Прикладная статистика 5. Корреляционный анализ.

11 марта 2013 г.

ПС-5. Корреляционный анализ.

Задача исследования взаимосвязи между признаками

Дано: значения признаков X, Y измерены на объектах $1, \ldots, n$. Эквивалентная формулировка: имеются связные выборки $X^n = (X_1, \ldots, X_n)$ и $Y^n = (Y_1, \ldots, Y_n)$.

Насколько сильно признаки X, Y связаны между собой?

Статистическая взаимосвязь между случайными величинами — корреляция.

Непрерывные признаки

Категориальные признаки

Бинарные признаки 0000

Корреляция и причинность

Корреляция — мера ассоциативной связи (одновременная встречаемость событий, сходство паттернов).

Никакого отношения к причинно-следственной связи она не имеет!

Пример:

Статистика не занимается и не имеет средств для того, чтобы заниматься причинно-следственными связями.

Непрерывные признаки	Категориальные признаки	Бинарные признаки
	0000	0000
Корреляция Пирсона		

Корреляция Пирсона (Pearson product-moment correlation coefficient):

$$r_{XY} = \frac{cov\left(X,Y\right)}{\sqrt{\mathbb{D}X\mathbb{D}Y}} = \frac{\mathbb{E}\left(\left(X - \mathbb{E}X\right)\left(Y - \mathbb{E}Y\right)\right)}{\sqrt{\mathbb{D}X\mathbb{D}Y}}.$$

Выборочный коэффициент корреляции Пирсона:

$$r_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$$

 $r_{XY} \in [-1,1] -$ сила линейной связи.

Непрерывные	признаки
00000000	000000

Категориальные признаки

Корреляция Пирсона

Непрерывные признаки О●ОООООООООООООО Категориальные признаки 0000 Бинарные признаки 0000

Критерий Стьюдента

достигаемый уровень значимости:

$$p\left(t\right) = \begin{cases} 1 - tcdf\left(t, n - 2\right), & H_1 \colon r_{XY} > 0, \\ tcdf\left(t, n - 2\right), & H_1 \colon r_{XY} < 0, \\ 2 \cdot \left(1 - tcdf\left(|t|, n - 2\right)\right), & H_1 \colon r_{XY} \neq 0. \end{cases}$$

ПС-5. Корреляционный анализ

Критерий Стьюдента

Доверительный интервал для коэффициента корреляции:

$$r_{XY} \pm \frac{t_{n-2,\alpha/2} \left(1 - r_{XY}^2\right)}{\sqrt{n}}.$$

С использованием преобразования Фишера:

$$\left[\tanh\left(\operatorname{arctanh}\left(r_{XY}\right) - \frac{z_{\alpha/2}}{\sqrt{n-3}}\right), \tanh\left(\operatorname{arctanh}\left(r_{XY}\right) + \frac{z_{\alpha/2}}{\sqrt{n-3}}\right) \right].$$

Критерий Стьюдента

Пример: для двух марок зубной пасты, одна из которых рекламируется по телевизору, а другая нет, участники опроса выставляют оценки в баллах от 1 до 20 в соответствии со своими предпочтениями. Коэффициент корреляции Пирсона между оценками двух марок составляет 0.32, значимо ли эта величина отличается от нуля?

 $\begin{aligned} H_0 \colon r_{XY} &= 0. \\ H_1 \colon r_{XY} &\neq 0 \quad \Rightarrow \quad p = 0.0979. \end{aligned}$

Непрерывные признаки ОО●ОООООООООООО

Категориальные признаки 0000 Бинарные признаки 0000

Перестановочный критерий

выборки:
$$X^n = (X_1, \dots, X_n)$$
,
 $Y^n = (Y_1, \dots, Y_n)$, выборки связные;
нулевая гипотеза: $H_0: r_{XY} = 0$;
альтернатива: $H_1: r_{XY} < \neq > 0$;
статистика: $T(X^n, Y^n) = r_{XY}$.

