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Introduction

Combinatorial optimization and machine learning appear to be
extremely close fields of the modern computer science.

Various areas in machine learning: PAC-learning, boosting,
cluster analysis, feature and model selection, etc. are
continuously presenting new challenges for designers of
optimization methods due to the steadily increasing demands on
accuracy, efficiency, space and time complexity and so on.
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CO and ML

In many cases, learning problem can be successfully reduced to
the appropriate combinatorial optimization problem: max-cut,
k-means, p-median, TSP, etc.

To this end, all the results obtained for the latter problem
(approximation algorithms, polynomial-time approximation
schemas, approximation thresholds) can find their application in
design precise and efficient learning algorithms for the former.

But, in this presentation, I would like to consider several
examples of the inverse collaboration, where combinatorial
optimization benefits from using of a ML techniques
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Definitions and complexity results

Problem statements

Set Cover

Input: A finite range space (hypergraph) (X,R), where R ⊂ 2X .
Required to find a family (cover) {R1, . . . , Rs} ⊂ R of minimum size
s, s.t. R1 ∪ . . . ∪Rs = X.

Hitting Set

Input: A finite range space (hypergraph) (X,R), where R ⊂ 2X .
Required to find a subset H ⊂ X of minimum size, s.t., for any
R ∈ R, H ∩R 6= ∅.
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Definitions and complexity results

Duality

The Set Cover and Hitting Set problems a related to each other by
the duality principle. Indeed, the dual instance can be obtained by
transposing the incidence matrix

x1 x2 x3 . . . xn
R1 0 0 0 . . . 1
R2 1 1 0 . . . 1
R3 0 1 1 . . . 0

. . .
Rm 1 0 1 . . . 0
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Definitions and complexity results

Complexity and approximation

Both problems are NP-hard. The Hitting Set problem remains
intractable even if |Ri| = 2 (Vertex Cover Problem).

D.Johnson’s Greedy algorithm (1974): add to cover the current
biggest subset iteratively.

L.Lovász linear relaxation algorithm (1975): solve the
corresponding LP-relaxation. Then, round the obtained solution.

Both algorithms have polynomial time-complexity and
approximation ratio of O(log |X|).
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Definitions and complexity results

Tightness

Curious, Johnson has obtained the approximation bound and
proved its tightness in 1970s.

Indeed, let, for some p > 1, |X| = 2p+1 − 2.

It’s easy to show that the Greedy algorithm takes all ‘rectangular’
ranges, i.e., APP = p = log(n+ 2)− 2, whilst the OPT = 2.

U.Feige (1998): the Set Cover can not be approximated within
(1− o(1)) ln |X| unless NP ⊂ DTIME(npoly logn).
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Definitions and complexity results

Can we improve this approximation ratio?

For the general case of the problem, obviously, no!

But, in real-life applications (e.g., wireless sensor cover problem),
the problem can be very special

Maybe, some of these subclasses can be approximated much
better?

Inside. Consider spaces of finite VC-dimension and boosting-like
optimization procedures
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ε-nets and boosting

Notation

ε-net [Haussler and Welzl, 1987]

Let (X,R) be a finite range space. A subset N ⊂ X is called ε-net for
R if N ∩R 6= ∅ for any R such that |R| ≥ ε|X|.

The concept of ε-net can be easily extended to the case of
weighted sets.

Indeed, let w : 2X → R+ be an arbitrary measure on X. In this
case, a subset N is called ε-net if N ∩R 6= ∅ for any R ∈ R, s.t.
w(R) ≥ εw(X).

net finder and verifier

For a given non-decreasing function s an algorithm NF(s) is called a
net-finder of size s for (X,R) if, for any ε ∈ (0, 1) and any measure w,
it finds ε-net of size s(1/ε).
A verifier is an algorithm V that, given a subset H ⊂ X, either states
(correctly) that H is a hitting set, or returns a nonempty set R ∈ R
such that R ∩H = ∅.
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ε-nets and boosting

Multiplicative wights update algorithm

Assume, for the time being, that we know the size c = OPT of a
smallest hitting set.

