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1. Introduction

Heart rate variability (HRV) analysis is widely used to diagnose cardiovas-

cular diseases1,2. HRV reflects many regulatory processes of the human

body and therefore has a high potential to contain a valuable diagnostic

information about many internal diseases, not only cardiac diseases. HRV

analysis is usually based only on the temporal variation between sequences

of consecutive heart beats. On a standard electrocardiogram (ECG), the

maximum upwards deflection of a normal QRS complex is at the peak of

the R-wave, and the duration between two adjacent R-wave peaks is termed

as the RR-interval.

The information analysis of ECG signals 3 is based on the measurement

and joint analysis of both RR-intervals and amplitudes of adjacent R-wave

peaks. Further data processing stages includes discretization, vectorization,

and learning diagnostic rules4,5, which are also different from usual statis-

tical, geometric or spectral methods used if HRV analysis. Discretization
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encodes the electrocardiogram into a codegram — a sequence of symbols,

each cardiac cycle corresponding to one symbol. After that the standard

techniques from computational linguistics and machine learning are used

to build a diagnostic rule from a training sample of ECGs collected from

healthy persons and ill patients. This approach is used in the Multidisease

Diagnostic System which allows to diagnose dozens of internal diseases by

a single ECG record.

In this paper we propose to improve the diagnostics accuracy by means

of fuzzy encoding. Fuzzy encoding aims to smooth noise and to decrease un-

certainties in the ECG signal. To do this we introduce a simple probabilistic

model of measurements with two unknown parameters: the RMS error of

RR-interval and the RMS error of R-peak amplitude. Then we encode the

electrocardiogram into a sequence of fuzzy symbols, each represented by

a distribution on the alphabet.

To estimate the unknown RMS error parameters from the training

sample of ECGs we maximize the area under ROC-curve (AUC). Finally,

we make an extensive cross-validation experiment to show that fuzzy en-

coding improves the accuracy of diagnostics.

2. Discrete and Fuzzy Encoding

The informational analysis of ECG is based on the measurement of the

interval Tn and amplitude Rn for each cardiac cycle, n = 1, . . . , N . The

sequence T1, . . . , TN represents the intervalogram of the ECG, and the se-

quence R1, . . . , RN represents the amplitudogram of the ECG. Note that

in HRV analysis only intervals Tn are used, while we analyze jointly the

variability of intervals Tn and amplitudes Rn.

Discrete Encoding. In successive cardiac cycles, we take the signs of

increments ∆Rn, ∆Tn and ∆αn, where αn = Rn

Tn

. Only 6 from 8 combina-

tions of increment signs are possible. They are encoded by the letters of a

6-character alphabet A = {A, B, C, D, E, F}:

A B C D E F

∆Rn = Rn+1 −Rn + − + − + −

∆Tn = Tn+1 − Tn + − − + + −

∆αn = αn+1 − αn + + + − − −

Thus, the ECG is encoded into a sequence of characters from A called

a codegram, S = (s1, . . . , sN−1), see Fig. 1. Define a frequency pw(S) of
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Fig. 1. An example of codegram with a sliding window of three symbols.

Fig. 2. Vector representation nw(S) of the codegram S shown at Fig. 1. Only 64 of 216
trigrams with frequency nw(S) ≥ 2 are shown.

a trigram w = (a, b, c) of three symbols a, b, c from A in the codegram S:

pw(S) =
nw(S)

N − 3
, nw(S) =

N−3
∑

n=1

[sn = a][sn+1 = b][sn+2 = c],

where brackets transforms logical values false/true into numbers 0/1.

Denote by p(S) =
(

pw(S) : w ∈ A3
)

a frequency vector of all |A|3 = 216

trigrams w in the codegram S, see Fig. 2. The informational analysis of

ECG is based on the observation that each disease has its own diagnostic

subset of trigrams significantly frequent in the presence of the disease3,5.

Fuzzy encoding. There are two reasons to consider a smooth variant of

the discrete encoding. First, ECG may have up to 5% of outliers among

the values Rn, Tn. In discrete encoding each outlier distorts 4 neighboring

trigrams; so, the total number of distorted trigrams may reach 20%. Sec-

ond, equalities Rn = Rn+1, Tn = Tn+1 counts up to 5% of data. In such

cases it is more natural to consider sn as several equiprobable characters.

