Text classification - Victor Kitov

Text classification.

Victor Kitov

v.v.kitov@yandex.ru

Document classification

- Major applications:
 - News filtering and organization
 - Document organization and retrieval
 - Opinion Mining (sentiment analysis)
 - E-mail classification and spam filtering
- Document classification vs labelling

- Split documents into individual tokens.
 - tokens may be words or symbol sequences
 - may or may not include punctuation

- Split documents into individual tokens.
 - tokens may be words or symbol sequences
 - may or may not include punctuation
- ② Form the set of all distinct tokens $\{t_1, t_2, ...\}$.
 - ignore stop-words (exact list depends on the application)
 - ignore tokens which are too rare and too frequent
 - account only for particular parts of speech (nouns, adjectives? verbs? ...)

- Split documents into individual tokens.
 - tokens may be words or symbol sequences
 - may or may not include punctuation
- ② Form the set of all distinct tokens $\{t_1, t_2, ...\}$.
 - ignore stop-words (exact list depends on the application)
 - ignore tokens which are too rare and too frequent
 - account only for particular parts of speech (nouns, adjectives? verbs? ...)
- May add bigram/trigram collocations

- Split documents into individual tokens.
 - tokens may be words or symbol sequences
 - may or may not include punctuation
- ② Form the set of all distinct tokens $\{t_1, t_2, ...\}$.
 - ignore stop-words (exact list depends on the application)
 - ignore tokens which are too rare and too frequent
 - account only for particular parts of speech (nouns, adjectives? verbs? ...)
- May add bigram/trigram collocations
- May normalize words:
 - stemming
 - fast, does not need dictionary
 - lemmatization
 - more accurate, needs dictionary

Table of Contents

- Standard document representations
- 2 Generative text classification models
- Feature selection

Documents representation

- Typical representation of text for classification:
 - we evaluate only the presence of each distinct word in document d
 - order of words does not matter (« bag-of-words » assumption)
- To account for word order extract collocations as tokens

Term frequency

- Term-frequency model: $TF(i) = n_i$ or $TF(i) = \frac{n_i}{n}$
 - n_i is the number of times t_i appeared in d
 - n total number of tokens in d
 - second definition gives invariance to document length
- TF(i) measures how common is token t_i in the document.
- To make distribution of $TF(i) = n_i$ less skewed it is usually calculated as $TF(i) = ln(1 + n_i)$

Inverted document frequency

- Inverted document frequency: $IDF(i) = \frac{N}{N_i}$
 - N total number of documents in the collection
 - N_i number of documents, containing token t_i .
- *IDF*(*i*) measures how specific is token *i*.
- To avoid skewness IDF is more frequently used as

$$IDF(i) = \ln\left(1 + \frac{N}{N_i}\right)$$

Vector representation of documents

- Consider document d and its feature representation x.
- Indicator model: $x^i = \mathbb{I}[t_i \in d]$.
- TF model: $x^i = TF(i)$
- TF-IDF model: $x^i = TF(i) * IDF(i)$
- Several representations, indexed by $I_1, I_2, ... I_K$ can be united into single feature representation

Properties of standard documents representation

- Properties of standard documents representation:
 - high dimensionality at least D.
 - very sparse (few features not equal to zero)¹
- Reduction of feature space
 - remove stop-words
 - remove words which are too frequent or too rare
 - remove words, irrelevant for current task
 - e.g. leave only nouns for topic modelling,
 adjectives+particles+adverbs for sentiment analysis, etc.
 - stemming / lemmatization
 - feature selection
 - dimensionality reduction
- Linear models (such as linear/logistic regression, SVM) work well.
 - have minimal complexity so overfit less for high D

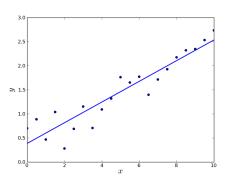
¹in python use scipy.sparse

Linear regression

• Linear regression

$$\widehat{y}(x) = \beta_0 + \beta^T x = \beta_0 + \beta_1 x^1 + ... + \beta_D x^D$$

• Parameters: $\beta = [\beta_1, ..\beta_D]^T$, β_0



Linear regression estimation

Usually it is estimated with

$$\sum_{n=1}^{N} \left(\beta_0 + \beta^T x_n - y_n\right)^2 + \lambda R(\beta) \to \min_{\beta}$$

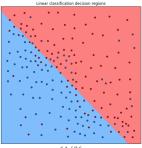
- λ is regularization parameter, $\uparrow \lambda \Leftrightarrow \text{complexity} \downarrow$.
- Ridge regression: $R(\beta) = \sum_{d=1}^{D} \beta_d^2$
 - for correlated features spreads weights equally among them
- LASSO regression: $R(\beta) = \sum_{d=1}^{D} |\beta_d|$
 - for correlated features selects one of them
 - performs automatic feature selection

Linear classifier

- Consider binary classification: $y \in \{+1, -1\}$
 - muticlass classification can be performed with many binary classifiers.
- Linear classifier:

$$\widehat{y}(x) = \operatorname{sign}\left(\beta_0 + \beta^T x\right) = \operatorname{sign}\left\{\beta_0 + \beta_1 x^1 + \dots + \beta_D x^D\right\}$$

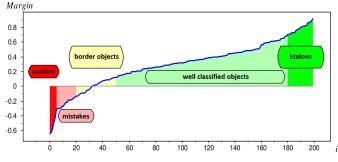
• Estimated parameters: $\beta = [\beta_1, ... \beta_D]^T, \beta_0$.



