Deep Learning Concepts

Sergey Ivanov (617)

qbrick@mail.ru

September 16, 2019

1 Deep Learning

- Basic idea
- Supervised learning

MSU

Unsupervised learning

Deep Learning

Basic idea

Suppose we want to find some function y(x).

Concept of learning

MSU

1 construct some model $y = f(x, \theta)$ using basic building blocks

Suppose we want to find some function y(x).

Concept of learning

- **1** construct some model $y = f(x, \theta)$ using basic building blocks
- **2** select some differentiable scalar criterion to optimize L(f)

Key principle

Suppose we want to find some function y(x).

Concept of learning

- **1** construct some model $y = f(x, \theta)$ using basic building blocks
- **2** select some differentiable scalar criterion to optimize L(f)
- **3** select optimization procedure (i.e. gradient descent)

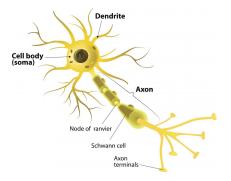
Key principle

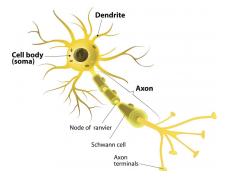
Suppose we want to find some function y(x).

Concept of learning

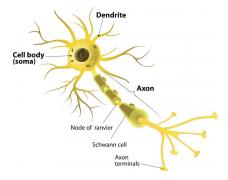
- **1** construct some model $y = f(x, \theta)$ using basic building blocks
- **2** select some differentiable scalar criterion to optimize L(f)
- **3** select optimization procedure (i.e. gradient descent)

4 solve
$$\theta^* = \min_{\theta} L(f)$$



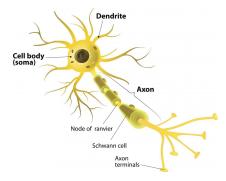


input: $x \in \{0, 1\}^n$



MSU

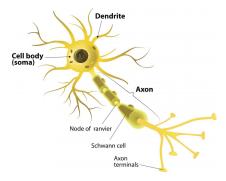
input: $x \in \{0, 1\}^n$ parameters: $w \in \mathbb{R}^n, b \in \mathbb{R}$



input: $x \in \{0, 1\}^n$ parameters: $w \in \mathbb{R}^n, b \in \mathbb{R}$

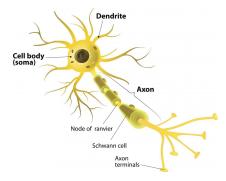
1 *i*-th signal: $w_i x_i$

Sergey Ivanov (617)



MSU

input: $x \in \{0, 1\}^n$ parameters: $w \in \mathbb{R}^n, b \in \mathbb{R}$ 1 *i*-th signal: $w_i x_i$ 2 accumulation: $\sum_i w_i x_i$



MSU

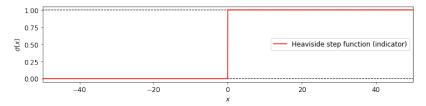
input: $x \in \{0, 1\}^n$ parameters: $w \in \mathbb{R}^n, b \in \mathbb{R}$ 1 *i*-th signal: $w_i x_i$ 2 accumulation: $\sum_i w_i x_i$ 3 output: $\sum_i w_i x_i > b$

Artificial neurons

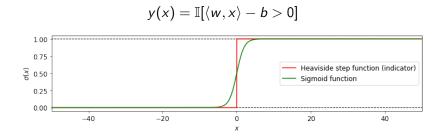
$$y(x) = \mathbb{I}[\langle w, x \rangle - b > 0]$$

Artificial neurons

$$y(x) = \mathbb{I}[\langle w, x \rangle - b > 0]$$



Artificial neurons

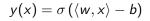


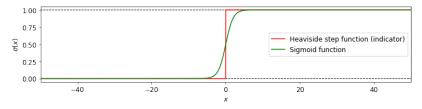
General idea

Everything discrete can be smoothed!

