Generative adversarial networks

Victor Kitov

v v kit ov@yandex ru

Intuition of adversarial learning

Generative adversarial learning for images:

Analogy for bank and a money counterfeiter (having a spy in the bank).

• they compete, until money counterfeiter learns to make perfect money replicas!

Seminal paper on GAN¹

- 2 multilayer perceptrons:
 - generator $G(z) = G(z| heta_g)$
 - outputs generated object x
 - discriminator $D(x) = D(x|\theta_d)$
 - probability that x is from training set and not generated by G.

¹https://arxiv.org/pdf/1406.2661.pdf

Game

D and G play two-player game with minimax function V(G, D)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log(1 - D(G(z))) \right]$$

Incremental learning:

Losses

Score for discriminator (for fixed θ_g):

$$\mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log(1 - D(G(z))) \right] \rightarrow \max_{\substack{\theta_d \\ \theta_d}}$$

Score for generator (probability of being detected):

$$\mathbb{E}_{z \sim \rho_z(z)} \left[\log(1 - D(G(z))) \right] \rightarrow \min_{\theta_g}$$

- on early iterations generator is very unrealistic
- so $D(G(z)) \approx 0$, gradient of $\log(1 D(G(z)))$ is small.
- better works another score:

$$\mathbb{E}_{z \sim
ho_z(z)}\left[\log(D(G(z)))
ight]
ightarrow \max_{ heta_g}$$

Algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}\$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Optimal value for discriminator

Theorem: For fixed G optimal discriminator is:

$$D^*(x|G) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Proof:

$$V(G,D) = \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(x) \log(1 - D(g(z))) dz =$$
$$= \int_{x} p_{data}(x) \log(D(x)) dx + p_{g}(x) \log(1 - D(x)) dx$$

Since arg $\max_y \left\{ a \log(y) + b \log(1-y) \right\} = \frac{a}{a+b}$ for any a, b = >

$$\mathop{\mathrm{arg\,max}}_D V(G,D) = rac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Optimal

Generator cost function:

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log (1 - D_{G}^{*}(\boldsymbol{x}))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] \end{split}$$

This is maximized for $p_g(x) = p_{data}(x)$:

$$C(G) = \mathbb{E}\log \frac{1}{2} + \mathbb{E}\log \frac{1}{2}$$

Generated images

Latent space

Linear interpolation of objects in latent space:

Results

Parzen-window based log-likelihood:

- MNIST dataset of digit images
- TFD Toronto faces dataset

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [6]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

Application use-case

Table of Contents

Application use-case

- Peak signal-to-noise ratio (PSNR)
- Experiments

2 Supplement

- From transformed image->reconstruct original image
 - denoising, super-resolution, deblurring.
- Quality metric: peak signal-to-noise ratio (PSNR)
- Datasets:
 - Human faces Large-scale CelebFaces Attributes Dataset
 - Natural scenes MIT Places Database

²From

http://stanford.edu/class/ee367/Winter2017/yan_wang_ee367_win17_report.pdf

Architecture

- 2 networks: generator, discriminator.
- Discriminator tries to discriminate whether:
 - image came from the training set
 - image came from the generator
- Generator takes corrupted image as input and tries to reconstruct original image.

Losses

- Generator loss: $0.9\mathcal{L}_{content} + 0.1\mathcal{L}_{G,advers}$
 - $\mathcal{L}_{content} = \left\| I \widehat{I} \right\|_{1}$, where *I*-original and \widehat{I} -reconstructed image.
 - $\mathcal{L}_{G,advers}$ -standard generator adversarial loss.
- Discriminator loss: $\mathcal{L}_{D,advers}$
 - $\mathcal{L}_{D,advers}$ -standard discriminator adversarial loss.

