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Аннотация

В данной работе исправлена фундаментальная проблема стохастического экстрагра-
диентного метода с помощью новой стратегии семплирования, мотивированной аппрок-
симацией неявного градиентного метода. Так как существующий стохастический экстра-
градиентный метод Mirror-Prox [Juditsky et al., 2011] расходится на простой билинейной
задаче, когда область определения неограничена, в данной работе доказываются гарантии
сходимости нового метода для более общих постановок, чем в существующих результатах.
Численные эксперименты в данной работе показывают, что предложенный вариант экс-
траградиентного метода сходится на билинейных седловых задачах быстрее, чем многие
другие методы. Также в работе рассматривается применение экстраградиентного метода
для обучения генеративно-состязательных нейронных сетей и показывается с помощью
численных экспериментов, что предложенный подход имеет преимущество по количеству
проходов по обучающей выборке, в то время как более высокая стоимость итераций метода
уменьшает это преимущество.

Данная работа основана на статье «Revisiting Stochastic Extragradient» [Mishchenko
et al., 2020], написанной в соавторстве с Константином Мищенко, Егором Шульгиным,
Питером Рихтариком и Юрой Малицким.
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Abstract

We fix a fundamental issue in the stochastic extragradient method by providing a new
sampling strategy that is motivated by approximating implicit updates. Since the existing
stochastic extragradient algorithm, called Mirror-Prox, of [Juditsky et al., 2011] diverges on
a simple bilinear problem when the domain is not bounded, we prove guarantees for solving
variational inequality that go beyond existing settings. Furthermore, we illustrate numerically
that the proposed variant converges faster than many other methods on bilinear saddle-point
problems. We also discuss how extragradient can be applied to training Generative Adversarial
Networks (GANs) and how it compares to other methods. Our experiments on GANs demon-
strate that the introduced approach may make the training faster in terms of data passes, while
its higher iteration complexity makes the advantage smaller.

This work is based on a paper «Revisiting Stochastic Extragradient» [Mishchenko et al.,
2020] written in collaboration with Konstantin Mishchenko, Egor Shulgin, Peter Richtárik, and
Yura Malitsky.
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1 Introduction
Algorithmic machine learning has for a long time been centered around minimization of a single
function. A lot of works are still targeting solving empirical risk minimization and new results
touch upon methods as old as gradient descent itself.

However, as the gap between lower bounds and available minimization algorithms is shrink-
ing, the focus is shifting towards more challenging problems such as variational inequality, where
a significant number of long-unresolved questions is remaining. This problem has a rich history
with applications in economics and computer science, but the arising applications provide new
desiderata on algorithm properties. In particular, due to high dimensionality and large scale
of the corresponding problems, we shall consider the impact of having a stochastic objective.
In particular, recently invented generative adversarial neural networks [Goodfellow et al., 2014]
are often trained using schemes that resemble primal-dual and variational inequality methods,
which we shall discuss in detail later.

Variational inequality can be seen as an extension of the necessary first-order optimality
condition for minimization problem, which is also sufficient in the convex case. When the
operator involved in its formulation is monotone and is equal to the gradient of a function, this
corresponds to convex minimization.

Formally, the problem that we consider is that of finding a point x∗ satisfying

g(x)− g(x∗) + 〈F (x∗), x− x∗〉 ≥ 0, for all x ∈ Rd, (1)

where g : Rd → R∪ {+∞} is a proper lower semi-continuous convex function and F : Rd → Rd

is a monotone operator. Some application of interest are not covered by the monotonicity
framework, but, unfortunately, little is known about variational inequality and even saddle
point problems when monotonicity is missing. Thus, we stick to this assumption and rather
try to model oscillations arising in some problems by considering particularly unstable [Gidel
et al., 2019b, Chavdarova et al., 2019] bilinear minimax problems.

Of particular interest to us is the situation where F (x) is the expectation with respect to
random variable ξ of the random operator F (x; ξ). This formulation has two aspects. First,
one can model data distribution, especially when a large dataset is available and the problem
is that of minimizing empirical loss. Second, ξ can be a random variable sampled by one of the
GAN networks, called generator. In any case, throughout the work we assume that we sample
unbiased estimates F (·; ξ) of F (·) such that EξF (·; ξ) = F (·).

Let us explicitly mention that a special case of (1) is constrained saddle point optimization,

min
x∈X

max
y∈Y

f(x, y),

where X and Y are some convex sets and f is a smooth function. While this example looks
deceptively simple, simultaneous gradient descent-ascent is known to diverge on this prob-
lem [Goodfellow, 2016] even when f is convex-concave. In particular, the objective f(x, y) =
x>y leads to geometrical divergence for any nontrivial initialization [Daskalakis et al., 2018].
See [Mishchenko and Richtárik, 2019] for more applications of the convex-concave saddle point
problem in machine learning and [Gidel et al., 2019a] for extra discussion on variational in-
equality and its relation to GANs.

1.1 Related work

The extragradient method was first proposed by [Korpelevich, 1977]. Since then there have been
developed a number of its extensions, most famous of which is the Mirror-Prox method [Ne-
mirovski, 2004] that uses mirror descent update. At each iteration, the standard extragradient
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method is trying to approximate the implicit update, which is known to be much more stable.
Assuming the operator is Lipschitz, it is enough to compute the operator twice to do the ap-
proximation accurately enough. We base our intuition upon this property and we shall discuss
it in detail later in the paper.