Sergey Ivanov (617)

Artificial neurons





General idea

Everything discrete can be smoothed!

Sigmoid function:

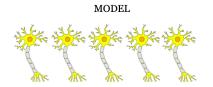
MSU

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sergey Ivanov (617)

Standard building block for neural networks:

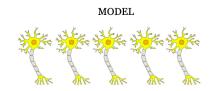
 $y(x) = \sigma(Wx - b)$



REALITY

Standard building block for neural networks:

 $y(x) = \sigma(Wx - b)$

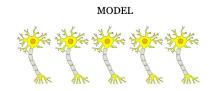


REALITY

universal approximation properties!

Standard building block for neural networks:

 $y(x) = \sigma(Wx - b)$



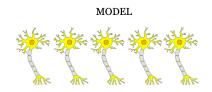
REALITY

universal approximation properties!

if there is infinite number of neurons...

Standard building block for neural networks:

 $y(x) = \sigma(Wx - b)$



REALITY

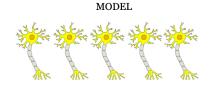
) universal approximation properties!

if there is infinite number of neurons...

) stack more layers!

Standard building block for neural networks:

$$y(x) = \sigma(Wx - b)$$



REALITY

universal approximation properties!

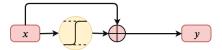
if there is infinite number of neurons...

) stack more layers!

😫 gradient vanishing / exploding problem!

Stacking a lot of layers

Stacking a lot of layers



Residual connections

$$y = x + \sigma(Wx - b)$$

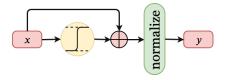
Sergey Ivanov (617)

MSU

Deep Learning Concepts

September 16, 2019 8 / 31

Stacking a lot of layers



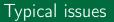
Residual connections

$$y = x + \sigma(Wx - b)$$

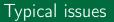
Layer normalization

$$\mu = \frac{1}{m} \sum_{i}^{n} x_{i}$$
 $s^{2} = \frac{1}{m} \sum_{i}^{n} (x_{i} - \mu)$ $y = (x - \mu)/s$

■ input x may have some complex structure: how to convert it to vector in ℝ^d?



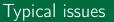
- input *x* may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?
 - categorical features: one-hot encoding



- input x may have some complex structure: how to convert it to vector in ℝ^d?
 - categorical features: one-hot encoding
 - images: convolutional layers + pooling (CNN)

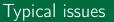
- input x may have some complex structure: how to convert it to vector in ℝ^d?
 - categorical features: one-hot encoding
 - images: convolutional layers + pooling (CNN)
 - **sequence:** recurrent layers (RNN, LSTM, GRU)

- input x may have some complex structure: how to convert it to vector in ℝ^d?
 - categorical features: one-hot encoding
 - images: convolutional layers + pooling (CNN)
 - **sequence:** recurrent layers (RNN, LSTM, GRU)
 - raw audio: ?!?



- input x may have some complex structure: how to convert it to vector in ℝ^d?
 - **categorical features:** one-hot encoding
 - images: convolutional layers + pooling (CNN)
 - **sequence:** recurrent layers (RNN, LSTM, GRU)
 - raw audio: ?!?

output y may have some complex structure: how to build the model?



- input x may have some complex structure: how to convert it to vector in \mathbb{R}^{d} ?
 - categorical features: one-hot encoding
 - images: convolutional layers + pooling (CNN)
 - sequence: recurrent layers (RNN, LSTM, GRU)
 - raw audio: ?!?

- output y may have some complex structure: how to build the model?
- no or little data available, how to choose criterion?

