
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematical and Computing Sciences

Computer Science

Multiple Output Gaussian Process

Regression

Phillip Boyle and Marcus Frean

Technical Report CS-TR-05/2
April 2005

School of Mathematical and Computing Sciences
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematical and Computing Sciences

Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341, Fax: +64 4 463 5045
Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

Multiple Output Gaussian Process

Regression

Phillip Boyle and Marcus Frean

Technical Report CS-TR-05/2
April 2005

Abstract

Gaussian processes are usually parameterised in terms of their covariance func-
tions. However, this makes it difficult to deal with multiple outputs, because
ensuring that the covariance matrix is positive definite is problematic. An alter-
native formulation is to treat Gaussian processes as white noise sources convolved
with smoothing kernels, and to parameterise the kernel instead. Using this, we
extend Gaussian processes to handle multiple, coupled outputs.

1 Introduction

Gaussian process regression has many desirable properties, such as ease of obtaining and
expressing uncertainty in predictions, the ability to capture a wide variety of behaviour
through a simple parameterisation, and a natural Bayesian interpretation [14, 3, 8]. Because
of this they have been suggested as replacements for supervised neural networks in non-linear
regression [7, 17], extended to handle classification tasks [10, 16, 5], and used in a variety of
other ways (e.g. [15, 13]). A Gaussian process (GP), as a set of jointly Gaussian random
variables, is completely characterised by a covariance matrix with entries determined by a
covariance function. Traditionally, such models have been specified by parameterising the
covariance function (i.e. a function specifying the covariance of output values given any two
input vectors). In general this needs to be a positive definite function to ensure positive
definiteness of the covariance matrix.

Most GP implementations model only a single output variable. Attempts to handle
multiple outputs generally involve using an independent model for each output - a method
known as multi-kriging [17] - but such models cannot capture the structure in outputs that
covary. As an example, consider the two tightly coupled outputs shown at the top of Figure
2, in which one output is simply a shifted version of the other. Here we have detailed
knowledge of output 1, but sampling of output 2 is sparse. A model that treats the outputs as
independent cannot exploit their obvious similarity - intuitively, we should make predictions
about output 2 using what we learn from both output 1 and 2.

Joint predictions are possible (e.g. co-kriging [2]) but are problematic in that it is not
clear how covariance functions should be defined [4]. Although there are many known positive
definite autocovariance functions (e.g. Gaussians and many others [1, 8]), it is difficult to
define cross-covariance functions that result in positive definite covariance matrices. Contrast
this to neural network modelling, where the handling of multiple outputs is routine.

An alternative to directly parameterising covariance functions is to treat GPs as the
outputs of stable linear filters. For a linear filter, the output in response to an input x(t)
is y(t) = h(t) ? x(t) =

∫

∞

−∞
h(t − τ)x(τ)dτ , where h(t) defines the impulse response of the

filter and ? denotes convolution. Provided the linear filter is stable and x(t) is Gaussian
white noise, the output process y(t) is necessarily a Gaussian process. It is also possible
to characterise p-dimensional stable linear filters, with M -inputs and N -outputs, by a set
of M × N impulse responses. In general, the resulting N outputs are dependent Gaussian
processes. Now we can model multiple dependent outputs by parameterising the set of
impulse responses for a multiple output linear filter, and inferring the parameter values from
data that we observe. Instead of specifying and parameterising positive definite covariance
functions, we now specify and parameterise impulse responses. The only restriction is that
the filter be linear and stable, and this is achieved by requiring the impulse responses to be
absolutely integrable.