While extragradient uses future information, i.e., information from one gradient step ahead,
past information can also help to stabilize convergence. In particular, Optimistic mirror descent
(OMD), first proposed by [Rakhlin and Sridharan, 2013] for convex-concave zero-sum games,
has been analyzed in a number of works [Mokhtari et al., 2019, Daskalakis and Panageas, 2019,
Gidel et al., 2019a] and it was applied to GAN training in [Daskalakis et al., 2018]. The rates
that we prove in this work for stochastic extragradient match the best known results for OMD,
but are given under more general assumptions. Moreover, the method of [Gidel et al., 2019a]
diverges on bilinear problems.

Many other techniques also allow to improve stability and achieve convergence for monotone
operators in the particular case of saddle point problems. For instance, alternating gradient
descent-ascent does not, in general, converge to a solution [Gidel et al., 2019b], the negative
momentum trick proposed in [Gidel et al., 2019b] can fix this.

We note that our work is not the first to consider a variant of stochastic extragradient. A
stochastic version of the Mirror-Prox method [Nemirovski, 2004] was analyzed in [Juditsky et al.,
2011] under pretty restrictive assumptions. While deterministic extragradient approximates
implicit update, the authors of [Juditsky et al., 2011] chose to sample two different instances
of the stochastic operator, which leads to a poor approximation of stochastic implicit update
unless the variance is tiny. It was observed in [Chavdarova et al., 2019] that this approach leads
to terrible practical performance, dubious convergence guarantees and divergence on bilinear
problems. All later variants of stochastic extragradient, that we are aware of, consider the same
update model.

Surprisingly, a variant of extragradient was also rediscovered by practitioners [Metz et al.,
2016] as a way to stabilize training of GANs. The main difference of the method of [Metz et al.,
2016] to what we consider is in applying extra steps only on one of two neural networks. In
addition, [Metz et al., 2016] proposed to use more than one extra step and claim that in on
specific problems 5 steps is a good trade-off between results quality and computation.

[Chavdarova et al., 2019] showed that the methods of [Juditsky et al., 2011] and [Gidel
et al., 2019a] diverge on stochastic bilinear saddle point problem. As a fix, they proposed a
stochastic extragradient method with variance reduction (SVRE), which achieves a linear rate
O((n + L

µ
) log 1

ε
). However, their theory works only for saddle point problems and it does not

cover the case without strong monotonicity, so it is less general than ours.

1.2 Theoretical background

Here we provide several technical assumptions that are standard for variational inequality.

Assumption 1. Operator F : Rd → Rd is monotone, that is 〈F (x)− F (y), x− y〉 ≥ 0 for all
x, y ∈ Rd. In stochastic case, we assume that F (x; ξ) is monotone almost surely.

The monotonicity assumption is an extension of the notion of convexity and is quite stan-
dard in the literature. There are several versions of pseudo-monotonicity, but without it the
variational inequality problem becomes extremely hard to solve.

Assumption 2. Operator F (·; ξ) is almost-surely L-Lipschitz, that is for all x, y ∈ Rd

‖F (x; ξ)− F (y; ξ)‖ ≤ L ‖x− y‖ . (2)

In addition to operator monotonicity, we ask for convexity and some regularity properties
of g(·) as given below.
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Algorithm 1 Same-Sample Stochastic Extragradient Method for Variational Inequality.
1: Parameters: x0 ∈ K, stepsize η > 0
2: for t = 0, 1, 2, . . . do
3: Sample ξt
4: yt = proxηg (xt − ηF (xt; ξt))
5: xt+1 = proxηg (xt − ηF (yt; ξt))
6: end for

Algorithm 2 The extragradient method for min-max problems.
Require: Stepsizes η1, η2, initial vectors x0, y0
1: for t = 0, 1, . . . do
2: ut = xt − η1∇xf(xt, yt)
3: vt = yt + η1∇yf(xt, yt)
4: xt+1 = xt − η2∇xf(ut, vt)
5: yt+1 = yt + η2∇yf(ut, vt)
6: end for

Assumption 3. Function g : Rd → R∪{+∞} is lower semi-continuous and µ-strongly convex
for µ ≥ 0, i.e., for all x, y ∈ Rd and any h ∈ ∂g(y)

g(x)− g(y)− 〈h, x− y〉 ≥ µ

2
‖x− y‖2.

If µ = 0, then g is just convex.

Even in simple minimization problems, the classical theoretical analysis of stochastic meth-
ods ask for uniformly bounded variance, an assumption rarely satisfied in practice. Recent
developments of the theory for SGD have removed this assumption, but we are not aware of
any results in more general settings. Thus, it is one of our contributions is to relax the uniform
variance bound the one below.

Assumption 4. In the strongly convex case, we assume that F has bounded variance at the
optimum, i.e.,

E‖F (x∗; ξ)− F (x∗)‖2 ≤ σ2.

Depending on the assumptions, we will either work with the variance at the optimum or
with a merit function, which involves the variance of a bounded set.

2 Theory
It is known that implicit updates are more stable when solving variational inequality and some-
times it is argued that the main goal of algorithmic design is to approximate those [Mokhtari
et al., 2019]. From that perspective, the current stochastic extragradient, which was suggested
in [Juditsky et al., 2011], does not make much sense. Since it uses two independent samples,
it will rarely approximate the implicit update, so it is rather not surprisingly that it fails on
bilinear problems.

To better explain this phenomenon, below we show that extragradient efficiently approxi-
mates implicit update.