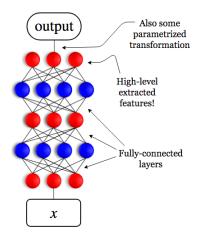
- input x may have some complex structure: how to convert it to vector in R^d?
 - **categorical features:** one-hot encoding
 - images: convolutional layers + pooling (CNN)
 - **sequence:** recurrent layers (RNN, LSTM, GRU)
 - raw audio: ?!?
- output y may have some complex structure: how to build the model?
- no or little data available, how to choose criterion?
- uninterpretable («black box» model)

Deep Learning

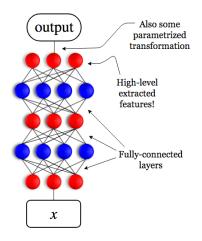
Supervised learning

Sergey Ivanov (617)

Supervised learning



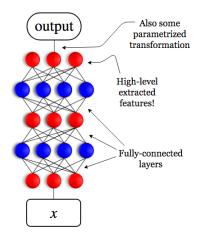
Supervised learning



MSU

Let
$$(x_i, y_i)$$
 be our data.
 $x_i \in \mathbb{R}^D$

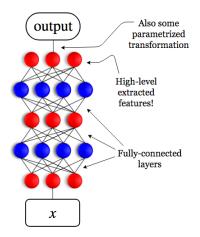
Sergey Ivanov (617)



MSU

Let (x_i, y_i) be our data. $x_i \in \mathbb{R}^D$

■ stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^d$

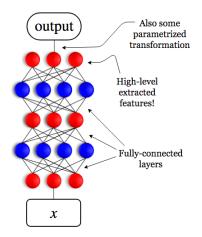


MSU

Let (x_i, y_i) be our data. $x_i \in \mathbb{R}^D$

■ stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^d$

2 choose final decision rule $\hat{y}(z)$.



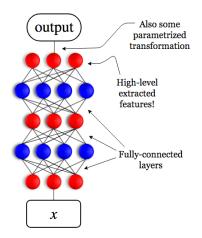
MSU

Let (x_i, y_i) be our data. $x_i \in \mathbb{R}^D$

■ stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^d$

2 choose final decision rule $\hat{y}(z)$.

3 choose loss function $Loss(y, \hat{y})$



MSU

Let (x_i, y_i) be our data. $x_i \in \mathbb{R}^D$

■ stack some FC layers and get high-level representation $z(x) \in \mathbb{R}^d$

2 choose final decision rule $\hat{y}(z)$.

3 choose loss function $Loss(y, \hat{y})$

4
$$L(f) = \frac{1}{N} \sum_{i} \text{Loss}(y_i, \hat{y}(z(x_i)))$$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

• $y \in \mathbb{R}$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

• $y \in \mathbb{R}$

• Linear layer: $\hat{y} = \langle w, z \rangle + b$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

• $y \in \mathbb{R}$ • Linear layer: $\hat{y} = \langle w, z \rangle + b$ • $y \in [0, 1]$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

y ∈ ℝ
Linear layer: ŷ = ⟨w, z⟩ + b
y ∈ [0, 1]
Linear layer + sigmoid: ŷ = σ (⟨w, z⟩ + b)
y ∈ ℝ₊₊

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

y ∈ ℝ

 Linear layer: ŷ = ⟨w, z⟩ + b

 y ∈ [0, 1]

 Linear layer + sigmoid: ŷ = σ (⟨w, z⟩ + b)

 y ∈ ℝ₊₊

 Linear + exp: ŷ = e^{⟨w,z⟩+b}

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

■ $y \in \mathbb{R}$ ■ Linear layer: $\hat{y} = \langle w, z \rangle + b$ ■ $y \in [0, 1]$ ■ Linear layer + sigmoid: $\hat{y} = \sigma (\langle w, z \rangle + b)$ ■ $y \in \mathbb{R}_{++}$ ■ Linear + exp: $\hat{y} = e^{\langle w, z \rangle + b}$ ■ Linear + softplus: $\hat{y} = \log (1 + e^{\langle w, z \rangle + b})$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

■ $y \in \mathbb{R}$ ■ Linear layer: $\hat{y} = \langle w, z \rangle + b$ ■ $y \in [0, 1]$ ■ Linear layer + sigmoid: $\hat{y} = \sigma (\langle w, z \rangle + b)$ ■ $y \in \mathbb{R}_{++}$ ■ Linear + exp: $\hat{y} = e^{\langle w, z \rangle + b}$ ■ Linear + softplus: $\hat{y} = \log (1 + e^{\langle w, z \rangle + b})$ ■ $y \in \{1, 2, 3 \dots C\}$

Here $z \in \mathbb{R}^d$ is high-level representation (outputs from neurons on final layer).