Распределение $T(X^n, Y^n)$ при H_0 порождается группой перестановок

$$G = \{g \colon gY^n = (Y_{\pi_1}, \dots, Y_{\pi_n})\},\$$

где π_1, \ldots, π_n — перестановка индексов $1, \ldots, n;$

$$|G| = n!.$$

Достигаемый уровень значимости:

$$p(t) = \begin{cases} \frac{\sum\limits_{g \in G} [r(X^n, gY^n) \le \ge r(X^n, Y^n)]}{n!}, & H_1 \colon r_{XY} <> 0, \\ \frac{\sum\limits_{g \in G} [|r(X^n, gY^n)| \ge |r(X^n, Y^n)|]}{n!}, & H_1 \colon r_{XY} \neq 0. \end{cases}$$

Перестановочный критерий

Перестановочный доверительный интервал для коэффициента корреляции образован выборочными квантилями порядка $\alpha/2$ и $1-\alpha/2$ перестановочного распределения $r\left(X^n,gY^n
ight)$.

Перестановочный критерий

Пример: в предыдущем примере

$$H_0: r_{XY} = 0.$$

$$H_1: r_{XY} \neq 0 \implies p = 0.0715.$$

Недостатки выборочного r:

- служит мерой только линейной взаимосвязи;
- неустойчив к выбросам;
- для распределений, отличных от двумерного нормального, выборочный коэффициент корреляции Пирсона перестаёт быть эффективной оценкой популяционного.

Корреля<u>ция Спирмена</u>

Непрерывные признаки

Коэффициент корреляции Спирмена — коэффициент корреляции Пирсона рангов наблюдений в выборках X^n, Y^n :

$$\rho_{XY} = \frac{\sum_{i=1}^{n} \left(r\left(X_{i}\right) - \frac{n+1}{2} \right) \left(r\left(Y_{i}\right) - \frac{n+1}{2} \right)}{\frac{1}{12} \left(n^{3} - n\right)} = 1 - 6 \sum_{i=1}^{n} \frac{\left(r\left(X_{i}\right) - r\left(Y_{i}\right) \right)^{2}}{n^{3} - n},$$

где $r\left(X_{i}
ight),r\left(Y_{i}
ight)$ — ранги i-х наблюдений в соответствующих выборках.

 $ho_{XY} \in [-1,1] -$ сила монотонной связи.

Непрерывные признаки ○○○●О○○○○○○○

Категориальные признаки 0000 Бинарные признаки 0000

Корреляция Спирмена

Непрерывные признаки

Категориальные признаки 0000 Бинарные признаки 0000

Корреляция Спирмена

Непрерывные признаки ○○○○○●○○○○○○○○○

Категориальные признаки 0000 Бинарные признаки 0000

Критерий Стьюдента

достигаемый уровень значимости:

$$p(t) = \begin{cases} 1 - tcdf(t, n-2), & H_1: \rho_{XY} > 0, \\ tcdf(t, n-2), & H_1: \rho_{XY} < 0, \\ 2 \cdot (1 - tcdf(|t|, n-2)), & H_1: \rho_{XY} \neq 0. \end{cases}$$

Критерий Стьюдента

Пример: выборка из 11 потребителей вегетарианских сосисок оценивает качество двух брендов. Если целевая аудитория двух брендов совпадает, то их рекламу можно давать совместно. Корреляция Спирмена оценок потребителей равна -0.854.

 $\begin{aligned} H_0 \colon \rho_{XY} &= 0. \\ H_1 \colon \rho_{XY} &\neq 0 \quad \Rightarrow \quad p = 0.0024. \end{aligned}$

Корреляция Кендалла

Коэффициент корреляции Кендалла — мера взаимной неупорядоченности X^n и Y^n :

$$\tau_{XY} = 1 - \frac{4}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=1}^{n} \left[\left[X_i < X_j \right] \neq \left[Y_i < Y_j \right] \right] = \frac{S-R}{S+R},$$

где R — число несогласованных пар, S — число согласованных.

 $au_{XY} \in [-1,1] -$ сила монотонной связи.