Constructing GPs by stimulating linear filters with Gaussian noise is equivalent to con-
structing GPs through kernel convolutions. A Gaussian process V (s) can be constructed over
a region S by convolving a continuous white noise process X(s) with a smoothing kernel h(s),
V (s) = h(s)?X(s) for s ∈ S, [6]. To this can be added a second white noise source, represent-
ing measurement uncertainty, and together this gives a model for observations Y . This view
of GPs is shown in graphical form in Figure 1(a). The convolution approach has been used to
formulate flexible nonstationary covariance functions [12, 11]. Furthermore, this idea can be
extended to model multiple dependent output processes by assuming a single common latent
process [6]. For example, two dependent processes V1(s) and V2(s) are constructed from a

1

Figure 1: (a) Gaussian process prior for a single output. The output Y is the sum of two
Gaussian white noise processes, one of which has been convolved (?) with a kernel (h).
(b) The model for two dependent outputs Y1 and Y2. All of X0, X1, X2 and the “noise”
contributions are independent Gaussian white noise sources. Notice that if X0 is forced to
zero Y1 and Y2 become independent processes as in (a) - we use this as a control model.

shared dependence on X(s) for s ∈ S0, as follows

V1(s) =

∫

S0∪S1

h1(s − λ)X(λ)dλ and V2(s) =

∫

S0∪S2

h2(s − λ)X(λ)dλ

where S = S0 ∪ S1 ∪ S2 is a union of disjoint subspaces. V1(s) is dependent on X(s), s ∈ S1

but not X(s), s ∈ S2. Similarly, V2(s) is dependent on X(s), s ∈ S2 but not X(s), s ∈ S1.
This allows V1(s) and V2(s) to possess independent components.

In this paper, we model multiple outputs somewhat differently to [6]. Instead of assuming
a single latent process defined over a union of subspaces, we assume multiple latent processes,
each defined over <p. Some outputs may be dependent through a shared reliance on common
latent processes, and some outputs may possess unique, independent features through a
connection to a latent process that affects no other output.

2 Two Dependent Outputs

Consider two outputs Y1(s) and Y2(s) over a region <p, where s ∈ <p. We have N1 obser-
vations of output 1 and N2 observations of output 2, giving us data D1 = {s1,i , y1,i}

N1

i=1
and

D2 = {s2,i , y2,i}
N2

i=1
. We wish to learn a model from the combined data D = {D1,D2} in

order to predict Y1(s
′) or Y2(s

′), for s′ ∈ <p. As shown in Figure 1(b), we can model each
output as the linear sum of three stationary Gaussian processes. One of these (V) arises from
a noise source unique to that output, under convolution with a kernel h. A second (U) is
similar, but arises from a separate noise source X0 that influences both outputs (although via
different kernels, k). The third is additive noise as before.

Thus we have Yi(s) = Ui(s) + Vi(s) + Wi(s), where Wi(s) is a stationary Gaussian white
noise process with variance, σ2

i , X0(s), X1(s) and X2(s) are independent stationary Gaussian
white noise processes, U1(s), U2(s), V1(s) and V2(s) are Gaussian processes given by Ui(s) =
ki(s) ? X0(s) and Vi(s) = hi(s) ? Xi(s).

2

The k1, k2, h1, h2 are parameterised Gaussian kernels where k1(s) = v1 exp
(

−1

2
sTA1s

)

,
k2(s) = v2 exp

(

−1

2
(s − µ)T A2(s − µ)

)

, and hi(s) = wi exp
(

−1

2
sTBis

)

. Note that k2(s) is
offset from zero by µ to allow modelling of outputs that are coupled and translated relative
to one another.

We wish to derive the set of functions CY
ij (d) that define the autocovariance (i = j)

and cross-covariance (i 6= j) between the outputs i and j, for a given separation d between
arbitrary inputs sa and sb. By solving a convolution integral, (appendix), CY

ij (d) can be
expressed in a closed form , and is fully determined by the parameters of the Gaussian
kernels and the noise variances σ2

1
and σ2

2
as follows:

CY
11(d) = CU

11(d) + CV
11(d) + δabσ

2

1 CY
12(d) = CU

12(d)

CY
22(d) = CU

22(d) + CV
22(d) + δabσ

2

2 CY
21(d) = CU

21(d)

where

CU
ii (d) =

π
p

2 v2
i

√

|Ai|
exp

(

−
1

4
dT Aid

)

