Part-of-speech tagging. Part 2. - Victor Kitov

Part-of-speech tagging. Part 2.1

Victor Kitov

v.v.kitov@yandex.ru

'With materials used from "Speech and Language Processing", D. Juraf-
sky and J. H. Martin.
1/18


v.v.kitov@yandex.ru

Part-of-speech tagging. Part 2. - Victor Kitov

Usage of part of speech

@ Estimation of HMM
e both outputs and states are known in the training set.
° HkK:]_ p(Xk, Yk|A, B,T{') — MaXA B« where
@ K is the number of sentences,

@ Xk is k-th sentence
o Y is corresponding tags sequence.

o Emission and transition probabilities will be estimated with
empirical frequencies.

@ Application of HMM:

e For given sentence X, recover sequence of tags Y using

o p(Y)p(X|Y)
Y = arg max p(Y|X) = arg max —————=
g p(Y|X) gn o(X)

= arg max p(Y)p(X|Y)
Y

1/18



Part-of-speech tagging. Part 2. - Victor Kitov

Details of HMM application

o Generated word depends only on part-of-speech:
N

p(X[Y) = H P(xnlyn)

n=1

o Next tag depends only on previous tag:

N
p(Y) = p(n) [T p(yalyn—1)

n=2
@ Final estimation
transition emfflon
R N N
Y = arg maxp(y) LT palyn-1) ] p(xalya)
n=2 n=1

e argmax is found with Viterbi algorithm.

2/18



Part-of-speech tagging. Part 2. - Victor Kitov

Advanced use of HMM?23

@ Emission probability conditioned on 2 previous states:

N
p(Y) = p(y1,2) [ [ P(alyn-1,yn-2)
n=3
o state - position in 2 states, instead of 1.

@ Transition probability is replaced with

N+1
p(Y) = [I palyn-1,yn2)

n=1

where yo,y_1 are special «before sentence tags» and yp.1 is
«after sentence tag».
o To estimate p(y:|yt—1,yt—2) with insufficient data use smoothing:

p(yelye—1,yt—2) = A3p(¥elye—1, ye—2) + AoP(yelye—1) + Ap(yt)

o Parameters A1, \2, A3 can be set with cross validation or using
heuristic «deleted interpolation» method.

2Scott T., Harper M. 1999. A Second-Order Hidden Markov Model for




Part-of-speech tagging. Part 2. - Victor Kitov

Suffix

for unknown words we can deduce POS using suffix
suffix - informative for POS tagging:
o ...able: likely adjective, ...ed: likely past tense of verb, etc.
so we estimate p(y|word[—k :])
e try to estimate this with maximal k = 10
o if for big k we have no statistics, we fallback to probability for
smaller k (backoff method)

in HMM we need to generate observable suffixes, so we use:

L. _ p(word[—k :])p(y|word[—k :])

o these probabilities are estimated separately for capitalizxed and
uncapitalized words.
replace (y;) with pair (y;, I[word i is capitalized]) to treat
capitalized words differently.
e doubles number of states
4/18




Part-of-speech tagging. Part 2. - Victor Kitov

MEMM

o Consider sentence xy...xy with POS tags y1...yn.
@ HMM prediction

N N

Y =arg maxp(x) 1 p(alyn—1) T pOxnlyn)
n=2 n=1

e MEMM (maximum entropy Markov model*) prediction

N
Y = arg maxp(Y|X) = arg max [ [ p(yalxn, yn-1)
Y Y

n=1

*Maximum entropy name comes from the fact that most commonly lo-
gistic regression is used as classifier, which posesses the «maximum en-
tropy» prediction properties.

5/18



Part-of-speech tagging. Part 2. - Victor Kitov

MEMM vs HMM

e Graphical structuire of HMM (top) and MEMM (bottom):

Janet will back the bill
Janet will back the bill

e HMM - generative model and MEMM - discriminative.

e it is easier to add new features to MEMM
o in HMM need to add new features to p(x,|yn)

o harder to model

6/18



Part-of-speech tagging. Part 2. - Victor Kitov

Typical features in MEMM for predicting y,

neigbourhood words (w1 x), k = =2, —1,...2.
neigbourhood word pairs (W, k—1, Wpik), kK =0, 1.

previous tags: <}/n—1>7 <yn—1>a <}/n—2>, <yn—17yn—2>
tag&word combination (xp, yn—1)

current word x:

contains a particular prefix (from all prefixes of length < 4)
contains a particular suffix (from all suffixes of length < 4)
contains a number

contains an upper-case letter

contains a hyphen

is all upper case

s word shape

s short word shape

is upper case and has a digit and a dash (like CFC-12)

is upper case and followed within 3 words by Co., Inc., etc.

7/18



Part-of-speech tagging. Part 2. - Victor Kitov

word-shape encoding of x, as feature

o rules:
o letter->x
@ uppercase letter->X
o digit->d
@ puctuation->puctuation (no change)
e example:
o USA->XXX
@ FD-rsal8->XX-xxxdd
o well-dressed->xxxx-xxxxxxx
o reduced word-shape: takes word-shape encoding symbols but
without repetitions
e examples:
o FD-rsal8->X-xd
o well-dressed->x-x
e rarely occuring (<5 times) shapes are not included to feature

set.

8/18



Part-of-speech tagging. Part 2. - Victor Kitov

Application of MEMM

@ For simplicity consider conditioning y, only on X and y,_1.
o Greedy MEMM decoding:

for n=1,2,..N:
yn = arg max, p(y|ys—1, X)

o fast
e makes greedy, local decisions
e cannot correct earlier decisions from later inconsistencies

e Viterbi algorithm gives a consistent sequence of predictions for
whole sentence!