 $\mathbf{v} \in \mathbb{R}$ • Linear layer: $\hat{y} = \langle w, z \rangle + b$ $v \in [0, 1]$ • Linear layer + sigmoid: $\hat{y} = \sigma (\langle w, z \rangle + b)$ $v \in \mathbb{R}_{++}$ Linear + exp: $\hat{y} = e^{\langle w, z \rangle + b}$ • Linear + softplus: $\hat{y} = \log (1 + e^{\langle w, z \rangle + b})$ • $y \in \{1, 2, 3..., C\}$ • Linear layer + softmax: $\hat{y} = \operatorname{softmax}(\langle w, z \rangle + b)$ (softmax = exp + normalize)

Regression

MSE, MAE

- Regression
 - MSE, MAE

MSU

Classification

- Regression
 - MSE, MAE

- Classification
 - why cross-entropy is so popular?

- Regression
 - MSE, MAE
- Classification
 - why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

$$x, y \sim p(x, y) = p(x)p(y \mid x)$$
$$p(y \mid x) - ?$$

Sergey Ivanov (617)

- Regression
 - MSE, MAE

MSU

- Classification
 - why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

$$x, y \sim p(x, y) = p(x)p(y \mid x)$$
$$p(y \mid x) - ?$$

Our neural network actually defines approximating distribution $q(y \mid x, \theta)$. What to do next?

Losses derivation

Maximum likelihood estimation:

$$\prod_i q(y_i \mid x_i, \theta) \to \max_{\theta}$$

Losses derivation

Maximum likelihood estimation:

$$\prod_i q(y_i \mid x_i, heta)
ightarrow \max_{ heta}$$

Divergence minimization:

$$\mathcal{D}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \rightarrow \min_{\theta}$$

Losses derivation

Maximum likelihood estimation:

$$\prod_i q(y_i \mid x_i, heta)
ightarrow \max_{ heta}$$

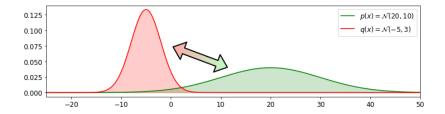
Divergence minimization:

MSU

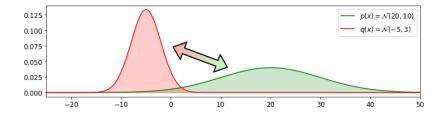
$$\mathcal{D}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \rightarrow \min_{\theta}$$

Bayesian inference: seek for $p(\theta \mid X, Y)$

Divergences



Divergences

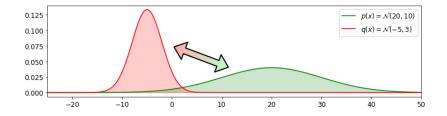


- Kullback-Leibler divergence
- Wasserstein distance

- Jensen-Shannon divergence
- Cramer distance

^{. . . .}

Divergences



Kullback-Leibler divergence — the chosen one!

Wasserstein distance

MSU

- Jensen-Shannon divergence
- Cramer distance

. . . .