CU
12(d) =

(2π)
p

2 v1v2
√

|A1 + A2|
exp

(

−
1

2
(d − µ)T Σ(d − µ)

)

CU
21(d) =

(2π)
p

2 v1v2
√

|A1 + A2|
exp

(

−
1

2
(d + µ)T Σ(d + µ)

)

= CU
12(−d)

CV
ii (d) =

π
p

2 w2
i

√

|Bi|
exp

(

−
1

4
dT Bid

)

with Σ = A1(A1 + A2)
−1A2 = A2(A1 + A2)

−1A1.
Given CY

ij (d) then, we can construct the covariance matrices C11,C12,C21, and C22 as
follows

Cij =

CY
ij (si,1 − sj,1) · · · CY

ij (si,1 − sj,Nj
)

...
. . .

...
CY

ij (si,Ni
− sj,1) · · · CY

ij (si,Ni
− sj,Nj

)

(1)

Together these define the positive definite symmetric covariance matrix C for the combined
output data D:

C =

[

C11 C12

C21 C22

]

(2)

We define a set of hyperparameters Θ that parameterise
{v1, v2, w1, w2, A1, A2, B1, B2, µ, σ1, σ2}. Now, we can calculate the log-likelihood

L = −
1

2
log

∣

∣C
∣

∣ −
1

2
yT C−1y −

N1 + N2

2
log 2π

where yT =
[

y1,1 · · · y1,N1
y2,1 · · · y2,N2

]

and C is a function of Θ and D.
Learning a model now corresponds to either maximising the log-likelihood L, or max-

imising the posterior probability P (Θ | D). Alternatively, we can simulate the predictive
distribution for y by taking samples from the joint P (y,Θ | D), using Markov Chain Monte
Carlo methods [9].

3

The predictive distribution at a point s′ on output i given Θ and D is Gaussian with
mean ŷ′ and variance σ2

ŷ′ given by

ŷ′ = kTC−1y

and σ2

ŷ′ = κ − kTC−1k

where κ = CY
ii (0) = v2

i + w2

i + σ2

i

and k =
[

CY
i1(s

′ − s1,1) . . . CY
i1(s

′ − s1,N1
) CY

i2(s′ − s2,1) . . . CY
i2(s

′ − s2,N2
)
]T

2.1 Example 1 - Strongly dependent outputs over 1d input space

Consider two outputs, observed over a 1d input space. Let Ai = exp(fi), Bi = exp(gi),
and σi = exp(βi). Our hyperparameters are Θ = {v1, v2, w1, w2, f1, f2, g1, g2, µ, β1, β2} where
each element of Θ is a scalar.

We set Gaussian priors over Θ, as follows:
P (vi) = N (vi, 0, 0.5

2), P (wi) = N (wi, 0, 0.5
2), P (fi) = N (fi, 3.5, 1

2),
P (gi) = N (gi, 3.5, 1

2), P (µ) = N (µ, 0, 0.52), P (βi) = N (βi,−4, 0.752).
where N (x, µ, σ2) is a Gaussian distribution for variable x with mean µ and variance σ2.

We generated N = 48 data points by taking N1 = 32 samples from output 1 and N2 = 16
samples from output 2. The samples from output 1 were linearly spaced in the interval
[−1, 1] and those from output 2 were uniformly spaced in the region [−1,−0.15] ∪ [0.65, 1].
All samples were taken under additive Gaussian noise, σ = 0.025. To build our model, we
maximised P (Θ|D) ∝ P (D |Θ)P (Θ) using a multistart conjugate gradient algorithm, with
5 starts, sampling from P (Θ) for initial conditions.

The resulting dependent model is shown in Figure 2 along with an independent (control)
model with no coupling (see Figure 1). Observe that the dependent model has learned the
coupling and translation between the outputs, and has filled in output 2 where samples are
missing. The control model cannot achieve such infilling as it is consists of two independent
Gaussian processes.

