λ with respect to z-th criterion Qz. 

• The set qsz(λ), λ=1,2,…,l, may serve as an objective basis for selection certain shapes of 
clusters as basic. 

Of course, such choice can be made further on the base of different strategies. Notice, that in all 
ways we’ve used minimum of a priori or subjective knowledge here.



6. GP as typical dependency in data
As result, the description of the lowest complexity and minimal error can indicate that chosen 

basic form is relevant to intrinsic relationships, as well as to their typicality in available data. 
All this is consistent with the concept of GP, as noted above.

We present below the calculation scheme of Hough-type transform in higher dimensions, where 
set of ERL-2 is used as set of basic clusters. Goal is to find most typical orientations of border 
hyper-planes represented in parametric space: 

a) at first we construct a set L ={L} by finding all ELR-2s that form some covering of a class ;

b) it is chosen a limited number of parameters characterizing border hyper-plane of ELR-2 and 
their position relatively to the main axes of the feature space. In particular, further we 
consider parametric space C which provides representation of guide angles αn of the normal 
vector n to some border hyper-plane;

c) one-to-one mapping θ: L→C of the set L into selected parametric space  C is constructed, and 
there some secondary clustering is performed;

d) while clustering we search for the set CT of expressed compact clusters ct, tT, in the space C. 
Each cluster ctCT represents some typical direction of normal vectors to border planes of 
different ELR-2 revealed at the first step;

Having the set CT we can deform representations of ELR-2s collected in the set L={L} with aim to 
arrange more pairs of coherent regularities among them. In what follows, new information 
about presence of such clusters is used to optimize DR starting from analysis of derivative 
distributions to realization DR in the original feature space RN.



Reverse assembly of the DR can be done on the base of detected GPs, when typical basic clusters 
are restored in RN from points ctct, tT, by inversing θ -1:C→{L}. When this, priority may be 
given to different elements of CT={ct}, tT, depending on the nature of data, requirements on 
the solution, etc.

In Fig.1 a model example of ELR-2 covering {L} constructed for a class in two dimensions N=2 is 
presented. Corresponding one-dimensional parametric subspace is shown in Fig.2. 

Fig.1. Modeled 4-component ELR-2 covering {L} of class Kλ.

Fig.2. One-dimensional section C’ of parametric space C for the covering {L}. Black dashes show angles between facet 
normals and the horizontal axis by mod(1800). Red dashes are unified representatives of the main clusters.
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Let f=1,2,…,FL be the index of facets in ELR-2 hulls of {L}, and nf is the normal to the f-th facet. 
We consider clustering in parametric subspace C’⊂C of coordinates of nf. Other parameters 
of ELRs represented in C are ignored while clustering in C’, and all facets of all ELRs are 
considered simultaneously. Moreover, to improve the decision rule as whole, we have to mix 
ELR-2s of the coverings of all classes                    , of the training sample and further look for 
coherent ELR-2 subsets that may unite different classes. Since |nf|=1, the dimension for C’ is 
chosen N-1.

Elements of improved covering will have restricted variety of normals to facets. Fig.3 shows a 
new covering constructed of unified representatives of facets.

Fig.3. Covering {L} improved with unified representatives. Calculating membership in the class Kλ requires 3 convolutions instead 
of 16 ones.
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Notice that normalization of vectors, as calculation of angles, is not an obligation. Here we show 
another way to construct the same improved covering for the class Kλ. 

Each boarder hyper-plane corresponding to facet is a linear manifold of co-dimension 1. It 
means that the ideal If in the ring R(x1,x2,…,xN) of polynomials on variables xn, n=1,2,…,N, that 
defines the manifold containing f-th facet, is principal ideal produced by a single polynomial 
of the first order Pf = (x,af)-bf, If = (Pf), where af is a vector orthogonal to f-th facet. If we just 
look for variety of vectors af orthogonal to different facets of all ELR-2s revealed in the 
training sample and selected at the first step a) of the scheme, we can use directly the 
parametric space of coefficients without normalizing each vector af. 

Fig.4 shows 2-dimensional parametric 

space of such kind for covering {L} in Fig.1. 

As known, each polynomial (x,af)-bf being multiplied 

by any real value still belongs to the ideal If. Thus 
we obtain a priori knowledge, that in this case 

any hyper-plane that's parallel with f-th facet 

is represented by a point of one and the same 

line crossing zero in the parametric space.

Fig.4. Parametric space of coefficients af can be used again in the same scheme in the role of new feature space; centered 
lineaments (blue) or narrow cones (green) are preferable as basic clusters.