Margin

- Define the margin $M(x, y) = y \left(\beta_0 + \beta^T x\right)$
 - $M(x, y) \ge 0 <=>$ object x is correctly classified as y
 - |M(x,y)| confidence of decision
- Margin shows the score of classifying object (x, y).
 - the more, the better

Categorization of objects with respect to margin



Weight optimization

Weights found with

$$\sum_{n=1}^{N} \mathcal{L}((\beta_0 + \beta^T x_n) y_n) + \lambda R(\beta) \to \min_{\beta_0, \beta}$$

- λ is regularization parameter, $\uparrow \lambda \Leftrightarrow \text{complexity} \downarrow$.
- Ridge regression: $R(\beta) = \sum_{d=1}^{D} \beta_d^2$
 - for correlated features spreads weights equally among them
- LASSO regression: $R(\beta) = \sum_{d=1}^{D} |\beta_d|$
 - for correlated features selects one of them
 - performs automatic feature selection
- $\mathcal{L}(M) = \max\{1 M, 0\} => \text{SVM}$
- $\mathcal{L}(M) = \ln(1 + e^{-M}) = > \text{logistic regression}$

Different account for different features

• Optimization task for regression and classification:

$$\sum_{n=1}^{N} \mathcal{L}(x_n, y_n | \beta, \beta_0) + \lambda R(\beta) \to \min_{\beta_0, \beta}$$

- Suppose we have K groups of features with indices: $I_1, I_2, ... I_K$
 - nouns, adjectives, verbs, etc.
 - indicators, TF, TF-IDF
 - unigrams, bigrams
 - etc.
- We may control the impact of each group on the model:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | \beta, \beta_0) + \lambda_1 R(\{\beta_i | i \in I_1\}) + \dots + \lambda_K R(\{\beta_i | i \in I_K\}) \rightarrow \min_{\beta_0, \beta}$$

- $\lambda_1, \lambda_2, ... \lambda_K$ can be set using cross-validation.
- Scikit-learn allows to set only single λ . But we can control impact of each feature group, by different feature scaling.

Metric methods of text classification

- Metric methods typically use:
 - Euclidean distance $\sqrt{\sum_d (x_d z_d)^2}$
 - cosine similarity: $\frac{\langle x,z\rangle}{\|x\|\|z\|}$
 - equal to cosine of angle between x and z
 - invariant to document size (norms of x and z)
 - cosine distance = 1-cosine similarity
- Rochio method
 - equivalent name nearest centroid
 - O(ND) training time, O(CD) test time
 - fails for non-linear boundary
- K-NN
 - weighted K-NN can use weights \propto cosine similarity (x, x_n)
 - O(ND) training time (memorization), O(ND) test time.

Table of Contents

- Standard document representations
- 2 Generative text classification models
- 3 Feature selection

Naive Bayes assumption

Bayesian minimum error decision rule:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y|x) = \underset{y}{\operatorname{arg max}} \frac{p(y,x)}{p(x)} = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

Naive Bayes assumption

Bayesian minimum error decision rule:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y|x) = \underset{y}{\operatorname{arg max}} \frac{p(y,x)}{p(x)} = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

$$p(x^1, x^2, ... x^D | y) = p(x^1 | y) p(x^2 | y, x^1) ... p(x^D | y, x^1, x^2, ... x^{D-1})$$

Problem: exponential to D number of observations needed for estimation.

Naive Bayes assumption

Bayesian minimum error decision rule:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y|x) = \underset{y}{\operatorname{arg max}} \frac{p(y,x)}{p(x)} = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

$$p(x^1, x^2, ... x^D | y) = p(x^1 | y) p(x^2 | y, x^1) ... p(x^D | y, x^1, x^2, ... x^{D-1})$$

Problem: exponential to *D* number of observations needed for estimation.

Naive Bayes assumption in classification

Individual features are class conditionally independent:

$$p(x|y) = p(x^{1}|y)p(x^{2}|y)...p(x^{D}|y)$$

With Naive Bayes max-posterior probability rule becomes:

$$\widehat{y}(x) = \arg\max_{y} p(y)p(x^{1}|y)p(x^{2}|y)...p(x^{D}|y)$$

Generative text models

- Restrict attention to D words $w_1, w_2, ... w_D$
- Two major models:
 - Bernoulli
 - considers $x^i = \mathbb{I}[w_i \text{ appeared in the document}]$
 - Multinomial
 - considers $x^i = [\text{number of times } w_i \text{ appeared in the document}]$

Bernoulli model⁴

- $w_1, w_2, ... w_D$ -all unique words (tokens) in dictionary
- Decision rule:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