Application use-case

Generator, discriminator structure

Discriminator network

Generator details

- Residual networks are used in generator.³
- Key idea of residual network:
 - use much more layers
 - layers grouped into groups with similar structure
 - each group learns **small correction** to identity function (to prevent overfitting)

Building block of residual network:

³https://arxiv.org/pdf/1512.03385.pdf

17/35

Application use-case

Peak signal-to-noise ratio (PSNR)

- Peak signal-to-noise ratio (PSNR)
- Experiments

Application use-case Peak signal-to-noise ratio (PSNR)

Definitions

- I: original image
- K: reconstructed image
- *m*, *n*: image dimensions
- Mean squared error (MSE):
 - for grayscale images:

$$MSE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[I(i,j) - K(i,j) \right]^{2}$$

• for (r,g,b) images (let c be color channel):

$$MSE = \frac{1}{3mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{c=1}^{3} \left[I(i,j,c) - K(i,j,c) \right]^{2}$$

• MAX: maximum possible pixel value

• for *B*-bit image $MAX = 2^B - 1$

Application use-case

Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio (PSNR)⁴

PSNR measures quality of image reconstruction:

$$PSNR = 10 \log_{10} \left(\frac{MAX^2}{MSE} \right)$$

⁴https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

Application use-case

Experiments

• Peak signal-to-noise ratio (PSNR)

• Experiments

Application use-case

Experiments

Super-resolution

- **Super-resolution:** recover higher resolution image from its low resolution variant.
 - e.g. from limited device zoom capacity (camera, microscope)
- Baseline algorithms:
 - naive scaling (LRes)
 - bicubic interpolation (Bicubic)
- Results:
 - PSNR of bicubic is best, but GAN-reconstructed images are more sharp

and more good-looking for humans (retain high level features).

• GAN super-resolution for faces works better than for places (which are less typical)

Application use-case

Experiments

Super-resolution outputs (subsampling=2)

Origin

Origin

Bicubic DCGAN

Bicubic

Application use-case

Experiments

Super-resolution outputs (subsampling=4)

Original

LRes

Original

Bicubic DCGAN

Bicubic

LRes

Application use-case

Experiments

Baselines

- **Denoising:** noisy image->clean image
 - e.g. from measurement imperfection.
- Baseline algorithms:
 - median filter
 - non-local means
- Results:
 - PSNR are comparable, but GAN-reconstructed images are more sharp and more good-looking for humans (retain high level features).

Application use-case

Experiments

Non-local means baseline⁵

$$u(p) = \frac{1}{C(p)} \sum_{q \in \Omega} v(q) f(p,q)$$

where we used definitions:

- $v(\cdot)$: original image with noise
- $u(\cdot)$: denoised image
- p,q: image locations
- f(p,q): similarity of pixels p,q by their neighborhoods $R(\cdot)$

•
$$C(p) = \sum_{q \in \Omega} f(p,q)$$

•
$$f(p,q) = e^{-\frac{1}{h^2}|B(q)-B(p)|^2}$$

•
$$B(p) = \frac{1}{|R(p)|} \sum_{i \in R(p)} v(i)$$

⁵https://en.wikipedia.org/wiki/Non-local_means

Application use-case

Experiments

Denoising outputs

Experiments

Deblurring

- Deblurring: images blurred and small Gaussian noise added.
 - e.g. from camera motion.
- Baseline algorithms:
 - Wiener filter
 - alternating direction method of multipliers (ADMM)
- Results:
 - PSNR of GAN is lower, but GAN-reconstructed images are more sharp
 - and more good-looking for humans (retain high level features).GAN super-resolution for faces works better than for places
 - GAN super-resolution for faces works better than for places (which are less typical)

Application use-case

Experiments

Deblurring faces outputs

Application use-case

Experiments

Deblurring places outputs (not accurate)

Application use-case

Experiments

Analysis of experiments

- Unequal conditions:
 - Baseline methods use only test image.
 - GAN uses information from the whole training set.
- GANs give smaller PSNR
 - may be attributed to small training set
- GANs give more sharp output
 - to fool "blurry-based" discriminator
 - do not fallback to averaging as standard methods

Application use-case

Experiments

Analysis of experiments

- GANs reproduce small details on images
 - details learned from other images of the training set.
- GAN performance can be improved by training on specific subsets of objects
 - e.g. train separate face models for different sex, age, nationality, etc.
 - especially important for diverse objects such as places.

Supplement

Table of Contents

Supplement

Yet another possible application: impainting

Supplement

Joining GAN and VAE⁶

- GAN generator learns to produce
 - sharp realistic images
 - some subset of objects in training set
 - problem called "model collapse"
- Decoder of variational autoencoder (VAE) learns to produce
 - most training objects.
 - but generates oversmoothed results
- Combine strong sides of GAN and VAE: train generator on combination of GAN and VAE loss!

⁶https://arxiv.org/pdf/1512.09300.pdf