Thus we have double applying of Hough-type scheme. Triple of dotted red lines in Fig.4 
corresponds to the same choice of representatives. 



7. Reconstructing dynamics of hydrological series
Forecasting vs recording actual volume of river runoff is an urgent scientific and economical 

task. In view of advent of satellite weather data, the distribution of precipitation levels and 
temperatures on weather maps can be reconstructed with high degree of detail. Thus, 
studies on the similar detailing of river runoff are also promising. In some cases, the network 
of gauging stations can be detailed, as in Kaliningrad region:

Name of river Distance km from Catchment sq km Opened
source estuary

Pregola 67.0 56.0 13600 01.04.1869

Angrapa 139.0 30.0 2460 14.03.1894

Instruch 51.0 50.0 587 01.01.1885

Pissa 87.0 11.0 1360 01.08.1894

Pregola 1.00 125 5210 01.05.1886

Pregola 114 8.50 14700 01.01.1811

Lava 271 18.0 7020 01.01.1896

Deyma 32.0 5.00 (distributary) 01.01.1939

Sheshupe 265 43.0 5830 01.09.1955

Zlaya 50.0 12.0 142 31.01.1961

Nelma 26.0 4.00 163 27.09.1963

Mamonovka 45.0 6.20 300 01.10.1959

Neman 878 59.0 91800 01.01.1811

Matrosovka 19.0 24.0 (distributary) 17.12.1968

In less-lived areas, recording actual flow rates for local parts of the river basin is often confronted 
with fundamental constraints, which makes it difficult to compare precipitation levels and 
recorded runoff values.



8. Phenomenological model of river flow with precipitation feeding
Our goal is to build a river basin model with rain feeding, in which the analysis of actual data and 

subsequent forecast of runoff behavior rely on the use of GPs as implementations of local 
hydrological regularities that are described by a limited set of parameters. We further show 
how this approach can reconstruct the flow features in certain regions of the basin, including 
regions with complex hydrology, on the basis of an analysis of only the observed dynamics 
of river runoff as a whole, as well as detailed meteorological data for its basin. 

We will be interested in the differences in degrees of the damping (accumulating) effect of the 
flow characteristics Flowi (t) of individual regions Ri on the runoff Flow(t) of river as whole. 
The main object of further analysis and search will be the dependence Fi of the instantaneous 
flow rate Flowi(t) on the current moisture level Leveli(t) at time t in the region Ri: 

Flowi(t) = Fi(Leveli(t)).                                                                                           (1)

At each moment t, the volume of moisture that enters the region is expressed by the integral 
value Inputi(t) = ∫tPreci(τ)dτ. The instantaneous rate of flow of the region Ri is determined by 
the dependence Fi. We assume that all the moisture that has fallen down and been 
accumulated goes into the runoff of the region, the total volume of the region's runoff to the 
moment t is also expressed by the integral value Outputi(t) = ∫t Fi(Leveli(τ))dτ. Since Leveli(t) = 
Leveli(0)+ Inputi(t)-Outputi(t), we obtain integral equation

Outputi(t) = ∫t Fi(Leveli(0) +Inputi(τ) - Outputi(τ))dτ,                                        (2)

which can be correctly solved only if the initial condition is known Leveli(0), that is the water level 
for region Ri at the initial moment t=0. Solving the equation, we get the instantaneous rate of 
flow of the region at each moment t: Flowi(t) = Fi(Leveli(t)).



9. Typical flow characteristics as generalized precedents
The main a priori assumption is that each dependence Fi is described by an increasing function, 

namely, the derivative F’i is strictly positive, F’i>o, in the function’s domain, Fig.5. 

Fig. 5. Variants of natural dependencies Fi

In order to use some dependency Fi as a generalized precedent, we must choose parametric 
representation for it. Here functions Fi (x) = six

2 are used, each of which is uniquely described 
by scalar parameter si> 0, i = 1,2. The variant that refers immediately to a more complicated 
geometric shape sij ,  j=1,2,…,J, is given for some function F3 satisfying the restriction F’i>o, 
where index j,  j = 1, 2, …, 5, points particular parameter number. 



10. Realizations of generalized precedents in parametric space
Further, we act in accordance with conventional Hough transform procedure.