Kullback-Leibler Divergence

MSU

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy$$

Deep Learning

Kullback-Leibler Divergence

MSU

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy = \mathbb{E}_{p(y)} \log rac{p(y)}{q(y)}$$

Kullback-Leibler Divergence

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy = \mathbb{E}_{p(y)} \log rac{p(y)}{q(y)}$$

Wonderful properties:

MSU

 \times *p* and *q* must share domain

Kullback-Leibler Divergence

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy = \mathbb{E}_{p(y)} \log rac{p(y)}{q(y)}$$

Wonderful properties:

- \times *p* and *q* must share domain
- \times assymetric

Kullback-Leibler Divergence

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy = \mathbb{E}_{p(y)} \log rac{p(y)}{q(y)}$$

Wonderful properties:

- \times *p* and *q* must share domain
- \times assymetric
- $\times\,$ does not satisfy the triangle inequality

Kullback-Leibler Divergence

Definition

$$\mathsf{KL}(p \parallel q) := \int_{\mathcal{Y}} p(y) \log rac{p(y)}{q(y)} dy = \mathbb{E}_{p(y)} \log rac{p(y)}{q(y)}$$

Wonderful properties:

- \times *p* and *q* must share domain
- \times assymetric
- $\times\,$ does not satisfy the triangle inequality

Recall our task:

$$\mathsf{KL}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \to \min_{\theta}$$

Recall our task:

$$\mathsf{KL}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \to \min_{\theta}$$

Using definition:

$$\mathbb{E}_{p(y|x)} \log p(y \mid x) - \mathbb{E}_{p(y|x)} \log q(y_i \mid x_i, \theta) \to \min_{\theta}$$

Recall our task:

$$\mathsf{KL}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \to \min_{\theta}$$

Using definition:

$$\mathbb{E}_{p(y|x)} \log p(y \mid x) - \mathbb{E}_{p(y|x)} \log q(y_i \mid x_i, \theta) \to \min_{\theta}$$

 $Const(\theta)$ terms can be ignored!

Recall our task:

$$\mathsf{KL}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \to \min_{\theta}$$

Using definition:

$$-\mathbb{E}_{p(y|x)}\log q(y_i \mid x_i, \theta) \rightarrow \min_{\theta}$$

 $Const(\theta)$ terms can be ignored!

Recall our task:

$$\mathsf{KL}(p(y \mid x) \parallel q(y_i \mid x_i, \theta)) \to \min_{\theta}$$

Using definition:

$$-\mathbb{E}_{p(y|x)}\log q(y_i \mid x_i, \theta)
ightarrow \min_{\theta}$$

 $Const(\theta)$ terms can be ignored!

Implicit expectation minimization

We do not know p(y | x), but ability to sample from it is enough!

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$L(f) = \mathbb{E}_{\rho(x,y)} \operatorname{Loss}(x,y,\theta) \to \min_{\theta}$$

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$L(f) = \mathbb{E}_{p(x,y)} \operatorname{Loss}(x, y, \theta) \to \min_{\theta}$$

Proposition: $\nabla_{\theta} L(f) = \mathbb{E}_{p(x,y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$L(f) = \mathbb{E}_{\rho(x,y)} \operatorname{Loss}(x, y, \theta) \to \min_{\theta}$$

Proposition: $\nabla_{\theta} L(f) = \mathbb{E}_{p(x,y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$

Monte-Carlo estimation

$$\mathbb{E}_{p(x,y)}\nabla_{\theta} \operatorname{Loss}(x,y,\theta) \approx \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}(x_{i},y_{i},\theta)$$

where x_i, y_i are samples from p(x, y).

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

$$L(f) = \mathbb{E}_{\rho(x,y)} \operatorname{Loss}(x,y,\theta) \to \min_{\theta}$$

Proposition: $\nabla_{\theta} L(f) = \mathbb{E}_{p(x,y)} \nabla_{\theta} \operatorname{Loss}(x, y, \theta)$

Monte-Carlo estimation

$$\mathbb{E}_{p(x,y)} \nabla_{\theta} \operatorname{Loss}(x,y,\theta) \approx \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}(x_{i},y_{i},\theta)$$

where x_i, y_i are samples from p(x, y).