Непрерывные признаки ○○○○○●○○○○○○○

Категориальные признаки 0000 Бинарные признаки 0000

Корреляция Кендалла

Непрерывные признаки ○○○○○●○○○○○○○

Категориальные признаки 0000 Бинарные признаки 0000

Корреляция Кендалла

Непрерывные признаки ○○○○○○○●○○○○○○○ Категориальные признаки

Бинарные признаки 0000

Критерий без названия

выборки:
$$X^n = (X_1, \dots, X_n),$$

 $Y^n = (Y_1, \dots, Y_n),$ выборки связные;
нулевая гипотеза: $H_0: \tau_{XY} = 0;$
альтернатива: $H_1: \tau_{XY} < \neq > 0;$
статистика: $\tau_{XY};$
 τ_{XY} имеет табличное распределение при $H_0.$

При справедливости H_0

$$\mathbb{E}\tau_{XY} = 0, \ \mathbb{D}\tau_{XY} = \frac{2(2n+5)}{9n(n-1)}.$$

Для n > 10 справедлива аппроксимация:

$$\frac{\tau_{XY}}{\sqrt{\mathbb{D}\tau_{XY}}} \sim N(0,1).$$

Критерий без названия

Пример: налоговый инспектор хочет проверить наличие взаимосвязи между величинами общего дохода от инвестиций и общего объёма дополнительных доходов. На выборке из 10 налоговых деклараций он получил $R = 5, S = 38, \tau_{XY} = 0.7821.$

$$\begin{split} H_0\colon \tau_{XY} &= 0 \ . \\ H_1\colon \tau_{XY} &\neq 0 \ \Rightarrow \ p = 0.0027. \end{split}$$

Категориальные признаки

Бинарные признаки 0000

Связь коэффициентов корреляции

Если
$$(X,Y) \sim N(\mu,\Sigma)$$
, то

$$\lim_{n \to \infty} \mathbb{E}\tau_{XY} = \lim_{n \to \infty} \mathbb{E}\rho_{XY} = \frac{2}{\pi} \arcsin r_{XY}.$$

При справедливости H_0 (отсутствии монотонной зависимости)

$$r_{\rho_{XY}\tau_{XY}} = \frac{2n+2}{\sqrt{4n^2+10n}}.$$

ПС-5. Корреляционный анализ.

Частная корреляция

Если мы подозреваем, что наблюдаемая линейная взаимосвязь между признаками X и Y вызвана влиянием третьей переменной Z, можно попытаться её исключить.

Частная корреляция:

$$r_{XY|Z} = \frac{r_{XY} - r_{XZ}r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}.$$

Если нужно исключить влияние нескольких признаков, можно пользоваться рекуррентной формулой:

$$r_{XY|ZV} = \frac{r_{XY|V} - r_{XZ|V}r_{YZ|V}}{\sqrt{\left(1 - r_{XZ|V}^2\right)\left(1 - r_{YZ|V}^2\right)}}.$$

Другой вариант: если M — множество признаков, Ω — обратимая матрица их корреляций, $R=\Omega^{-1},$ то

$$r_{X_i X_j \mid M \setminus \left\{X_i, X_j\right\}} = -\frac{r_{ij}}{\sqrt{r_{ii} r_{jj}}}$$

Непрерывные признаки

Категориальные признаки

Бинарные признаки 0000

Критерий Стьюдента

достигаемый уровень значимости:

$$p(t) = \begin{cases} 1 - tcdf(t, n - M - 2), & H_1: r_{XY|Z} > 0, \\ tcdf(t, n - M - 2), & H_1: r_{XY|Z} < 0, \\ 2 \cdot (1 - tcdf(|t|, n - M - 2)), & H_1: r_{XY|Z} \neq 0. \end{cases}$$

ПС-5. Корреляционный анализ

Множественная корреляция

Для того, чтобы оценить силу линейной взаимосвязи одной переменной с несколькими другими, используется множественная корреляция:

$$r_{X,YZ}^2 = \frac{r_{XY}^2 + r_{XZ}^2 - 2r_{XY}r_{XZ}r_{YZ}}{1 - r_{YZ}^2}.$$

Для большего числа признаков: пусть M — множество дополнительных признаков, Ω — обратимая матрица их корреляций, $R = \Omega^{-1}$, c — вектор корреляций целевого признака X с признаками из M; тогда

$$r_{X,M}^2 = c^T R c.$$

Фактически находится такая линейная комбинация признаков из M, что корреляция X с ней максимальна.