Theorem 1. Let F be an L-Lipschitz operator and define y
def
= proxηg (x− ηF (x)), z def

=

proxηg (x− ηF (y)), w def
= proxηg (x− ηF (w)), where η > 0 is any stepsize. Then,

‖w − z‖ ≤ η2L2‖w − x‖.
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The right-hand side in Theorem 1 serves as a measure of stationarity and decreases as x
gets closer to the problem’s solution. The essential part of the bound is that the error is of
order O(η2) rather than O(η). This allows the approximation to be better than simple gradient
update making it possible for the method to solve variational inequality. One can also mention
that having extra factor of ηL is beneficial only when η < 1/L, which provides a good intuition
on why extragradient uses smaller stepsizes than gradient.

However, when the stochastic update is used, this result is not applicable directly. If two
different samples of the operator are used, F (·; ξt) and F (·; ξt+1/2), as is done in stochastic
Mirror-Prox [Juditsky et al., 2011], then the update does not seem to approximate implicit
update of any operator. This is why we propose in this work to use the same sample, ξt,
when computing yt and xt+1, see Algorithm 1. Equipped with our update, we are always
approximating the implicit update of stochastic operator F (·; ξt) and our theoretical results
suggest that this is the right approach.

2.1 Stochastic variational inequality

Our first goal is to show that our stochastic version of the extragradient method converges for
strongly monotone variational inequality. The next theorem provides the rate that we obtained.

Theorem 2. Assume that g is a µ-strongly convex function, operator F (·; ξ) is almost surely
monotone and L-Lipschitz, and that its variance at the optimum x∗ is bounded by constant,
E‖F (x∗; ξ)− F (x∗)‖2 ≤ σ2. Then, for any η ≤ 1/(2L)

E‖xt − x∗‖2 ≤ (1− 2ηµ/3)t ‖x0 − x∗‖2 + 3ησ2/µ.

In the case where at the optimum the noise is zero, we recover a slight generalization of
linear convergence of extragradient [Tseng, 1995]. This is also similar to the rate proved for
optimistic mirror descent in [Gidel et al., 2019a], however we do not ask for uniform bounds on
the variance. Therefore, we believe that this result is significantly more general.

Theorem 3. Let g be a convex function, F (·; ξ) be monotone and L-Lipschitz almost surely.
Then, the iterates of Algorithm 1 with stepsize η = O(1/(

√
tL)) satisfy for any set X and x ∈ X

E
[
g(x̂t)− g(x) +

〈
F (x), x̂t − x

〉]
≤ 1√

tL
sup
x∈X

{
L2

2
‖x0 − x‖2 + σ2

x

}
.

where x̂t = 1
t

∑t
k=0 y

k and σ2
x

def
= E‖F (x)− F (x; ξ)‖2, i.e., σ2

x is the variance of F at point x.

The left-hand side in the bound above is a merit function that has been used in varia-
tional inequality literature [Nesterov, 2007]. This result is more general than the one obtained
in [Gidel et al., 2019a], where the authors require for the same rate bounded variance and even
E‖F (x; ξ)‖2 ≤M <∞ uniformly over x.

In fact, the claim that we prove in the appendix is a bit more general than the one presented
in the previous theorem. If we know that σx is sufficiently small on a bounded set X , then we
can get a O(1/t + supx∈X σx) rate, i.e., fast convergence to a neighborhood.

2.2 Adversarial bilinear problems

The work [Gidel et al., 2019b] argues that a good illustration of method’s stability can be
obtained when considering minimax bilinear problems, which is given by

min
x

max
y
f(x, y) = x>By + a>x+ b>y,
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where B is a full rank square matrix. One can show that if there exists a Nash equilibrium point,
then f(x, y) = (x− x∗)>B(y− y∗) + const for some pair (x∗, y∗)1. This problem is particularly
interesting because simple gradient descent-ascent diverges geometrically when solving it,

Theorem 4. Let f be bilinear with a full-rank matrix B and apply Algorithm 2 to it. Choose
any η1 and η2 such that η2 < 1/σmax(B) and η1η2 < 2/σmax(B)2, then the rate is

‖xt − x∗‖2 + ‖yt − y∗‖2 ≤ ρ2t(‖x0 − x∗‖2 + ‖y0 − y∗‖2),

where ρ def
= max {(1− η1η2σmax(B)2)2 + η22σmax(B)2 , (1− η1η2σmin(B)2)2 + η22σmin(B)2}.

The conditions for η1 and η2 in Theorem 4 are necessary, but not sufficient. To guarantee
convergence, one needs to have ρ < 1 and below we provide two such examples.

Corollary 1. Under the same assumption as in Theorem 4, consider two choices of stepsizes:

1. if η1 = η2 = 1/(
√
2σmax(B)) we get

‖xt − x∗‖2 + ‖yt − y∗‖2

≤
(

1− σmin(B)2

6σmax(B)2

)2t

(‖x0 − x∗‖2 + ‖y0 − y∗‖2),

2. if σmin(B) > 0, and η1 = κ/(
√
2σmax(B)2), η2 = 1/(

√
2κσmax(B)2) with κ def

= σ2
min(B)/σ2

max(B)
, then

the rate is

‖xt − x∗‖2 + ‖yt − y∗‖2

≤
(

1− σmin(B)2

4σmax(B)2

)2t

(‖x0 − x∗‖2 + ‖y0 − y∗‖2).