MSU

 \checkmark an unbiased estimation (gives true gradient in expectation)

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD

- 1: Initialize θ_0 randomly
- 2: for $t = 0, 1, 2, \dots$ do

3: Sample *M* pairs
$$x_i, y_i \sim p(x, y)$$

4:
$$g_t \leftarrow \frac{1}{M} \sum_i^M \nabla_{\theta} \operatorname{Loss}(x_i, y_i, \theta_t)$$

5:
$$\theta_{t+1} \leftarrow \theta_t - \alpha_t g_t$$

MSU

6: end for

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 2 SGD

- 1: Initialize θ_0 randomly
- 2: for $t = 0, 1, 2, \dots$ do

3: Sample *M* pairs
$$x_i, y_i \sim p(x, y)$$

4:
$$g_t \leftarrow \frac{1}{M} \sum_{i}^{M} \nabla_{\theta} \operatorname{Loss}(x_i, y_i, \theta_t)$$

5:
$$\theta_{t+1} \leftarrow \theta_t - \alpha_t g_t$$

6: end for

SGD converges to local optima if

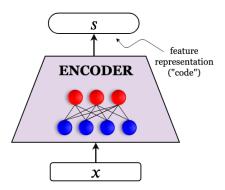
$$\sum_t \alpha_t = +\infty \quad \sum_t \alpha_t^2 < +\infty$$

Sergey Ivanov (617)