- $x \in \mathbb{R}^D$, $x^i = \mathbb{I}[w_i \text{ appeared in the document}], i = \overline{1, D}$
- Document generation of class y: for each word w_d generate its occurrence in document with $Bernoulli(\theta_v^d)$.
- $p(y) = \frac{N_y}{N}$
- $p(x|y) = \prod_{d=1}^{D} (\theta_{v}^{d})^{x^{d}} (1 \theta_{v}^{d})^{1-x^{d}}$
- $\theta_y^d = p(x^d = 1|y) = \frac{N_{yx}^d}{N_y}$
- Smoothed variant²³: $\theta_y^d = \frac{N_{yx}d + \alpha}{N_y + 2\alpha}$

²interpret this in terms of adding artificial observations

³modify for smoothing towards uncoditional word distribution

⁴is it linear classifier?

Multinomial model

- $w_1, w_2, ... w_D$ -all unique words (tokens) in dictionary
- Decision rule:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} p(y)p(x|y)$$

- $x \in \mathbb{R}^D$, $x^i = [\text{number of times } w_i \text{ appeared in the document}], <math>i = \overline{1,D}$
- Document generation of class y: for each word-position $i=1,2,...n_{document}$ generate word z_i with Categorical $(\theta_1^y,\theta_2^y,...\theta_D^y)$.
- $\theta_i^y = [\text{probability of } w_i \text{ on word position}]$

Multinomial model⁷

- $(\sum_{i} x^{i})!$ number of permutations of all words
- $\prod_{i} (x^{i})!$ number of permutations of words withing groups (of the same word)
- $\frac{\left(\sum_{i} x^{i}\right)!}{\prod_{i} (x^{i})!}$ number of permutations of word groups.
- Since permutation of word groups do not affect word counts $[x^1,...x^D]$ in the document:

$$p(x|y) = \frac{\left(\sum_{i} x^{i}\right)!}{\prod_{i} (x^{i})!} \prod_{i=1}^{D} \left(\theta_{i}^{y}\right)^{x^{i}}$$

- $p(y) = \frac{N_y}{N}$, $\theta_i^y = n_{yi}/n_y$ where
 - n_{vi} number of times word w_i appeared in documents $\in y$
 - n_v number of words in documents $\in y$
- Smoothed version⁵⁶: $\theta_V^d = \frac{n_{yd+\alpha}}{n_v + \alpha D}$

⁵interpret this in terms of adding artificial observations

⁶ modify for smoothing towards uncoditional word distribution

Discussion

- For prediction discriminative models are preferred to generative
 - they do not model high dimensional p(x|y)
 - do not rely upon Naive Bayes assumption
- Advantages of generative models
 - can adapt to changes in p(y)
 - can filter outliers by p(x)
 - Multinomial and Bernoulli fit in O(N).

Table of Contents

- Standard document representations
- Question of the second of t
- Feature selection

Feature selection

- Feature selection select words with most discriminative information about document classes.
- We estimate criterion I(w), order words by decreasing I(w) and select features to top K values of I(w).
- Define p(c|w) = p(y = c|word w is present) conditional probability of c-th class of document, given it contains word w.
- Information gain (as in decision trees) measures difference in class uncertainty defore and after obsering presense of word w:

$$I(w) = Entropy(c) - Entropy(c|w)$$

$$= -\sum_{c} p(c) \ln p(c) + p(w) \sum_{c} p(c|w) \ln p(c|w)$$

$$+ (1 - p(w)) \sum_{c} (1 - p(c|w)) \ln (1 - p(c|w))$$

Word informativeness criteria

• Natural measures of discrimination by w:

$$I(w) = std.dev\left(\{p(c|w)\}_{c=1}^{C}\right)$$

$$I(w) = \max\left(\{p(c|w)\}_{c=1}^{C}\right) - \min\left(\{p(c|w)\}_{c=1}^{C}\right)$$

Gini index for word w:

$$G(w) = \sum_{c=1}^{C} p(c|w)^2$$

• To avoid misleading results for these 2 measures when classes are unbalances ($\max_c p(y=c) - \min_c p(y=c)$) is large) we replace p(c|w) with p'(c|w):

$$p'(c|w) = \frac{p(y=c|w)/p(y=c)}{\sum_{i} p(y=i|w)/p(y=i)}$$

Word informativeness criteria

Mutual information

$$I_c(w) = \ln \left(\frac{p(w,c)}{p(w)p(c)} \right) = \ln \left(\frac{p(w)p(c|w)}{p(w)p(c)} \right) = \ln \left(\frac{p(c|w)}{p(c)} \right)$$

• χ^2 -statistic (test H_0 : occurrence of w and occurrence of class c are independent)

$$I_c(w) = \frac{Np(w)^2 (p(c|w) - p(w))^2}{p(w) (1 - p(w)) p(c) (1 - p(c))}$$

- 2 previous mesures estimate word informativeness with respect to class.
- Informativness of w for all classes can be generated by:

$$I(w) = \sum_{c} p(c)I_{c}(w)$$

$$I(w) = \max_{c} I_{c}(w)$$