We refer to s = [sij,] as structural matrix, the i-th row of this matrix describes some possible 
character of the flow in the region Ri. In case of usual Hough transform, the appearance of 
various realizations in the parametric space is controlled by simple criterion - threshold value 
of the brightness gradient. In our case, the role of spatial operation plays not differentiation, 
but the solution of equation (2), which determines evolution of the water level Leveli(t) in 
regions, using the generalized precedents s=[sij] , j=1,2,…,J, i=1,2,…,I, and the  sums of 
precipitations, actual at time t. In our case, the criterion for structural matrices s is the 
following condition 

∑∙Flowi(t- ηi) = Flow(t).                                           (3)

Here values ηi describe time delays in evolvement the flows of regions Ri into the main 
watercourse.

Thus, the structural matrices s satisfying condition (3) appear as points of the discrete secondary 
distribution on the IxJ-dimensional parametric space C. Points corresponding to structural 
matrices that are most adequate for the available statistics gather in the vicinity of the main 
mode in the form of expressed cluster c*. In this case, the mode vertex c*c* can be the 
result of our analysis if the corresponding structural matrix s* better than others fits the 
statistics used. 

Fig. 6 shows the possible shape of cluster c* and the point of the solution matrix s* in 2-D 
parametric space for pairs (F1, F2,). Each point represents one reading for river entire runoff 
during a month. It reflects the currently relevant meteorological statistics processed in 
accordance with the structural hypothesis s=[si], i = 1,2. Deviations from the center mode are 
caused by measurement errors, truncations, imperfection of the 2-D model s=[si], i = 1,2,
itself, and so on. 



Center of the mode is disposed below the diagonal. This means that the inequality s1>s2 is 
most consistent with objective statistics, and thus, the region R1 has greater damper 
capacity than the region R2. In fact, as can be seen from the graph of functions F1 , F2 (Fig.3), 
the rate of flow in region R1 changes more slowly by variations in the moisture level than in 
the region R2. 

Fig.6. Possible shape of cluster c* with solution point s*

1) Having the solution s* and condition (3), we acquire base to calculate absolute values 
Flowi(t- λi) in accordance with structural hypothesis [sij] , j=1,2,…,J, i=1,2,…,I. As we 
pointed out earlier, for some regions direct instantaneous measurement of the values
Flowi(t- λi) may be complicated or impracticable.



2) Now it’s possible to make environmental warnings: if we have big short-time rainfall sum 
∫tPrec1(τ)d or ∫tPrec2(τ)dτ, then for the second region R2 flood-type situation is more 
probable. 

3) And vice versa, when the sum ∫tPrec1(τ)d or ∫tPrec2(τ)dτ is close to zero, fast soil drying is 
probable for the same region R2 and not  for region R1 because water leaves the last slower.

We could continue the row of opportunities opened, but it should be said about pitfalls in 
the presented model, too.

If we have in our example η1 = η2 , Prec1(t) = Prec2(t) for all moments t under consideration, 
then the secondary distribution on the parametric space C for si>0, i=1,2, will be symmetric 
with respect to the diagonal. 

In particular, even if the best approximation of the statistical data is achieved with 
asymmetric choice s1 ≠ s2, nevertheless, in the empirical distribution on C two equally 
important main clusters symmetrically disposed relative to the diagonal will be present.

This means that the difference in the damping properties of regions Ri, i=1,2, is actually 
found, but it is impossible to tell which of them corresponds to the larger of the parameters 
si, i=1,2. 

Similar situations are not excluded for greater values of I and J , too. But, such situations 
arise only in quite exceptional cases and do not have significant effect on the operability of 
the scheme.



11. CONCLUSIONS

It was considered the concept of generalized precedents as unified computational tool that 
yields to use local dependencies and regularities in data.

The main stages of applying generalized precedents are presented, and close relationship is 
shown with the Hough transform.

A computational scheme is presented that is suitable for further optimization of fast linear 
decision rules from a wide class of them. 

Examples of the use of proposed approach are given, in particular, an example of double 
Hough-type transform in higher dimensions.

On this basis, some possibilities of comparison and joint analysis of meteorological data and 
actual data on the volume of river flow are investigated. In this case, the generalized 
precedents are typical nonlinear relationships between certain hydrological 
parameters.

The goal was to identify differentiation of the regions of the river basin by their 
accumulating capabilities. We show how this can be done on the basis of an analysis of 
time-limited contemporary statistics. 

Obtained flow characteristics in the regions can be further used for short-term forecasting 
of river level variations and other hydrological processes and phenomena, including 
flood and drought situations. 

These characteristics can also serve as an important factor in the study of ecosystems, 
geology of the region and other similar purposes.



Thank You !