If we denote κ def
=

σ2
min(B)

σ2
max(B)

as in [Mokhtari et al., 2019], then the complexity in both cases

is O(κ log 1
ε
). However, we provide this result for potentially different stepsizes to obtain new

insights about how they should be chosen. One can see, in particular, that choosing a huge η1
is possible if η2 is chosen small, but not vice versa.

3 Nonconvex extragradient
Since the objective of neural networks is not convex, it is desirable to have a guarantee for
convergence that would not assume operator monotonicity. Alas, there is almost no theory
even for nonconvex minimax problems and full gradient updates as even the notion of station-
arity becomes tricky. Therefore, in this section we only discuss the method performance when
minimizing loss function.

Formally, the problem that we consider here is

min
x

Eξf(x; ξ), (3)

where f is a smooth bounded from below and potentially nonconvex function. To show con-
vergence, we need the following standard assumption.

1If a does not belong to the column space of B or b does not belong to the column space of B>, the
unconstrained minimax problem admits no equilibrium. Otherwise, if we introduce ã, b̃ such that a = −By∗
and b = −B>x∗, we have (x− x∗)>B(y − y∗) = x>By + a>x+ b>y + (x∗)>By∗.
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Figure 1: Left: comparison of using independent samples and averaging as suggested by [Ju-
ditsky et al., 2011] and the same sample as proposed in this work. The problem here is the
sum of randomly sampled matrices minx maxy

∑n
i=1 x

>Biy. Since at point (x∗, y∗) the noise is
equal 0, the convergence of Algorithm 1 is linear unlike the slow rates of [Juditsky et al., 2011]
and [Gidel et al., 2019a]. ’EGm’ is the version with negative momentum [Gidel et al., 2019b]
equal β = −0.3. Right: bilinear example with linear terms.

Figure 2: Top line: extragradient with the same sample. Middle line: gradient descent-ascent.
Bottom line: extragradient with different samples. Since the same seed was used for all methods,
the former two methods performed extremely similarly, although when zooming it should be
clear that their results are slightly different.

Assumption 5. There exists a constant σ > 0 such that for all x it holds

E‖∇f(x; ξ)−∇f(x)‖2 ≤ σ2.

Then, we are able to show that the method converges to a local minimum.

Theorem 5. Choose η ≤ 1
4L

and apply extragradient to (3). Then, its iterates satisfy

E‖∇f(x̂t)‖2 ≤ 5

ηt
(f(x0)− f ∗) + 11ηLσ2,

where x̂t is sampled uniformly from {x0, . . . , xt−1} and f ∗ = infx f(x).

Corollary 2. If we choose η = Θ (1/(L
√
t)), then the rate is O ((f(x0)−f∗)/

√
t + σ2/

√
t), which is the

same as the rate of SGD under our assumptions.

The statement of the theorem almost coincides with that of SGD, see for instance [Ghadimi
and Lan, 2013]. This suggests that extragradient in most cases should not be seen as an
alternative to SGD. We also provide a simple experiment with training Resnet-18 [He et al.,
2016] on Cifar10 [Krizhevsky and Hinton, 2009] in Appendix B.2, which gives a similar message.
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Figure 3: The columns differ in step sizes for generator and discriminator: 1) (10−4, 10−4), 2)
(5 · 10−5, 5 · 10−5), 3) (10−4, 5 · 10−5). In the top row, we show the generator loss and in the
bottom row that of discriminator.

4 Experiments

4.1 Bilinear minimax

In this experiment, we generated a matrix with entries from standard normal distribution and
dimensions 200. Since we did not observe much difference when changing the matrix size, we
provide only one run in Figure 1. The results are very encouraging and show the superiority of
the proposed approach on this problem. We provide two cases, with zero noise at the optimum
and non-zero noise. In the latter case, only our method did not diverge.

When the noise at the optimum is zero, this is mostly like deterministic case for our method,
but for the rest it is a difficult problem. On the other hand, when the noise is not equal 0 at
the solution, the ergodic convergence of our method is faster, just as predicted by Theorem 3.

4.2 Generating mixture of Gaussians

Here we compare gradient descent-ascent as well as Mirror-Prox to our method on the task of
learning mixture of 4 Gaussians. We provide the evolution of the process in Figure 2, although
we note that the process is rather unstable and all results should be taken with a grain of salt.

To our surprise, negative momentum was rarely helpful and even positive momentum some-
times was giving significant improvement. We suspect that this is due to the different roles of
generator and discriminator, but leave further exploration for future work.

The details of the experiment are as follows. For generator we use neural net with 2 hidden
layers of size 16 and tanh activation function and output layer with size 2 and no activation
function, which represents coordinates in 2D. Generator uses standard Gaussian vector of size
16 as an input. For discriminator we use neural net with input layer of size 2, which takes a
point from 2D, 2 hidden layers of size 16 and tanh activation function and output layer with size
1 and sigmoid activation function, which represents probability of input point to be sampled
from data distribution. We choose the same stepsize 5 · 10−3 for all methods, which is close to
maximal possible stepsize under which the methods rarely diverge.
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Generator
Input : z ∈ R100 ∼ N (0, I)

Embedding layer for the label
Linear (110 → 256)

LeakyReLU (negative slope: 0.2)
Linear (256 → 512)

LeakyReLU (negative slope: 0.2)
Linear (512 → 1024)

LeakyReLU (negative slope: 0.2)
Linear (1024 → 784)

Tanh(·)

Discriminator
Input : x ∈ R1×28×28

Embedding layer for the label
Linear (794 → 1024)

LeakyReLU (negative slope: 0.2)
Dropout (p=0.3)

Linear (1024 → 512)
LeakyReLU (negative slope: 0.2)

Dropout (p=0.3)
Linear (512 → 256)

LeakyReLU (negative slope: 0.2)
Dropout (p=0.3)

Linear (1024 → 784)
Sigmoid(·)

Table 1: Architectures used for our experiments on Fashion MNIST.