Therefore we propose to replace each character sn with a probability

distribution qn(s) over A, see Fig. 3. The distribution qn(s) depends on

Rn, Rn+1, Tn, Tn+1 values. Then we redefine the frequency of a trigram

w = (a, b, c) as a probability of w averaged over the codegram S:

pw(S) =
1

N − 3

N−3
∑

n=1

qn(a) qn+1(b) qn+2(c).
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Fig. 3. An example of discrete and fuzzy encoding. Fig. 4. Six sectors.

To estimate the probability qn(s) from Rn, Rn+1, Tn, Tn+1 we introduce

a probabilistic model of measurement. We assume that each amplitude Rn

comes from Laplace distribution with a fixed but unknown RMS error pa-

rameter σR, which is the same for all ECGs. For intervals Tn we introduce

a similar model with RMS error parameter σT . Then we calculate prob-

abilities qn(s) analytically by integrating the two-dimensional probability

distribution centered at a point (∆Tn,∆Rn) over six sectors corresponding

to six alphabet symbols s ∈ A, see Fig. 4.

Machine learning techniques are designed to induce diagnostic rules au-

tomatically from a sample of classified cases6. We learn diagnostic rules

for each disease from a two-class training sample: healthy persons and ill

patients, each represented by its ECG trigram frequency vector.

To build a diagnostic rule we use a linear classifier with feature selection:

c(S) =
[

β(S) ≥ β0

]

, β(S) =
∑

w∈A3

βj

[

pw(S) ≥ θ
]

,

where β(S) is a score function, β0 is a score threshold, βw is the weight of

trigram w learned automatically from the training sample; βw > 0 means

that the trigram is specific for a disease, βw < 0 means that it is specific for

health, βw = 0 means that the trigram is not used for the diagnostic rule.

Note that both discrete and fuzzy encoding can be used to calculate fea-

tures pw(S), thus enabling the comparative study of two types of encoding

with the same criterion of diagnostic accuracy.

The linear classification model is motivated by an empirical observation

that each disease is characterized by a set of trigrams that are significantly

more frequent in codegrams of ill people. Also, there are a set of trigrams

that are highly specific for codegrams of healthy people. Fig. 5 shows the

result of permutational statistical tests. If the frequency of the trigram and
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necrosis of the femoral head nodular goiter thyroid coronary heart disease

Fig. 5. The result of permutational test for three diseases. Points correspond to tri-
grams. The X-axis indicates the proportion of healthy people, and the Y-axis indicates
the proportion of ill people that have a trigram in their codegram more than once. Tri-
grams located in the region of acceptance near to the diagonal are likely to have occurred
by chance (two regions are shown: with significance level 10% and 0.2%). Trigrams lo-
cated in the critical region far above the diagonal are specific for the disease, and trigrams
far below the diagonal are specific for the health.

the class label are independent random variables, then such a trigram will

be close to the diagonal of the chart. The results of the test encourage

that there are many trigrams far away from the diagonal, and that for each

disease the diagnostic subset of highly specific trigrams can be reliably

determined.

Cross-Validation. We measure the quality of diagnostic rules by three

estimates: the sensitivity, the specificity, and AUC (area under ROC-curve)

using a standard 40×10-fold cross-validation procedure. A two-class sample

of codegrams is 40 times randomly divided into 10 equi-sized blocks. Each

block is used in turns as a testing sample, while other 9 blocks are used as

a training sample to learn a classifier. For each partitioning we calculate

two AUC values, for both training and testing. From all 40 partitioning we

estimate the mean AUC values and their confidence intervals.

3. Experiments and Results

In the experiment we use more that 10 000 ECG records, N = 600 cardial

cycles each. 193 ECGs were registered from healthy persons, others had reli-

able diagnoses of one or more of 18 diseases: (1) necrosis of the femoral head,

(2) cholelithiasis, (3) coronary heart disease, (4) chronic hyperacidic gastri-

tis (gastroduodenitis), (5) diabetes, (6) hypertension, (7) cancer, (8) be-

nign prostatic hyperplasia, (9) nodular goiter, (10) chronic hypoacidic

gastritis (gastroduodenitis), (11) biliary tract dyskinesia, (12) urolithi-

asis, (13) chronic cholecystitis, (14) peptic ulcer, (15) hysteromyoma,
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Table 1. AUC, specificity Sp
1

with sensitivity Sen1 = 95%, specificity Sp
2

with equal
sensitivity Sen2 = Sp

2
of linear classifier for discrete and fuzzy encoding for 18 diseases.