1 Initialize w on X by uniform measure

2 Using NF , for (X,R), find a 1/(2c)-net N of size s(2c)

3 Using V check if N is a hitting set. If it is, then STOP

4 Else double the weights of points of the found subset R and
return to step 2

Theorem 1

If there is a hitting set of size c, the MWUA cannot iterate more than
4c log(n/c) times, and the total weight will not exceed n4/c3, where
n = |X|.
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ε-nets and boosting

Proof sketch

let H be an optimal hitting set of size c

any time when V returns subset R, w(R) < w(X)/(2c). Hence,
w(X) increases at most by (1 + 1/(2c)) in any iteration and, after
k iterations,

w(X) ≤ n(1 +
1

2c
)k ≤ ne k

2c

by assumption, H ∩R = ∅, therefore, at any iteration, there
exist a point h ∈ H to double a weight

let, after k iterations, each point h ∈ H has measure 2zh

then,

w(H) =
∑
h∈H

2zh ,
∑
zh

≥ k

or, by convexity of the exponential function, w(H) ≥ c2k/c.
finally,

c2k/c ≤ w(H) ≤ w(X) ≤ ne k
2c

and k ≤ 4c log(n/c).
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ε-nets and boosting

Accuracy and time-complexity

time complexity bound is
4c log(n/c) = O(n log n)(TB(NF) + TB(V))

But what about approximation ratio?

It can be achieved for (X,R) of a fixed VC-dimension

VC-dimension

A subset Y ⊂ X is called shattered by R if factor set R \ Y = 2Y .
A number d is called VC-dimension of the range space (X,R) if the
largest shattered subset Y ⊂ X has |Y | ≤ d.

Therefore, the MWUA has approximation ratio of O(log c), not
O(logn). (Example!)
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For a range space (X,R) of finite VC-dimension d, there is 1/ε-net of
size d

ε log d
ε

Therefore, the MWUA has approximation ratio of O(log c), not
O(logn). (Example!)



Intro Set Cover Minimum affine separating committee Summary

Definitions

Definitions and Notation

Committee decision rule (CDR)

Suppose X ⊂ Rn, f1, . . . , fq : X → R — affine functions. Committee
decision rule is a f1, . . . , fq is a partial function ϕ : X → Ω, defined by

ϕ(x) =


1, if

∑q
j=1 sign(fj(x)) > 0,

0, if
∑q

j=1 sign(fj(x)) < 0,

∆, otherwise.

CDR ϕ is called correct on the sample ξ, if

ϕ(xi) = ωi (i ∈ Nm).
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VCD-minimization Problem in subclass of correct CDR

MASC problem

Affine separating committee

Let f1, . . . , fq : Rn → R be affine functions, and A,B ⊂ Rn. A finite
sequence K = (f1, . . . , fq) is called affine committee separating A and
B, if

|{i ∈ Nq : fi(a) > 0}| >
q

2
(a ∈ A),

|{i ∈ Nq : fi(b) < 0}| >
q

2
(b ∈ B).

The number q is called a length of K, and the sets A and B —
separatable by K.

‘Minimum Affine Separating Committee (MASC) Problem’

For given finite subsets A,B ⊂ Qn it is required to find an affine
separating committee K of minimum length.
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VCD-minimization Problem in subclass of correct CDR

MASC problem

n = 2

set A consists of red points, B — blue pts

qmin = 3

one of the minimum ASC is presented
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VCD-minimization Problem in subclass of correct CDR

Complexity and approximation

Theorem

MASC is NP -hard (in the strong sense) and remains intractable
whether A ∪B ⊂ {x ∈ {0, 1, 2}n : |x| ≤ 2}.
ASC is NP -complete and remains intractable for each fixed q ≥ 3.

Theorem

BGC is correct approximation algorithm for MASC-GP(n) with ratio

BGC(A,B)

OPT(A,B)
≤ d2m̄ ln((m+ 1)/2)e1/2, m̄ = 2

⌈
b(m− n)/2c

n

⌉
+ 1

and time complexity O(mn+3/n lnm) + ΘGC .
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Thank you for your attention!
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