4.3 Comparison of Adam and ExtraAdam

Unfortunately, pure extragradient did not perform extremely well on big datasets, so for the
Fashion MNIST and Celeba experiments we used adaptive stepsizes as in Adam [Kingma and
Ba, 2014].

In the first set of experiments, we compared the performance of ExtraAdam [Gidel et al.,
2019a] and Adam in a Conditional GAN [Mirza and Osindero, 2014] setup on Fashion MNIST [Xiao
et al., 2017] dataset. The generator and discriminator were simple feedforward networks (de-
tailed architectures description in Table 1). Optimizers were run with mini-batch size of 64
samples, no weight decay and β1 = 0.5, β2 = 0.999. One iteration of ExtraAdam was counted
as two due to a double gradient calculation. The results (mean and variance) are depicted in
Figure 3 and were obtained using 3 runs with different seeds. One can see that extragradient
is slower because of the need to compute twice more gradients.

We suspect that Adam is faster partially due to that the problem’s structure is something
more specific than just a variational inequality. One validation of this guess is that in [Gidel
et al., 2019b], the networks were trained with negative momentum only on discriminator, while
generator was trained with constant momentum +0.5. Another reason we make this conjecture
is that in [Metz et al., 2016] there was proposed a method that can be seen as a variant of
extragradient, in which parameters of only one network requires extra steps.

In the second experiment, following [Chavdarova et al., 2019], we trained Self Attention
GAN [Zhang et al., 2018]. We note that the loss was generally an ambiguous metric of method
comparison, so we provide the Inception score [Salimans et al., 2016]1 in Figure 4 as performance
measure for image synthesis. Besides, samples generated after training for two epochs are
provided in Figure 9 in the Appendix.

The work [Gidel et al., 2019b] suggests using negative momentum to improve game dynamics
and achieve faster convergence of the iterates. We consider using two types of momentum
together: β1 in the first step and β2 in the second, i.e., we use yt = xt−η1F (xt; ξt)+β1(x

t−xt−1)
and xt+1 = xt − η2F (yt; ξt) + β2(x

t − xt−1). Detailed investigation on bilinear problems shows
that β1 can be chosen to be positive and β2 should rather be negative. Intuitively, positive β1
allows the method to look further ahead, while negative β2 compensates for inaccuracy in the
approximation of implicit update. In Appendix A.1, we discuss it in more details.

The results (mean and variance) are depicted in Figure 3 and were obtained using 3 runs
1We used implementation from this GitHub repository.
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with different seeds.
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Figure 4: Inception score (mean and variance obtained by 5 runs) computed every 50 iterations
during the training process on CelebA dataset for 2 epochs.

4.4 Discussion

The bilinear example is very clear and the results that we obtained showed enough stability.
However, the message from training GANs is very vague due to their well-known instability. We
did not observe a significant impact of negative momentum on convergence speed or stability,
but at the same time we mentioned that setting first momentum to 0 in Adam is important for
the extra update to have impact. We believe that the bilinear problem in this situation is the
best way to make conclusion, but we still aim to obtain new methods for GANs in future.

It is also worth mentioning that the actual loss functions used in GANs are typically nons-
mooth due to the choice of loss functions. For instance, the popular WGAN formulation [Ar-
jovsky et al., 2017] includes hinge loss. On top of that, neural networks themselves have
nonsmooth activations such as ReLU and its variants. Therefore, it is an interesting direc-
tion to understand what happens when the assumptions typical to variational inequalities are
violated.
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(a) η1 = η2, β2 = 0, β = β1 is the x-axis,
ησi is the y-axis. The optimal value of β1
depends on ησi and only for small values
is significantly bigger 0. The dark area is
where the method diverges.

(b) η1 = η2, β1 = 0, β = −β2 (negative
momentum) is the x-axis, ησi is the y-axis.
The optimal value of β2 is always very close
to −0.3. The dark area is where the method
diverges.

Figure 5: Values of the spectral radius of the extragradient momentum matrix (5) for bilinear
problems for different values of ησ and β. The heat values is the multiplicative speed up from
using β > 0 compared to β = 0, which we define as the ratio ρ(T(ησ,β))

ρ(T(ησ,0))
, where ρ(A) is the

spectral radius of a matrix A for any A and T(ησ, β) is the value of matrix in the update
under given ησ and β, see (5) in Appendix A.1.
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Appendix
A Proofs
Proof of Theorem 1
We prove a more general version of the claim made in the main part, in particular we provide
O(ηk) bound for extragraident with k steps. The precise claim is given below.

Theorem 6. Let F be an L-Lipschitz operator and define recursively y0 = x and ym+1
def
=

proxηg (x− ηF (ym)) for m = 1, . . . , k and let w def
= proxηg (x− ηF (w)) be the implicit update,

where η > 0 is any stepsize. Then,

‖w − yk‖ ≤ ηkLk‖w − x‖.