ПС-5. Корреляционный анализ

достигаемый уровень значимости:

p(f) = 1 - fcdf(f, M - 2, n - M - 1).

Критерий Фишера

Непрерывные признаки

00000000000000

Категориальные признаки

 $Y^n = (Y_1, \ldots, Y_n), \quad Y_i \in \mathbb{R}^M, \quad (X, Y) \sim N(\mu, \Sigma);$

выборки: $X^n = (X_1, \ldots, X_n)$,

Бинарные признаки 0000 Категориальные признаки 0000 Бинарные признаки 0000

Температура воздуха и географическое положение

По 56 городам США известны средняя минимальная температура января и географические координаты (широта, долгота). Требуется исследовать характер зависимости между переменными.

Категориальные признаки 0000 Бинарные признаки 0000

Температура воздуха и географическое положение

Температура воздуха и географическое положение

$$T-$$
 температура, $\lambda-$ долгота, $\phi-$ широта;

r- корреляция Пирсона, au- Кендалла, ho- Спирмена.

Коэффициенты корреляции:

r	T	ϕ	λ	1	τ	T	φ	λ
T	1.000	-0.848	0.024		T	1.000	-0.683	0.030
ϕ	-0.848	1.000	0.145		ϕ	-0.683	1.000	-0.011
λ	0.024	0.145	1.000		λ	0.030	-0.011	1.000

ρ	T	ϕ	λ
T	1.000	-0.815	0.030
ϕ	-0.815	1.000	0.023
λ	0.030	0.023	1.000

Достигаемые уровни значимости:

r	T	ϕ	λ
T	0.000	0.000	0.861
ϕ	0.000	0.000	0.287
à	0.861	0.287	0.000

τ	T	φ	λ
T	0.000	0.000	0.756
ϕ	0.000	0.000	0.910
à	0.756	0.910	0.000

ρ	T	ϕ	λ
T	0.000	0.000	0.829
ϕ	0.000	0.000	0.865
À	0.829	0.865	0.000

Температура воздуха и географическое положение

- T- температура, $\lambda-$ долгота, $\phi-$ широта;
- r- частная корреляция Пирсона, ho- Спирмена.

Коэффициенты частной корреляции:

r	T	ϕ	λ
T	1.000	-0.861	0.280
ϕ	-0.861	1.000	0.312
λ	0.280	0.312	1.000

	m	,	
ρ	T	ϕ	λ
T	1.000	-0.817	0.084
ϕ	-0.817	1.000	0.082
λ	0.084	0.082	1.000

Достигаемые уровни значимости:

r	T	ϕ	λ
T	0.000	0.000	0.039
ϕ	0.000	0.000	0.021
λ	0.039	0.021	0.000

ρ	T	ϕ	λ
T	0.000	0.000	0.543
ϕ	0.000	0.000	0.552
λ	0.543	0.552	0.000

Температура воздуха и географическое положение

- T- температура, $\lambda-$ долгота, $\phi-$ широта;
- *R* множественная корреляция.

Коэффициенты множественной корреляции:

	T	φ	λ
R	0.659	0.667	0.312
with	$0.235 \cdot \lambda - 0.638 \cdot \phi$	$0.397\cdot\lambda - 0.678\cdot T$	$1.542 \cdot T + 2.450 \cdot \phi$

В 1917 году в финском озере Langelmavesi исследователи поймали и измерили 81 рыбу трёх схожих видов. Известны: вес, длина от носа до начала хвоста, длина от носа до развилки хвоста, длина от носа до кончика хвоста, наибольшая высота, наибольшая толщина. Исследовать взаимосвязи между переменными.