2.2 Example 2 - Strongly dependent outputs over 2d input space

Consider two outputs, observed over a 2d input space. Let

Ai =
1

α2
i

I Bi =
1

τ2
i

I where I is the identity matrix.

Furthermore, let σi = exp(βi). In this toy example, we set µ = 0, so our hyperparameters
become Θ = {v1, v2, w1, w2, α1, α2, τ1, τ2β1, β2} where each element of Θ is a scalar.

We set Gaussian priors over Θ, as follows:
P (vi) = N (vi, 1, 0.5

2), P (wi) = N (wi, 0, 0.5
2), P (αi) = N (αi, 0.3, 0.1

2),
P (τi) = N (τi, 0.3, 0.1

2), P (βi) = N (βi,−3.7, 0.52).
We generated 117 data points by taking 81 samples from output 1 and 36 samples from

output 2. Both sets of samples formed uniform lattices over the region [−0.9, 0.9]⊗ [−0.9, 0.9]
and were taken with additive Gaussian noise, σ = 0.025. To build our model, we maximised
P (Θ|D) as before.

The dependent model is shown in Figure 3 along with an independent control model. The
dependent model has filled in output 2 where samples are missing. Again, the control model
cannot achieve such in-filling as it is consists of two independent Gaussian processes.

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

True function
Model mean

Output 1 − independent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Output 2 − independent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Output 1 − dependent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Output 2 − dependent model

Figure 2: Strongly dependent outputs where output 2 is simply a translated version of output
1, with independent Gaussian noise, σ = 0.025. The solid lines represent the model, the
dotted lines are the true function, and the dots are samples. The shaded regions represent 1σ
error bars for the model prediction. (top) Independent model of the two outputs. (bottom)
Dependent model.

2.3 Example 3 - Partially Coupled Outputs

The examples in sections 2.1 and 2.2 show GP models of two dependent outputs which had
no independent components. The top of Figure 4 shows a case in which a pair of outputs are
dependent, but also have features that are independent of each other.

Our hyperparameters Θ are the same as those from section 2.1 and again we use Gaussian
priors. We generated 48 data points by taking 32 samples from output 1 and 16 samples from
output 2. The samples were linearly spaced in the interval [−1, 1] for output 1 and [−1, 0]
for output 2. All samples were taken with additive Gaussian noise, σ = 0.025.

As before, we then maximised P (Θ|D) and made predictions with the resulting model
along with an independent model for comparison. As Figure 4 shows, the dependent model
has learned the coupling between the outputs, and attempts to fill in output 2 where samples
are missing. The in-filling is not as striking as the previous examples because output 2
possesses an independent component, but is much better than the default GP model.

5

Figure 3: Strongly dependent outputs where output 2 is simply a copy of output 1, with in-
dependent Gaussian noise. (top) Independent model of the two outputs. (bottom) Dependent
model. Output 1 is modelled well by both models. Output 2 is modelled well only by the
dependent model

3 Time Series Forecasting

Consider the observation of multiple time series, where some of the series lead or predict the
others. We simulated a set of three time series for 100 steps each (figure 5) where series 3 was
positively coupled to a lagged version of series 1 (lag = 0.5) and negatively coupled to a lagged
version of series 2 (lag = 0.6). Given the 300 observations, we built a dependent GP model
of the three time series and compared them with independent GP models. The dependent
GP model incorporated a prior belief that series 3 was coupled to series 1 and 2, with the
lags unknown. The independent GP model assumed no coupling between its outputs, and
consisted of three independent GP models. We queried the models for forecasts of the future
10 values of series 3. It is clear from figure 5 that the dependent GP model does a far better
job at forecasting the dependent series 3. The independent model becomes inaccurate after
just a few time steps into the future. This inaccuracy is expected as knowledge of series 1
and 2 is required to accurately predict series 3. The dependent GP model performs well as
it has learned that series 3 is positively coupled to a lagged version of series 1 and negatively
coupled to a lagged version of series 2.