Proof. We show the claim by induction. For k = 0 it holds simply because y0
def
= x. If it holds

for k − 1, let us show it for k. By non-expansiveness of the proximal operator we have

‖w − yk‖ = ‖proxηg (x− ηF (w))− proxηg (x− ηF (yk−1)) ‖
≤ ‖x− ηF (w)− (x− ηF (yk−1))‖
= η‖F (w)− F (yk−1)‖
≤ ηL‖w − yk−1‖
≤ ηkLk‖w − x‖.

Proof of Theorem 2
First, let us introduce the following lemma that will be very useful in our analysis.

Lemma 1. Let g be µ–strongly convex and z = proxηg (x). Then for all y ∈ Rd the following
inequality holds:

〈z − x, y − z〉 ≥ η
(
g(z)− g(y) +

µ

2
‖z − y‖2

)
. (4)

Proof. The lemma easily follows from the definitions. Indeed, since

z
def
= arg min

u
{ηg(u) +

1

2
‖u− x‖2},

we have necessary optimality condition 0 ∈ η∂g(z) + (z − x). Thus, by the definition of a
subdifferential and by strong convexity,

η(g(y)− g(z)) ≥ 〈x− z, y − z〉+
ηµ

2
‖z − y‖2

and the proof is complete.

In addition, let us also separately state how we are going to deal with the update variance.

Lemma 2. Let F (·; ξ) be almost surely monotone and assume that point x is such that σ2
x

def
=

E‖F (x; ξ)− F (x)‖2 < +∞, i.e., the variance of F at x is bounded. Then,

E
〈
F (x)− F (x; ξt), yt − x

〉
≤ ησ2

x +
1

4η
E‖yt − xt‖2.
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Proof. As xt and ξt are independent random variables and EF (x; ξt) = F (x), we have

E
〈
F (x)− F (x; ξt), yt − x

〉
= E

〈
F (x)− F (x; ξt), xt − x

〉
+ E

〈
F (x)− F (x; ξt), yt − xt

〉
= E

〈
F (x)− F (x; ξt), yt − xt

〉
.

By Young’s inequality,

E
〈
F (x)− F (x; ξt), yt − xt

〉
≤ ηE‖F (x)− F (x; ξt)‖2 +

1

4η
E‖yt − xt‖2

= ησ2
x +

1

4η
E‖yt − xt‖2

and the proof is complete.

Now we are ready to prove Theorem 2.

Proof. By Lemma 1 for points yt = proxηg (xt − ηF (xt; ξt)) and xt+1 = proxηg (xt − ηF (yt; ξt)),〈
xt+1 − xt + ηF (yt; ξt), x∗ − xt+1

〉
≥ η
(
g(xt+1)− g(x∗) +

µ

2
‖xt+1 − x∗‖2

)
〈
yt − xt + ηF (xt; ξt), xt+1 − yt

〉
≥ η
(
g(yt)− g(xt+1) +

µ

2
‖xt+1 − yt‖2

)
.

Summing these two inequalities together and rearranging, we get

〈xt+1−xt, x∗−xt+1〉+〈yt−xt, xt+1−yt〉+η〈F (yt; ξt)−F (xt; ξt), yt−xt+1〉+η〈F (yt; ξt), x∗−yt〉

≥ η
(
g(yt)− g(x∗) +

µ

2
‖xt+1 − x∗‖2 +

µ

2
‖xt+1 − yt‖2

)
.

Using identity 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2 for the first two scalar products, we deduce

(1 + ηµ)‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − ‖xt − yt‖2 − (1 + ηµ)‖xt+1 − yt‖2

+ 2η〈F (yt; ξt)− F (xt; ξt), yt − xt+1〉 − 2η
(
〈F (yt; ξt), yt − x∗〉+ g(yt)− g(x∗)

)
.

The first scalar product can be simplified using Lipschitzness. Since F (·; ξt) is almost surely
L–Lipschitz, by Young’s inequality

2η〈F (yt; ξt)− F (xt; ξt), yt − xt+1〉 ≤ η

L
‖F (yt; ξt)− F (xt; ξt)‖2 + ηL‖yt − xt+1‖2

≤ ηL
(
‖xt+1 − yt‖2 + ‖yt − xt‖2

)
.

To get rid of the other scalar product, we use monotonicity of F (·; ξt), and then apply strong
convexity of g,

〈F (yt; ξt), yt − x∗〉+ g(yt)− g(x∗) ≥ 〈F (x∗; ξt), yt − x∗〉+ g(yt)− g(x∗)

= 〈F (x∗), yt − x∗〉+ g(yt)− g(x∗) +
〈
F (x∗; ξt)− F (x∗), yt − x∗

〉
≥ µ

2
‖yt − x∗‖2 +

〈
F (x∗; ξt)− F (x∗), yt − x∗

〉
.

So far, the proof has not involved any expectation, but now we shall use Lemma 2 to deduce
from the produced bounds

(1 + ηµ)E‖xt+1 − x∗‖2 ≤ E
[
‖xt − x∗‖2 − ηµ

(
‖yt − x∗‖2 + ‖xt+1 − yt‖2

)]
+ 2η2σ2

− (1− ηL− 1
2
)︸ ︷︷ ︸

≥0

E‖yt − xt‖2

≤ E
[
‖xt − x∗‖2 − ηµ

(
‖yt − x∗‖2 + ‖xt+1 − yt‖2

)]
+ 2η2σ2.
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Using inequality ‖a‖2 + ‖b‖2 ≥ 1
2
‖a+ b‖2, we arrive at(

1 +
3

2
ηµ
)
‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + 2η2σ2.

Note that ηµ ≤ 1/2 and, therefore, 1
1+3ηµ/2

≤ (1− 2ηµ/3). The statement of the theorem can
be now easily obtained by induction.