disease data discrete fuzzy
size AUC, % Sp1, % Sp2 = Sen2, % AUC, %

(1) 324 99.23 ± 0.05 97.4 ± 1.0 95.8 ± 0.9 99.01 ± 0.05
(2) 278 98.90 ± 0.02 95.3 ± 0.5 95.5 ± 0.5 99.00 ± 0.03

(3) 1265 97.84 ± 0.03 91.8 ± 0.4 93.3 ± 0.0 98.52 ± 0.03

(4) 324 97.84 ± 0.09 89.4 ± 1.3 93.0 ± 0.8 98.20 ± 0.10

(5) 871 96.66 ± 0.05 84.0 ± 0.9 91.2 ± 0.6 97.17 ± 0.02

(6) 1894 96.60 ± 0.05 81.6 ± 1.8 91.5 ± 0.4 97.31 ± 0.04

(7) 530 95.81 ± 0.14 80.2 ± 3.0 90.5 ± 0.8 96.45 ± 0.04

(8) 260 96.59 ± 0.10 79.8 ± 3.7 91.2 ± 0.7 96.96 ± 0.04

(9) 748 95.17 ± 0.10 66.7 ± 2.2 90.4 ± 0.6 95.72 ± 0.03

(10) 700 94.77 ± 0.11 71.7 ± 2.8 88.8 ± 1.0 95.85 ± 0.06

(11) 717 95.14 ± 0.08 70.9 ± 2.2 89.1 ± 1.0 95.82 ± 0.10

(12) 654 95.17 ± 0.07 69.0 ± 4.2 89.0 ± 0.3 96.03 ± 0.05

(13) 340 95.51 ± 0.10 76.3 ± 1.9 90.1 ± 0.5 96.44 ± 0.05

(14) 785 94.67 ± 0.05 64.3 ± 2.5 89.6 ± 0.5 95.09 ± 0.04

(15) 781 93.37 ± 0.10 59.0 ± 2.1 87.6 ± 1.0 94.28 ± 0.03

(16) 276 91.90 ± 0.29 49.0 ± 3.4 85.6 ± 1.0 91.50 ± 0.23
(17) 260 89.27 ± 0.28 35.9 ± 6.1 83.0 ± 1.2 90.34 ± 0.10

(18) 694 86.35 ± 0.24 39.5 ± 4.5 77.9 ± 1.0 86.50 ± 0.21

(16) chronic adnexitis, (17) iron deficiency anemia, (18) vasoneurosis.

Table 1 shows the AUC of linear classifier for discrete and fuzzy encoding

calculated on testing data for 18 diseases. Fuzzy encoding gives better

results for 16 of 18 diseases.

Fig. 6 shows the testing AUC averaged over all diseases depending on

the RMS error parameters σR and σT . From these charts we select the

optimal values of parameters σR = 5 and σT = 15.

Note that zero values σT = σR = 0 correspond to the discrete encoding

and are evidently far from optimality.

Fig. 7 shows the testing AUC depending on the frequency threshold

parameter θ(N − 3). Its optimal value θ = 2
N−3 means that trigrams that

occur less than twice in a codegram are not meaningful for the diagnosis.

Fig. 8 shows the testing AUC depending on the RMS error parameters

σR and σT for 2 of 18 diseases.

At all charts the proximity of the training and testing errors indicates

that overfitting is small and optimal parameters could be obtained from

training set, even without cross-validation.
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Fig. 6. AUC averaged over all diseases on training set (left-hand chart) and testing set
(right-hand chart) depending on σT = 0, . . . , 22 (X-axis) and σR = 0, . . . , 10 (Y-axis).
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Fig. 7. AUC averaged over all diseases depending on θ(N − 3).

4. Conclusion

The information analysis of ECG signals is a further development of the

HRV analysis by two directions. First, it uses not only the RR-intervals but

also the amplitudes of R-peaks. Second, it encodes the sequence of intervals

and amplitudes into a text string, thus enabling the usage of well established

techniques from computational linguistics, text classification, and machine

learning. Our experiments show that the information analysis of ECG

signals reaches a high level of sensitivity and specificity (90% and higher)

in cross-validation experiments. Fuzzy encoding helps to improve this level

by 0.5% in average. Future research will benefit from more accurate model

selection and advanced machine learning techniques.

The work was supported by the Russian Foundation for Basic Research

grants 14-07-00908, 14-07-31163.
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