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1 and 2

1

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1 − independent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Output 2 − independent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Output 1 − dependent model

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Output 2 − dependent model

Figure 4: Dependent but unique outputs. (top) Outputs 1 and 2 are overlaid to illustrate
the (partial) coupling between them. Note that these outputs are not entirely dependent.
(middle) Independent model of the two outputs. (bottom) Dependent model.

7

−3

−2

−1

0

1

2

Series 1

−3

−2

−1

0

1

2

Series 2

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

Series 3

Figure 5: Three coupled time series, where series 1 and series 2 predict series 3. Forecasting
for series 3 begins after 100 time steps where t = 7.8. The dependent model forecast is shown
with a solid line, and the independent (control) forecast is shown with a broken line. The
dependent model does a far better job at forecasting the next 10 steps of series 3 (black dots).

8

4 Multiple Outputs and Non-stationary Kernels

The convolution framework described here for constructing GPs can be extended to build
models capable of modelling N -outputs, each defined over a p-dimensional input space. In
general, we can define a model where we assume M -independent Gaussian white noise pro-
cesses X1(s) . . . XM (s), N -outputs U1(s) . . . UN (s), and M×N kernels {{kmn(s)}M

m=1
}N

n=1

where s ∈ <p. The autocovariance (i = j) and cross-covariance (i 6= j) functions between
output processes i and j become (appendix A.1)

CU
ij (d) =

M
∑

m=1

∫

<p

kmi(s)kmj(s + d)ds (3)

and the matrix defined by equation 2 is extended to

C =

C11 . . . C1N

...
. . .

...
CN1 . . . CNN

If we have Ri observations of output i, then we have R =
∑N

i=1
Ri observations in

total and C is a R × R matrix. Our combined data set becomes D = {D1 · · · DN}, where
Di = {(si,1 , yi,1) · · · (si,Ri

, yi,Ri
)}.

The log-likelihood becomes

L = −
1

2
log

∣

∣C
∣

∣ −
1

2
yT C−1y −

R

2
log 2π

where yT =
[

(y1,1 · · · y1,R1
) · · · (yi,1 · · · yi,Ri

) · · · (yN,1 · · · yN,RN
)
]

and the predictive distribution at a point s′ on output i given Θ and D is Gaussian with
mean ŷ′ and variance σ2

ŷ′ given by

ŷ′ = kTC−1y

and σ2

ŷ′ = κ − kT C−1k

where κ = CY
ii (0) = v2

i + w2

i + σ2

i

and kT =
[

kT
1 · · ·kT

j · · ·kT
N

]

and kT
j =

[

CY
ij (s

′ − sj,1) . . . CY
ij (s

′ − sj,Rj
)
]

The kernels used in (3) need not be Gaussian, and need not be spatially invariant, or
stationary. We require kernels that are absolutely integrable,

∫

∞

−∞
. . .

∫

∞

−∞
|k(s)|dps < ∞.

This provides a large degree of flexibility, and is an easy condition to uphold. It would seem
that an absolutely integrable kernel would be easier to define and parameterise than a positive
definite function. On the other hand, we require a closed form of CY

ij (d) and this may not be
attainable for some non-Gaussian kernels.

5 Conclusion

We have shown how the Gaussian Process framework can be extended to multiple output
variables without assuming them to be independent. Multiple processes can be handled by
inferring convolution kernels instead of covariance functions. This makes it easy to construct
the required positive definite covariance matrices for covarying outputs.

9

One application of this work is to learn the spatial translations between outputs. However
the framework developed here is more general than this, as it can model data that arises from
multiple sources, only some of which are shared. Our examples show the infilling of sparsely
sampled regions that becomes possible in a model that permits coupling between outputs.
Another application is the forecasting of dependent time series. Our example shows how
learning couplings between multiple time series may aid in forecasting, particularly when the
series to be forecast is dependent on previous or current values of other series.