Категориальные признаки

Бинарные признаки 0000

Вес и линейные размеры рыб

ПС-5. Корреляционный анализ.

Попарные корреляции Пирсона:

ρ	Weight	Length1	Length2	Length3	Width	Thickness
Weight	1.0000	0.9575	0.9581	0.9545	0.9527	0.9584
Length1	0.9575	1.0000	0.9996	0.9974	0.9753	0.9718
Length2	0.9581	0.9996	1.0000	0.9973	0.9754	0.9724
Length3	0.9545	0.9974	0.9973	1.0000	0.9822	0.9707
Width	0.9527	0.9753	0.9754	0.9822	1.0000	0.9734
Thickness	0.9584	0.9718	0.9724	0.9707	0.9734	1.0000

Наибольший достигаемый уровень значимости: $p = 2.8772 \times 10^{-43}$.

Попарные корреляции Кендалла:

ρ	Weight	Length1	Length2	Length3	Width	Thickness
Weight	1.0000	0.9125	0.9162	0.9177	0.8805	0.8827
Length1	0.9125	1.0000	0.9834	0.9609	0.8467	0.8558
Length2	0.9162	0.9834	1.0000	0.9520	0.8444	0.8631
Length3	0.9177	0.9609	0.9520	1.0000	0.8720	0.8540
Width	0.8805	0.8467	0.8444	0.8720	1.0000	0.8223
Thickness	0.8827	0.8558	0.8631	0.8540	0.8223	1.0000

Наибольший достигаемый уровень значимости: $p = 1.3078 \times 10^{-26}$.

Попарные корреляции Спирмена:

ρ	Weight	Length1	Length2	Length3	Width	Thickness
Weight	1.0000	0.9871	0.9864	0.9881	0.9738	0.9715
Length1	0.9871	1.0000	0.9984	0.9955	0.9627	0.9638
Length2	0.9864	0.9984	1.0000	0.9933	0.9594	0.9655
Length3	0.9881	0.9955	0.9933	1.0000	0.9719	0.9637
Width	0.9738	0.9627	0.9594	0.9719	1.0000	0.9440
Thickness	0.9715	0.9638	0.9655	0.9637	0.9440	1.0000

Наибольший достигаемый уровень значимости: $p = 8.4691 \times 10^{-40}$.

Частные корреляции Пирсона:

ρ	Weight	Length1	Length2	Length3	Width	Thickness
Weight	1.0000	0.0458	0.0880	-0.2054	0.2404	0.2372
Length1	0.0458	1.0000	0.8847	0.2814	-0.1484	0.0318
Length2	0.0880	0.8847	1.0000	0.1743	-0.0958	0.1314
Length3	-0.2054	0.2814	0.1743	1.0000	0.6557	-0.2526
Width	0.2404	-0.1484	-0.0958	0.6557	1.0000	0.4690
Thickness	0.2372	0.0318	0.1314	-0.2526	0.4690	1.0000

Достигаемые уровни значимости:

p-value	Weight	Length1	Length2	Length3	Width	Thickness
Weight	0	0.6926	0.4466	0.0731	0.0352	0.0378
Length1	0.6926	0	0.0000	0.0132	0.1976	0.7840
Length2	0.4466	0.0000	0	0.1294	0.4070	0.2546
Length3	0.0731	0.0132	0.1294	0	0.0000	0.0266
Width	0.0352	0.1976	0.4070	0.0000	0	0.0000
Thickness	0.0378	0.7840	0.2546	0.0266	0.0000	0

Частные корреляции Спирмена:

ρ	Weight	Length1	Length2	Length3	Width	Thickness
Weight	1.0000	0.0626	0.1041	0.0956	0.4291	0.3943
Length1	0.0626	1.0000	0.8515	0.5177	-0.0510	-0.1310
Length2	0.1041	0.8515	1.0000	-0.0940	-0.1433	0.1887
Length3	0.0956	0.5177	-0.0940	1.0000	0.4051	0.0327
Width	0.4291	-0.0510	-0.1433	0.4051	1.0000	-0.0165
Thickness	0.3943	-0.1310	0.1887	0.0327	-0.0165	1.0000