Proof of Theorem 3
Let x ∈ X . Similarly to the proof of Theorem 2, we can obtain from Lemma 1 with µ = 0

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ‖xt − yt‖2 − ‖xt+1 − yt‖2 + 2ηL(‖xt+1 − yt‖2 + ‖yt − xt‖2‖)
− 2η

(
〈F (yt; ξt), yt − x〉+ g(yt)− g(x)

)
≤ ‖xt − x‖2 − 1

2
‖xt − yt‖2 − ‖xt+1 − yt‖2

− 2η
(
〈F (yt; ξt), yt − x〉+ g(yt)− g(x)

)
.

By monotonicity of F (·; ξt) and Lemma 2 we deduce

E
〈
F (yt; ξt), x− yt

〉
≤ E

〈
F (x; ξt), x− yt

〉
≤ ησ2

x + E
〈
F (x), x− yt

〉
+

1

4η
E‖yt − xt‖2.

Therefore,

E
[
g(yt)− g(x) +

〈
F (x), yt − x

〉]
≤ 1

2η
E
[
‖xt − x‖2 − ‖xt+1 − x‖2

]
+ ησ2

x.

Telescoping this inequality, we obtain

E
1

t+ 1

t∑
k=0

(g(yk)− g(x) +
〈
F (x), yk − x

〉
) ≤ 1

2ηt
‖x0 − x‖2 + ησ2

x ≤ sup
z∈X

{
1

2ηt
‖x0 − z‖2 + ησ2

z

}
.

The left-hand side is a convex function yk. Therefore, choosing η = O
(

1√
t

)
and applying

Jensen’s inequality to the left-hand side, we get the claim.
Proof of Theorem 4

Proof. Since the function is bilinear, we can write

∇xf(x, y) = B(y − y∗), ∇yf(x, y) = B>(x− x∗).

Then, we obtain the explicit update rules

xt+1 = xt − η2B(vt − y∗) = xt − η2B(yt − y∗ + η1B
>(xt − x∗))

yt+1 = yt + η2B
>(ut − x∗) = yt + η2B

>(xt − x∗ − η1B(yt − y∗)).

In matrix forms it is[
xt+1 − x∗
yt+1 − y∗

]
=

(
I− η1η2BB> −η2B

η2B
> I− η1ηB>B

)[
xt − x∗
yt − y∗

]
Apply SVD decomposition to B: B = UΣV>, where U and V are orthogonal and Σ =
diag(σ1, . . . , σn). Then,∥∥∥∥[xt+1 − x∗

yt+1 − y∗
]∥∥∥∥ ≤ ∥∥∥∥(I− η1η2BB> −η2B

η2B
> I− η1η2B>B

)∥∥∥∥∥∥∥∥[xt − x∗yt − y∗
]∥∥∥∥ .
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Since U and V are orthogonal, we have

BB> = UΣ2V>,

B>B = VΣ2U>,

and ∥∥∥∥(I− η1ηBB> −η2B
η2B

> I− η1ηB>B

)∥∥∥∥ =

∥∥∥∥(U 0
0 V

)(
I− η1ηΣ2 −η2Σ

η2Σ I− η1ηΣ2

)(
U> 0
0 V>

)∥∥∥∥
=

∥∥∥∥(I− η1η2Σ2 −η2Σ
η2Σ I− η1η2Σ2

)∥∥∥∥
= max

i

∥∥∥∥(1− η1η2σ2
i −η2σi

η2σi 1− η1η2σ2
i

)∥∥∥∥
= max

i

√
(1− η1η2σ2

i )
2 + η22σ

2
i .

Assume without loss of generality that σ1 ≥ · · · ≥ σn. Note that function x 7→
(

1− η1
η2
x2
)2

+x2

is monotonically decreasing on (0, c) and monotonically increasing on (c,+∞), where c is +∞
if η2 ≥ 2η1 and η2√

2η1

√
2η1
η2
− 1 otherwise. Consequently, it holds

max
i
{(1− η1η2σ2

i )
2 + η22σ

2
i } = max{(1− η1η2σ2

1)2 + η22σ
2
1, (1− η1η2σ2

n)2 + η22σ
2
n}.

Proof of Corollary 1

Proof. These statements follow from the bound obtained in Theorem 4. Since function (1 −
x2)2 + x2 monotonically decreases when x ∈

(
0, 1√

2

)
, we have ρ = (1 − η1η2σmin(B)2)2 +

η22σmin(B)2 =
(

1− σmin(B)2

2σmax(B)2

)2
+ σmin(B)2

2σmax(B)2
. The second case follows similarly.

A.1 Negative momentum

For bilinear problems with two types of momentum the update recurrence is
xt+1 − x∗
yt+1 − y∗
xt − x∗
yt − y∗

 =


(1 + β2)I− η1η2BB> −η2(1 + β1)B −β2I η2β1B

η2(1 + β1)B
> (1 + β2)I− η1ηB>B −η2β1I −β2I

I 0 0 0
0 I 0 0



xt − x∗
yt − y∗
xt−1 − x∗
yt−1 − y∗

 .
Using SVD decomposition, we can represent the above matrix as block-diagonal with blocks Ti

Ti =


1 + β2 − η1η2σ2

i −η2(1 + β1)σi −β2 η2β1σi
η2(1 + β1)σi 1 + β2 − η1ησ2

i −η2β1 −β2
1 0 0 0
0 1 0 0

 , (5)

where σi is the i-th the singular value of B.
One can show that the spectral radius of this matrix improves with negative β2, however

this is not true for its second norm. Since this is a very technical property that can be easily
illustrated numerically, we simply provided a plot of how spectral radius changes depending on
values of ησ and β2 when β = 1 = 0 and η1 = η2 = η, see Figure 5. In addition, here we provide
the heatmap for η1 = η2 and product ησ = 0.01. As can be seen from Figure 6, nonzero β1 is
not very promising and β2 leads only to a small improvement. Thus, it gives advantage mainly
for large values of ησ.
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Figure 6: Ratio of spectral radii as in Figure 5 but with fixed ησ = 0.01 and different values of
β1 and β2.