Dependent Gaussian processes should be particularly valuable in cases where one output
is expensive to sample, but covaries strongly with a second that is cheap. By inferring both
the coupling and the independent aspects of the data, the cheap observations can be used as
a proxy for the expensive ones.

A Appendices

A.1 Auto-Covariance and Cross-Covariance Functions

Consider M independent, stationary, Gaussian white noise processes, X1(s) . . . XM (s) , s ∈
<p, producing N -outputs, Y1(s) . . . YN (s), with the nth defined as follows:

Yn(s) = Un(s) + Wn(s)

where Wn(s) is stationary Gaussian white noise, and Un(s) is defined by a sum of convolutions:

Un(s) =

M
∑

m=1

hmn(s) ? Xm(s)

=
M
∑

m=1

∫

<p

hmn(α)Xm(s − α)dpα

where, hmn is the kernel connecting latent input m to output n.
The function CY

ij (sa, sb) defines the auto (i == j) and cross covariance (i 6= j) between
Yi(sa) and Yj(sb), and is derived as follows:

CY
ij (sa, sb) = CU

ij (sa, sb) + σ2

i δij δab

where σ2
i is the variance of Wi(s), and

CU
ij (sa, sb) = E {Ui(sa)Uj(sb)} (Ui(s), Uj(s) are zero mean processes)

= E

{

M
∑

m=1

∫

<p

hmi(α)Xm(sa − α)dpα

M
∑

n=1

∫

<p

hnj(β)Xn(sb − β)dpβ

}

=

M
∑

m=1

M
∑

n=1

∫

<p

∫

<p

hmi(α)hnj(β)E {Xm(sa − α)Xn(sb − β)dpαdpβ}

where we have changed the order of expectation and integration because
∫

<p |hmn(s)|2dps <

∞ ∀m,n, i.e. hmn(s) are finite energy kernels (corresponding to stable linear filters).
Now, Xm(s1) and Xm(s2) are Gaussian white noise processes, that only covary if m = n

and s1 = s2, so

10

CU
ij (sa, sb) =

M
∑

m=1

∫

<p

∫

<p

hmi(α)hnj(β)δ
(

α − [sa − sb + β]
)

dpαdpβ

=

M
∑

m=1

∫

<p

hmj(β)hmi(β + (sa − sb))d
pβ

which is the sum of kernel correlations.
If the kernels are stationary, then we can define a stationary CU

ij (·) in terms of a separation
vector ds = sa − sb.

CU
ij (ds) =

M
∑

m=1

∫

<p

hmj(β)hmi(β + ds)d
pβ (4)

A.2 Covariance functions for Gaussian Kernels

Equation 4 defines the auto and cross covariance and is repeated here for convenience.

CU
ij (ds) =

M
∑

m=1

∫

<p

hmj(β)hmi(β + ds)d
pβ

Here, we set the kernels to parameterised Gaussians and solve the integral.
Let

hmn(s) = vmn exp

(

−
1

2
(s − µmn)TAmn(s − µmn)

)

where vmn ∈ < , s, µmn ∈ <p, and Amn is a p × p positive definite matrix.
Now let a, b ∈ <p and A,B be p × p positive definite matrices. Define

f(s, a, b,A,B) =

∫

<p

exp

(

−
1

2
(s − a)TA(s − a)

)

exp

(

−
1

2
(s − b)TB(s − b)

)

dps

= exp

(

−
1

2
c

)
∫

<p

exp

(

−
1

2
(s − µ)TG(s − µ)

)

dps

where G = A + B , µ = G−1(Aa + Bb), and c = aTAa + bTBb − µTGµ

f(s, a, b,A,B) = exp

(

−
1

2
c

)