Достигаемые уровни значимости:

p-value	Weight	Length1	Length2	Length3	Width	Thickness
Weight	0	0.5885	0.3674	0.4083	0.0001	0.0004
Length1	0.5885	0	0.0000	0.0000	0.6598	0.2562
Length2	0.3674	0.0000	0	0.4163	0.2139	0.1003
Length3	0.4083	0.0000	0.4163	0	0.0003	0.7774
Width	0.0001	0.6598	0.2139	0.0003	0	0.8869
Thickness	0.0004	0.2562	0.1003	0.7774	0.8869	0

Множественная корреляция всех признаков с весом: R = 0.9207. Максимизирующая корреляцию линейная комбинация: $292.2458 \cdot Length1 - 151.1554 \cdot Length2 - 151.0027 \cdot Length3 + 148.8896 \cdot Width + 83.4345 \cdot Thickness.$

Категориальные признаки

Бинарные признаки 0000

Таблица сопряжённости $K \times L$

Пусть X и Y- категориальные переменные, $X\in\{1,\ldots,K\},$ $Y\in\{1,\ldots,L\}$.

X	1	 l	 L	Σ
1 : k : K		n_{kl}		n_k
Σ		n_l		n

$$n_{kl} = \sum_{i=1}^{n} [X_i = k] [Y_i = l],$$

$$n_k = \sum_{l=1}^{L} n_{kl}, \ n_l = \sum_{k=1}^{K} n_{kl}, \ n = \sum_{k=1}^{K} \sum_{l=1}^{L} n_{kl}.$$

Непрерывные признаки

Категориальные признаки ●○○○ Бинарные признаки 0000

Критерий хи-квадрат

I am going to do a chi-square test of independence.

Непрерывные признаки

Категориальные признаки •••• Бинарные признаки 0000

Критерий хи-квадрат

достигаемый уровень значимости:

$$p(\chi^2) = 1 - chi2cdf(\chi^2, (K-1)(L-1)).$$

Критерий хи-квадрат

Условия применимости критерия:

- $n \ge 40$;
- $\frac{n_k n_l}{n} < 5$ не более чем в 20% ячеек.

Непрерывные признаки

Категориальные признаки ОФОО Бинарные признаки 0000

G-критерий

выборки:
$$X^n = (X_1, \dots, X_n), X_i \in \{1, \dots, K\}, Y^n = (Y_1, \dots, Y_n), Y_i \in \{1, \dots, L\},$$
 выборки связные;
нулевая гипотеза: H_0 : X и Y независимы;
альтернатива: H_1 : H_0 неверна;
статистика: $G^2(X^n, Y^n) = 2\sum_{k=1}^K \sum_{l=1}^L n_{kl} \ln \frac{n_{kl}n}{n_k n_l};$
 $G^2(X^n, Y^n) \sim \chi^2_{(K-1)(L-1)}$ при H_0 ;

достигаемый уровень значимости:

$$p(G^2) = 1 - chi2cdf(g^2, (K-1)(L-1)).$$

Непрерывные признаки

Категориальные признаки

Бинарные признаки 0000

Коэффициент V Крамера

Мера взаимосвязи между двумя категориальными переменными — коэффициент V Крамера:

$$\phi_c(X^n, Y^n) = \sqrt{\frac{\chi^2(X^n, Y^n)}{n(\min(K, L) - 1)}}.$$

 $\phi_c \in [0,1]$; 0 соответствует полному отсутствию взаимосвязи, 1 — равенству переменных.

Смертность среди королевских пингвинов

Descamps et al., Relating demographic performance to breeding-site location in the king penguin, 2009: было помечено 50 королевских пингвинов в каждой из трёх областей гнездования на острове Владение архипелага Крозе; через год были собраны данные о том, сколько пингвинов погибло в каждой из групп.