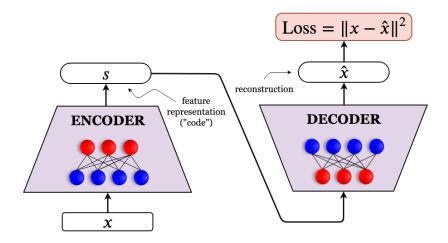
Deep Learning

Unsupervised learning

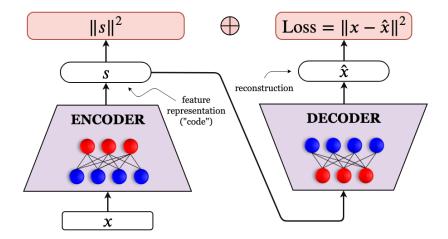
Autoencoder



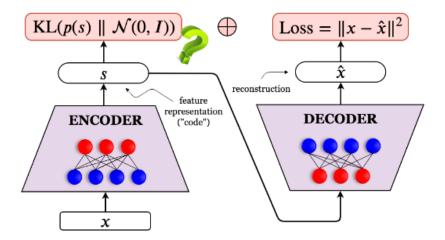
Autoencoder



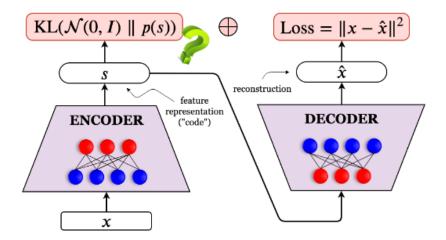
Shaping latent representation

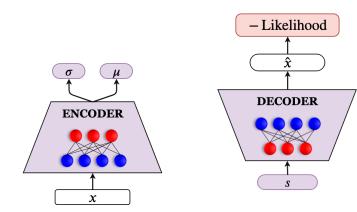


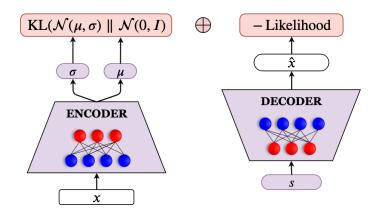
Shaping latent representation

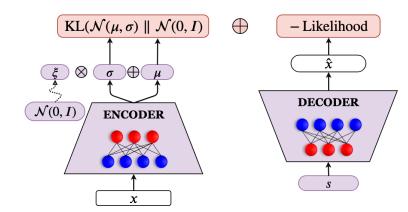


Shaping latent representation

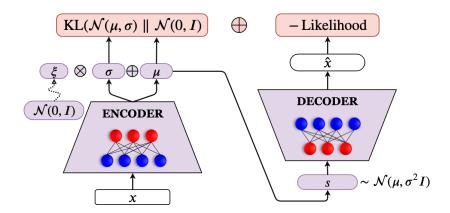




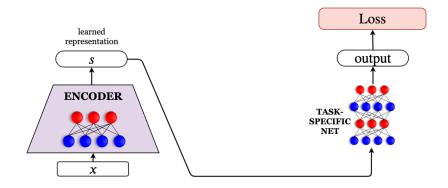




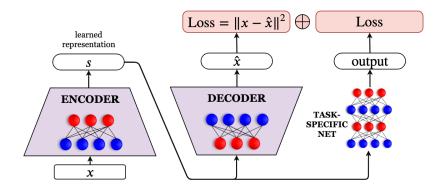
Sergey Ivanov (617)



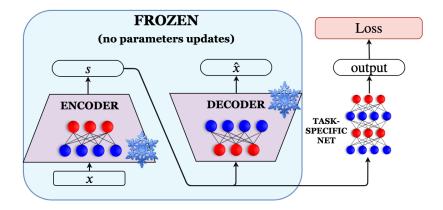
Possible usage



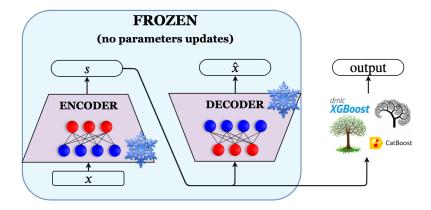
Possible usage



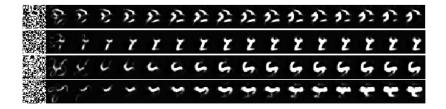
Transfer learning



Transfer learning

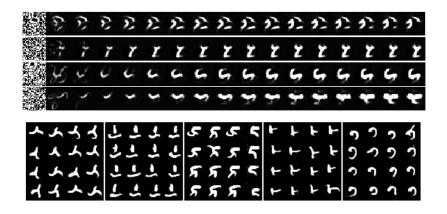


Example: digits that are not¹

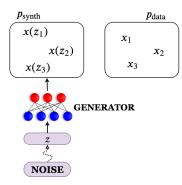


¹https://arxiv.org/abs/1606.04345

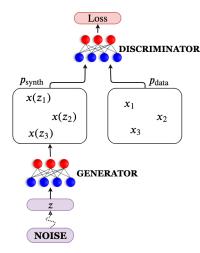
Example: digits that are not¹



¹https://arxiv.org/abs/1606.04345

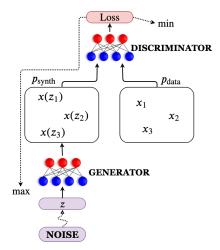


Training discriminator D:



$$\begin{aligned} \mathsf{Loss}(D, G) &:= \\ -\mathbb{E}_{x \sim p_{\mathsf{real}} \log D(x)^{-}} \\ -\mathbb{E}_{x \sim p_{\mathsf{synth}} \log(1 - D(x))} \to \min_{D} \end{aligned}$$

Training discriminator D:

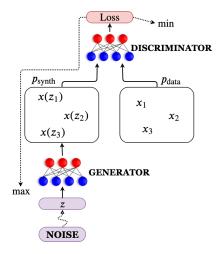


$$\begin{aligned} \mathsf{Loss}(D, G) &:= \\ -\mathbb{E}_{x \sim p_{\mathsf{real}} \log D(x)} - \\ -\mathbb{E}_{x \sim p_{\mathsf{synth}} \log(1 - D(x))} \to \min_{D} \end{aligned}$$

Training generator G:

$$\mathsf{Loss}(D,G) o \max_G$$

Training discriminator D:

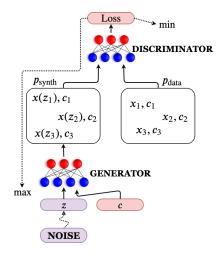


MSU

$$Loss(D, G) := -\mathbb{E}_{x \sim p_{real} \log D(x)} - -\mathbb{E}_{x \sim p_{synth} \log(1 - D(x))} \to \min_{D}$$