A.2 Proof of Theorem 5

Let us introduce a notation that simplifies the proof. We will denote by Et the expectation
conditioned on xt, i.e., Et[·] = E[· | xt].

Proof. Recall that yt = xt − η∇f(xt; ξt), xt+1 = xt − η∇f(yt; ξt), and apply smoothness of f
to xt+1 and xt:

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+
L

2
‖xt+1 − xt‖2

= f(xt)− η‖∇f(xt)‖2 + η
〈
∇f(xt),∇f(xt)−∇f(yt; ξt)

〉
+
Lη2

2
‖∇f(yt; ξt)‖2.

Since∇f(xt; ξt) is an unbiased estimate of∇f(xt), it follows by Young’s inequality and smooth-
ness of f(·; ξt)

η
〈
∇f(xt),∇f(xt)−∇f(yt; ξt)

〉
= Etη

〈
∇f(xt),∇f(xt; ξt)−∇f(yt; ξt)

〉
≤ η2L

2
‖∇f(xt)‖2 +

1

2L
Et‖∇f(xt; ξt)−∇f(yt; ξt)‖2

≤ η2L

2
‖∇f(xt)‖2 +

L

2
Et‖xt − yt‖2

=
η2L

2
‖∇f(xt)‖2 +

η2L

2
Et‖∇f(yt; ξt)‖2.

Moreover, similar arguments show how to bound the expectation of the squared gradient norm:

Et‖∇f(yt; ξt)‖2 ≤ 2Et‖∇f(yt; ξt)−∇f(xt; ξt)‖2 + 2Et‖∇f(xt; ξt)‖2

≤ 2L2Et‖yt − xt‖2 + 2Et‖∇f(xt; ξt)‖2

= 2(1 + L2η2)Et‖∇f(xt; ξt)‖2

≤ 2(1 + L2η2)(‖∇f(xt)‖2 + σ2).
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Thus,

Etf(xt+1) ≤ f(xt)− η
[
1− ηL− 2ηL(1 + η2L2)

]
‖∇f(xt)‖2 + 2η2L(1 + η2L2)σ2.

If ηL ≤ 1
4
, we have 1− ηL− 2ηL(1 + η2L2) > 1

5
, so this bound can be simplified to

‖∇f(xt)‖2 ≤ 5

η
Et[f(xt)− f(xt+1)] + 11ηLσ2.

Telescoping this inequality from 0 to t − 1 and taking full expectation with respect to all
randomness, we get

1

t

t−1∑
k=0

E‖∇f(xk)‖2 ≤ 5

ηt
(f(x0)− f(xt)) + 11ηLσ2

≤ 5

ηt
(f(x0)− f ∗) + 11ηLσ2.

It remains to mention that the left-hand side is exactly the expectation of E‖∇f(x̂t)‖2.

B Additional experiments

B.1 Reproducing mixture of eight Gaussians

We also double check that extragradient converges on the mixture of 8 Gaussians. This exper-
iment is a sanity that allows us to show that the method can do at least as well as alternating
gradient [Gidel et al., 2019b]. To directly relate to their experiments, we ran extragradient on
the same type of network, although we changed activation from ReLU to tanh, which was more
stable in our experiments. Note that [Gidel et al., 2019b] ran alternating method for 100,000
iterations, while we required only 20,000, which corresponds to 40,000 generator updates. The
result is presented in Figure 7.

Figure 7: Samples from generator after training for 20,000 iterations of minibatch 512 with ex-
tragradient. Both generator and discriminator are 4-layers neural networks with tanh activation
and the dimension of the noise distribution is 256.

B.2 Empirical risk minimization

As our theory suggests, stochastic extragradient might not be better than SGD when solving a
simple task such as function minimization. To see how it works in practice, we trained Residual
Network [He et al., 2016], Resnet-18, on Cifar10 [Krizhevsky and Hinton, 2009] dataset with
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cross-entropy loss and different stepsizes, and compared the results to SGD. In order to see the
effect of the update rule, we do not use any type of momentum in this experiment and keep the
learning rate constant. Our observation in this situation is that extragradient is indeed slower,
both because of the need to compute two gradients per iterations and because of worse final
accuracy.

Figure 8: Comparison of the proposed stochastic extragradient and stochastic gradient descent
when optimizing Residual Network with 18 hidden layers on Cifar10 dataset. We report only
the train loss as this is the most relevant metric for an optimization method, and test accuracy
in this experiment behaved similarly.

B.3 Samples of generated images

Figure 9: Adam (top) and ExtraAdam (bottom) results of training self attention GAN for two
epochs. The results of training with the three best performing stepsizes, 10−3, 2 · 10−3, 4 · 10−3,
are provided for each method (from the left to the right). Best seen in color by zooming on a
computer screen.
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