Одинакова ли смертность пингвинов, обитающих в различных областях гнездования?

Смертность среди королевских пингвинов

	Выжило	Погибло
Lower area	43	7
Middle area	44	6
Upper area	49	1

Коэффициент Крамера: V = 0.1804.

Критерий хи-квадрат: p = 0.0872.

Ожидаемое число наблюдений во всех ячейках второго столбца меньше 5 ⇒ применимость критерия под вопросом.

G-критерий: p = 0.04827.

Непрерывные	признаки
000000000	000000

Категориальные признаки 0000 Бинарные признаки 0000

Таблица сопряжённости 2×2

Пусть X и Y принимают значения 0 и 1.

X	0	1	Σ
0	a	b	a+b
1	c	d	c+d
Σ	a + c	b+d	n

Категориальные признаки

Бинарные признаки •••••

Критерий хи-квадрат

достигаемый уровень значимости:

$$p\left(\chi^{2}\right) = 1 - chi2cdf\left(\chi^{2}, 1\right).$$

Критерий хи-квадрат

Условия применимости критерия:

- $n \ge 40$;
- a, b, c, d > 5.

Критерий хи-квадрат

Пример: собраны данные по двум группам кандидатов в пилоты, для каждого из них имеются результаты двух способов тестирования скорости реакции. Есть ли связь между способом тестирования и числом отобранных кандидатов?

a = 15, b = 85, c = 4, d = 77.

 $H_0\colon$ между способом тестирования и числом отобранных кандидатов нет связи.

 H_1 : способ тестирования как-то связан с числом отобранных кандидатов $\Rightarrow p=0.0286.$

Непрерывные признаки

Категориальные признаки

Точный критерий Фишера

выборки:	$X^{n} = (X_{1}, \dots, X_{n}), \ X_{i} \in \{0, 1\},$
	$Y^n = (Y_1, \dots, Y_n), \;\; Y_i \in \{0,1\},$ выборки связные;
нулевая гипотеза:	$H_0\colon \ X$ и Y независимы;
альтернатива:	$H_1 \colon H_0$ неверна.

Пусть суммы по строкам и столбцам фиксированы, тогда вероятность появления наблюдаемой таблицы равна

$$p(X^{n}, Y^{n}) = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!n!}.$$

Достигаемый уровень значимости определяется как сумма по всем возможным вариантам таблицы, имеющим вероятность не больше $p(X^n, Y^n)$.

Для односторонней альтернативы $(H_1: ad \ll bc)$ достигаемый уровень значимости легко определить через гипергеометрическое распределение:

$$p = \sum_{i=0}^{a} \frac{C_{a+b}^{i} C_{c+d}^{a+c-i}}{C_{n}^{a+c}}.$$

Точный критерий Фишера

Пример: собраны данные по двум группам кандидатов в пилоты, для каждого из них имеются результаты двух способов тестирования скорости реакции. Есть ли связь между способом тестирования и числом отобранных кандидатов? a = 9, b = 2, c = 7, d = 6.

 $H_0\colon$ между способом тестирования и числом отобранных кандидатов нет связи.

 $H_1\colon$ способ тестирования как-то связан с числом отобранных кандидатов $\Rightarrow p=0.156.$

Корреляция Мэтьюса

Мера взаимосвязи между двумя бинарными переменными — коэффициент корреляции Мэтьюса:

$$|MCC| = \sqrt{\frac{\chi^2\left(X^n, Y^n\right)}{n}},$$

$$MCC = \frac{ad - bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}.$$

 $MCC \in [-1,1]$; 0 соответствует полному отсутствию взаимосвязи, 1 — нулям на побочной диагонали, -1 — нулям на главной диагонали.

Charig et al., Comparison of treatment of renal calculi by operative surgery, percutaneous nephrolithotomy, and extracorporeal shock wave lithotripsy, 1986: по числу успешных исходов сравнивались два метода удаления камней в почках.