9/18



Part-of-speech tagging. Part 2. - Victor Kitov

Viterbi algorithm: forward pass
Assume p(yt|history) = p(yt|xt, ye—1). Definitions:

ee(i, X) := max P (V1-Yeo1ye = i|x...x¢)
L Ye—1,

y1

ve(i, X) := arg max p(y1-.Ye-2, Ye-1 = J, Ye = i[x1..x¢)
J

Init:
e1(i, X) = p(y1 = i|x1) = output of classifier
Fort=1,..T —1:
eer1 (LX) = max  p(yr..ye—1¥e = Jj, Ye41 = ilx1...Xexes1)
Yi---Ye—1

=max max p(y1--Ye—1yr = jIx1. Xer1)P(Yer1 = ily1-Ye—1Ye = J, X1 Xe41)
mox

=max max p(y1...Ye-1yr = jIx1-Xe)p(Yer1 = ilye = J, Xe+1)
J Yi-yi—1

= mJ?XEt(L X)p(Yeqr = ilye = j, Xet1)

ver1(i, X) = arg mJ?X&UvX)P(}’tH =ilyr = j, xe41)

10/18



Part-of-speech tagging. Part 2. - Victor Kitov

Viterbi algorithm: backward pass

Definitions

Vi, .y = arg maxp(y1,..y7|x1, ..xT)

Y15 YT
ee(i,X) = max p(y1...ye—1ye = i|x1...x¢)
Yi,...Yt—1,
ve(i, X) := arg max p(y1...ye—2, ye—1 = jlyr = i, x1...%¢)
J

Init:
p(X) = maxer(j, X)
y7(X) =arg mj?X€T(jaX)
Fort=T—1,T—2,.1:
Ye (X) = vey1(yi1 (X))

11/18



Part-of-speech tagging. Part 2. - Victor Kitov

Comments

o We could define
et(i, X) :=maxy, v, 1, P (V1. Ye—1Yt = i|x..X¢4k) for some
lookahead horizon k > 0.

@ we could condition y; on several states before y; 1, y; o, ...

@ We use left-to-right classification. Similarly we could use
right-to-left classification and combine their outputs with
meta-model.

@ Also we could make several passes:

o first pass: obtain most likely y1,...yn
e second pass: make classification both on past and future.

12/18



Part-of-speech tagging. Part 2. - Victor Kitov

Brill tagger®

@ Generates a data-driven set of rules.
@ Top rules for known words (in the dictionary):

Change Tag
From [ To Condition
NN VB Previous tag is TO

VBP | VB | One of the previous three tags is MD
NN | VB One of the previous two tags is MD
VB | NN One of the previous two tags is DT

VBD | VBN | One of the previous three tags is VBZ

| | o | = 3

@ Top rules for unknown woprds:

Change Tag
# | From | To Condition
1 | NN | NNS Has suffix -s
2 | NN | CD Has character .
I_—3_‘ NN I Has character -
4 | NN | VBN Has suffix -ed
5 | NN | VBG Has suffix -ing
6 2? RB Has suffix -ly
lz ] Adding suffix -ly results in a word.
8 [ NN [ CD The word $ can appear to the left.
9NN [ ] Has suffix -al
[10| NN | VB [ The word would can appear to the left.

13/18



Part-of-speech tagging. Part 2. - Victor Kitov

Algorithm

o Brill tagger algorithm:

INIT: set most probable tag to each word

REPEAT while quality changes significantly:
for each rule pattern R(:)
for each rule pattern instantiation v el
evaluate rule R(y)
select most successful rule R*(y")
apply most successful rule R*(y*) to training dataset
add R*(y*) to the end of selected rules list

OUTPUT: selected rules list

14/18



Part-of-speech tagging. Part 2. - Victor Kitov

Rule patterns

Example of rule patterns for known and unknown words:
Change tag a to tag b when:

The preceding (following) word is tagged z.

The word two before (after) is tagged z.

One of the two preceding (following) words is tagged z.

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged z and the word two before
(after) is tagged w.

where a, b, z and w are variables over the set of parts of speech.

Change the tag of an unknown word (from X) to Y if:
Deleting the prefix (suffix) x, [x| < 4, results in a word (x is any string of
length 1 to 4).
The first (last) (1,2,3,4) characters of the word are x.

Adding the character string x as a prefix (suffix) results in a word
(% < 4).

Word w ever appears immediately to the left (right) of the word.

Character z appears in the word.
15/18



Part-of-speech tagging. Part 2. - Victor Kitov

Comments

@ Brill tagger gives comparative performance with HMM, but
less than MEMM.

@ Gives interpretable list of rules

@ Accuracy on Wall Street Journal corpus 96.6%

@ First rules give the most impact:

96

95
L

Test Set Accuracy

93
L

T T T
o 100 200 300 400

Transformation Number

16/18



Part-of-speech tagging. Part 2. - Victor Kitov

Comments

@ Brill tagger works very slow - needs to look through all rule
patterns and all instantiations
@ Possible improvements:

o look only through those rule instantiations that improve at
least 1 word tagging
e use inverted index on rule conditions

17/18



Part-of-speech tagging. Part 2. - Victor Kitov

General sequence labelling

Sequence labelling: assign xi...xy labels yi,...yn where
neighbouring labels are dependent.
Applications of sequence labelling:

o Part-of-speech tagging

@ Speech recognition

@ Handwriting recognition

e Video analysis (e.g. activity tagging)

18/18