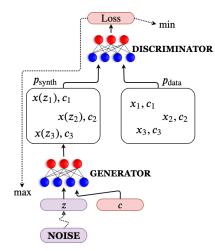
Training generator G:

$$\mathsf{Loss}(D,G) o \max_G$$



MSU

Train $p_{synth}(x \mid c)$ to imitate $p_{data}(x \mid c)!$



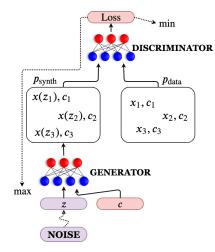
MSU

Train $p_{synth}(x \mid c)$ to imitate $p_{data}(x \mid c)!$

$$\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \min_{D}$$

$$\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \max$$

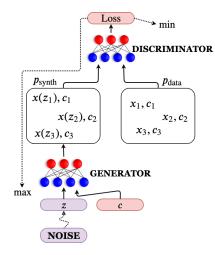
$$\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) o \max_{G}$$



MSU

Train $p_{synth}(x \mid c)$ to imitate $p_{data}(x \mid c)!$

- $\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \min_{D}$
- $\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \max_{G}$
- ✓ condition can be of any complexity!



MSU

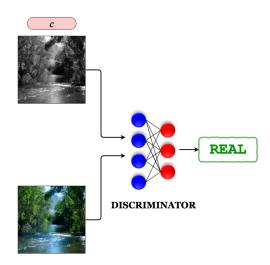
Train $p_{synth}(x \mid c)$ to imitate $p_{data}(x \mid c)!$

 $\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \min_{D}$

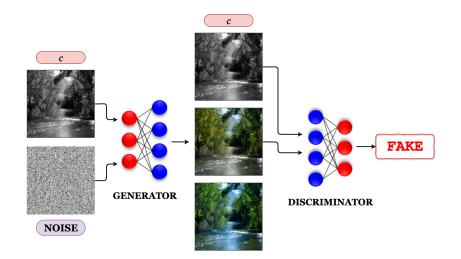
 $\mathbb{E}_{c \sim p(c)} \operatorname{Loss}(D, G, c) \to \max_{G}$

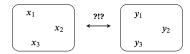
- ✓ condition can be of any complexity!
- ✓ can be viewed as loss function learning when output is complex

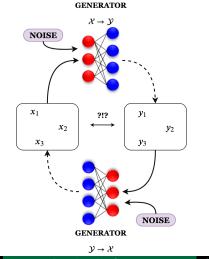
cGAN: Example



cGAN: Example

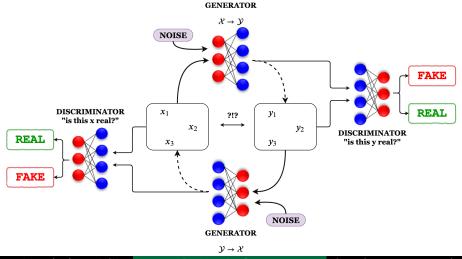




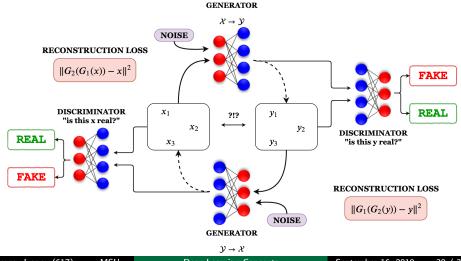


Sergey Ivanov (617) MSU

Deep Learning Concepts



 Sergey Ivanov (617)
 MSU
 Deep Learning Concepts
 September 16, 2019
 30 / 31



 Sergey Ivanov (617)
 MSU
 Deep Learning Concepts
 September 16, 2019
 30 / 31

CycleGAN: Example

