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Intuition of adversarial learning

Generative adversarial learning for images:

Analogy for bank and a money counterfeiter (having a spy in the

bank).

they compete, until money counterfeiter learns to make perfect

money replicas!
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Seminal paper on GAN1

2 multilayer perceptrons:
generator G (z) = G (z |θg )

outputs generated object x

discriminator D(x) = D(x |θd)
probability that x is from training set and not generated by G .

1https://arxiv.org/pdf/1406.2661.pdf
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Game

D and G play two-player game with minimax function V (G ,D)

min
G

max
D

V (D,G ) = Ex∼pdata(x) [logD(x)]+Ez∼pz (z) [log(1− D(G (z)))]

Incremental learning:

black dotted: pdata(x); green: pgenerated(x); blue: D(x) = p(x is true|x)
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Losses

Score for discriminator (for �xed θg ):

Ex∼pdata(x) [logD(x)] + Ez∼pz (z) [log(1− D(G (z)))]→ max
θd

Score for generator (probability of being detected):

Ez∼pz (z) [log(1− D(G (z)))]→ min
θg

on early iterations generator is very unrealistic

so D(G (z)) ≈ 0, gradient of log(1− D(G (z)) is small.

better works another score:

Ez∼pz (z) [log(D(G (z)))]→ max
θg
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Algorithm
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Optimal value for discriminator

Theorem: For �xed G optimal discriminator is:

D∗(x |G ) =
pdata(x)

pdata(x) + pg (x)

Proof:

V (G ,D) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz(x) log(1− D(g(z)))dz =

=

∫
x
pdata(x) log(D(x))dx + pg (x) log(1− D(x))dx

Since arg maxy {a log(y) + b log(1− y)} = a
a+b for any a, b =>

arg max
D

V (G ,D) =
pdata(x)

pdata(x) + pg (x)
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Optimal

Generator cost function:

This is maximized for pg (x) = pdata(x):

C (G ) = E log
1

2
+ E log

1

2
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Generated images
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Latent space

Linear interpolation of objects in latent space:
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Results

Parzen-window based log-likelihood:

MNIST - dataset of digit images

TFD - Toronto faces dataset
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Application use-case
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Application use-case

Experiments2

From transformed image->reconstruct original image

denoising, super-resolution, deblurring.

Quality metric: peak signal-to-noise ratio (PSNR)

Datasets:

Human faces - Large-scale CelebFaces Attributes Dataset
Natural scenes - MIT Places Database

2From
http://stanford.edu/class/ee367/Winter2017/yan_wang_ee367_win17_report.pdf
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Application use-case

Architecture

2 networks: generator, discriminator.

Discriminator tries to discriminate whether:

image came from the training set
image came from the generator

Generator takes corrupted image as input and tries to

reconstruct original image.
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Application use-case

Losses

Generator loss: 0.9Lcontent + 0.1LG ,advers
Lcontent =

∥∥∥I − Î
∥∥∥
1

, where I -original and Î -reconstructed

image.
LG ,advers -standard generator adversarial loss.

Discriminator loss: LD,advers
LD,advers -standard discriminator adversarial loss.
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Application use-case

Generator, discriminator structure
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Application use-case

Generator details

Residual networks are used in generator.3

Key idea of residual network:

use much more layers
layers grouped into groups with similar structure
each group learns small correction to identity function (to
prevent over�tting)

Building block of residual network:

3https://arxiv.org/pdf/1512.03385.pdf
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Application use-case

Peak signal-to-noise ratio (PSNR)
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Application use-case

Peak signal-to-noise ratio (PSNR)

De�nitions

I : original image

K : reconstructed image

m, n: image dimensions
Mean squared error (MSE):

for grayscale images:

MSE =
1

mn

m∑
i=1

n∑
j=1

[I (i , j)− K (i , j)]2

for (r,g,b) images (let c be color channel):

MSE =
1

3mn

m∑
i=1

n∑
j=1

3∑
c=1

[I (i , j , c)− K (i , j , c)]2

MAX : maximum possible pixel value
for B-bit image MAX = 2B − 1
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Application use-case

Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio (PSNR)4

PSNR measures quality of image reconstruction:

PSNR = 10 log10

(
MAX 2

MSE

)

4https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
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Application use-case

Experiments
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Application use-case

Experiments

Super-resolution

Super-resolution: recover higher resolution image from its
low resolution variant.

e.g. from limited device zoom capacity (camera, microscope)

Baseline algorithms:

naive scaling (LRes)
bicubic interpolation (Bicubic)

Results:

PSNR of bicubic is best, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
GAN super-resolution for faces works better than for places
(which are less typical)
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Application use-case

Experiments

Super-resolution outputs (subsampling=2)
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Application use-case

Experiments

Super-resolution outputs (subsampling=4)
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Application use-case

Experiments

Baselines

Denoising: noisy image->clean image

e.g. from measurement imperfection.

Baseline algorithms:

median �lter
non-local means

Results:

PSNR are comparable, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
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Application use-case

Experiments

Non-local means baseline5

u(p) =
1

C (p)

∑
q∈Ω

v(q)f (p, q)

where we used de�nitions:

v(·): original image with noise

u(·): denoised image

p, q: image locations

f (p, q): similarity of pixels p, q by their neighborhoods R(·)
C (p) =

∑
q∈Ω f (p, q)

f (p, q) = e−
1

h2
|B(q)−B(p)|2

B(p) = 1
|R(p)|

∑
i∈R(p) v(i)

5https://en.wikipedia.org/wiki/Non-local_means
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Application use-case

Experiments

Denoising outputs
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Application use-case

Experiments

Deblurring

Deblurring: images blurred and small Gaussian noise added.

e.g. from camera motion.

Baseline algorithms:

Wiener �lter
alternating direction method of multipliers (ADMM)

Results:

PSNR of GAN is lower, but GAN-reconstructed images are
more sharp
and more good-looking for humans (retain high level features).
GAN super-resolution for faces works better than for places
(which are less typical)
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Application use-case

Experiments

Deblurring faces outputs
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Application use-case

Experiments

Deblurring places outputs (not accurate)
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Application use-case

Experiments

Analysis of experiments

Unequal conditions:

Baseline methods use only test image.
GAN uses information from the whole training set.

GANs give smaller PSNR

may be attributed to small training set

GANs give more sharp output

to fool �blurry-based� discriminator
do not fallback to averaging as standard methods
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Application use-case

Experiments

Analysis of experiments

GANs reproduce small details on images

details learned from other images of the training set.

GAN performance can be improved by training on speci�c
subsets of objects

e.g. train separate face models for di�erent sex, age,
nationality, etc.
especially important for diverse objects such as places.
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Supplement
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Supplement

Yet another possible application: impainting
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Supplement

Joining GAN and VAE6

GAN generator learns to produce

sharp realistic images
some subset of objects in training set

problem called �model collapse�

Decoder of variational autoencoder (VAE) learns to produce

most training objects.
but generates oversmoothed results

Combine strong sides of GAN and VAE: train generator on

combination of GAN and VAE loss!

6https://arxiv.org/pdf/1512.09300.pdf
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