(2π)
p

2

√

|G|

Now,

c = aTAa + bTBb − µTGµ

= (b − ε)TΣ(b − ε) + g

where Σ = A−AG−1A = AG−1B and ε = Σ−1BG−1Aa = a and
g = −εTΣε + aTAa − aTAG−1Aa = 0 so,

f(s, a, b,A,B) =
(2π)

p

2

√

|A + B|
exp

(

−
1

2
(b − a)TΣ (b − a)

)

11

We can now write

CU
ij (ds) =

M
∑

m=1

∫

<p

{

vmj exp

(

−
1

2
(β − µmj)

TAmj(β − µmj)

)

× vmi exp

(

−
1

2
(β + ds − µmi)

TAmi(β + ds − µmi)

)}

dpβ

=
M
∑

m=1

f(β, µmj , ds − µmi,Amj ,Ami)

=

M
∑

m=1

(2π)
p

2

√

|Amj + Ami|
exp

(

−
1

2
(ds − [µmi − µmj])

TΣ (ds − [µmi − µmj])

)

where Σ = Ami(Ami + Amj)
−1Amj

References

[1] Abrahamsen, P. A review of gaussian random fields and correlation functions. Tech. Rep. 917,
Norwegian Computing Center, Box 114, Blindern, N-0314 Oslo, Norway, 1997.

[2] Cressie, N. Statistics for Spatial Data. Wiley, 1993.

[3] Gibbs, M. Bayesian Gaussian Processes for Classification and Regression. PhD thesis, University
of Cambridge, Cambridge, U.K., 1997.

[4] Gibbs, M., and MacKay, D. J. Efficient implementation of gaussian processes.
www.inference.phy.cam.ac.uk/mackay/abstracts/gpros.html, 1996.

[5] Gibbs, M. N., and MacKay, D. J. Variational gaussian process classifiers. IEEE Trans. on
Neural Networks 11, 6 (2000), 1458–1464.

[6] Higdon, D. Space and space-time modelling using process convolutions. In Quantitative meth-
ods for current environmental issues (2002), C. Anderson, V. Barnett, P. Chatwin, and A. El-
Shaarawi, Eds., Springer Verlag, pp. 37–56.

[7] MacKay, D. J. Gaussian processes: A replacement for supervised neural networks? In NIPS97
Tutorial, 1997.

[8] MacKay, D. J. Information theory, inference, and learning algorithms. Cambridge University
Press, 2003.

[9] Neal, R. Probabilistic inference using markov chain monte carlo methods. Tech. Report CRG-
TR-93-1, Dept. of Computer Science, Univ. of Toronto, 1993.

[10] Neal, R. Monte carlo implementation of gaussian process models for bayesian regression and
classification. Tech. Rep. CRG-TR-97-2, Dept. of Computer Science, Univ. of Toronto, 1997.

[11] Paciorek, C. Nonstationary Gaussian processes for regression and spatial modelling. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A., 2003.

[12] Paciorek, C., and Schervish, M. Nonstationary covariance functions for gaussian process
regression. Submitted to NIPS, 2004.

[13] Rasmussen, C., and Kuss, M. Gaussian processes in reinforcement learning. In Advances in
Neural Information Processing Systems (2004), vol. 16.

[14] Rasmussen, C. E. Evaluation of Gaussian Processes and other methods for Non-Linear Regres-
sion. PhD thesis, Graduate Department of Computer Science, University of Toronto, 1996.

[15] Tipping, M. E., and Bishop, C. M. Bayesian image super-resolution. In Advances in Neural
Information Processing Systems (2002), S. Becker S., Thrun and K. Obermayer, Eds., vol. 15,
pp. 1303 – 1310.

12

[16] Williams, C. K., and Barber, D. Bayesian classification with gaussian processes. IEEE
trans. Pattern Analysis and Machine Intelligence 20, 12 (1998), 1342 – 1351.

[17] Williams, C. K., and Rasmussen, C. E. Gaussian processes for regression. In Advances
in Neural Information Processing Systems (1996), D. Touretzsky, M. Mozer, and M. Hasselmo,
Eds., vol. 8.

13