Пациенты с одним камнем <2 см

<u>г і і </u>		Чрескожная	
	Открытая хирур-	прескожная	
	гия	нефролитотомия	
Успешный исход	81	234	
Неудачный	6	36	
исход			
Доля успешных	93%	87%	
исходов			

Критерий хи-квадрат: p = 0.1051.

Пациенты с крупным камнем или несколькими камнями

	Открытая хирур-	Чрескож ная	
	гия	нефролитотомия	
Успешный исход	192	55	
Неудачный	71	25	
исход			
Доля успешных	73%	69%	
исходов			

Критерий хи-квадрат: p = 0.4580.

Все пациенты вместе:

	Открытая хирур-	Чрескож ная	
	гия	нефролитотомия	
Успешный исход	273	289	
Неудачный	77	61	
исход			
Доля успешных	78%	83%	
исходов			

Критерий хи-квадрат: p = 0.1285.

	Открытая хирур-	Чрескожная	χ^2 p-value
	гия	нефролитотомия	
Один камень	Группа1	Группа2	0.1051
<2 см	93% (81/87)	87% (234/270)	
Крупный камень	Группа3	Группа4	0.4580
или несколько	73% (192/263)	69% (55/80)	
камней			
Суммарно	78% (273/350)	83% (289/350)	0.1285

Причины несогласованности выводов:

- размеры групп 1-4 и 2-3 чересчур сильно отличаются, суммарный вывод определяется в основном вкладом групп 2-3;
- дополнительная переменная размер камня оказывает большее влияние на результат операции, чем выбор метода;
- все различия статистически незначимы, перед нами случайные колебания.

Эксперимент: пациенты принимают препарат или плацебо, по окончании курса определяется, выздоровели они или нет.

Есть ли зависимость между выздоровлением и приёмом препарата?

Мужчины	Выздоровели	Нет
Препарат	700	800
Плацебо	80	130

Женщины	Выздоровели	Нет
Препарат	150	70
Плацебо	300	280

Для мужчин: $\chi^2 = 5.456, p = 0.0195.$ Для женщин: $\chi^2 = 17.555, p = 2.7914 \times 10^{-5}.$

M+Ж	Выздоровели	Нет
Препарат	850	870
Плацебо	380	410

Суммарно: $\chi^2 = 0.3759, p = 0.5398.$

Непрерывные признаки

Категориальные признаки 0000 Бинарные признаки ○○○●

Парадокс хи-квадрат (Симпсона)

Bickel at el., Sex Bias in Graduate Admissions: Data from Berkeley, 1975: в 1973 году на университет Беркли, Калифорния, подали в суд: доля поступивших абитуриентов мужского пола была выше, чем доля поступивших женского пола.

	Не поступили	Поступили	Доля поступивших
Мужчины	4704	3738	44.3%
Женщины	2827	1494	34.6%

Критерий хи-квадрат: $\chi^2=108.1,\ ppprox 0.$

	Наблюдаемые		Ожидаемые		Разности	
	-	+	-	+	-	+
Мужчины	4704	3738	4981.3	3460.7	-277.3	277.3
Женщины	2827	1494	2549.7	1771.3	277.3	-277.3

Будем искать виноватых: посмотрим детализированную статистику по 85 факультетам.

Значимо (на уровне $\alpha = 0.05$) меньше женщин прошли отбор на 4 факультета, суммарный дефицит — 26. На 6 факультетов поступило значимо меньше мужчин, суммарный дефицит — 64.

	Мужчины		Женщины	
	Σ	+	Σ	+
1	825	62%	108	82%
2	560	63%	25	68%
3	325	37%	593	34%
4	417	33%	375	35%
5	191	28%	393	24%
6	272	6%	341	7%

Данные по шести крупнейшим факультетам:

Категориальные признаки

Бинарные признаки 0000

Парадокс хи-квадрат (Симпсона)

Ответ: женщины чаще пытаются поступить на факультеты с большим конкурсом.

Прикладная статистика 5. Корреляционный анализ.

Рябенко Евгений riabenko.e@gmail.com