Clustering evaluation

Victor Kitov

v.v.kitov@yandex.ru

Silhuette coefficient¹

For each object x_i define:

- si-mean distance to objects in the same cluster
- d_i-mean distance to objects in the next nearest cluster

Silhouette coefficient for x_i :

$$Silhouette_i = \frac{s_i - d_i}{\max\{s_i, d_i\}}$$

Silhouette coefficient for $x_1, ... x_N$:

$$Silhouette = \frac{1}{N} \sum_{i=1}^{N} \frac{s_i - d_i}{\max\{s_i, d_i\}}$$

¹Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53–65.

Discussion

- Advantages
 - The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering.
 - Scores around zero indicate overlapping clusters.
 - The score is higher when clusters are dense and well separated.
- Disadvantages
 - The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters
 - such as density based clusters.

Calinski-Harabaz Index²

- Consider K clusters. For cluster k = 1, 2, ...K define • n_k - number of objects, c_k - centroid, C_k - indexes of objects
- Within cluster covariance matrix

$$W = \frac{1}{N - K} \sum_{k=1}^{K} \sum_{x \in C_k} (x - c_k) (x - c_k)^T$$

Between cluster covaraince matrix

$$B = \frac{1}{K-1} \sum_{k=1}^{K} n_k (c_k - c) (c_k - c)^T$$

Calinski-Harabaz Index:

$$I = \frac{\operatorname{tr} B}{\operatorname{tr} W}$$

²Caliński, T., & Harabasz, J. (1974). "A dendrite method for cluster analysis". Communications in Statistics-theory and Methods 3: 1-27.

Discussion

- Advantages
 - The score is higher when clusters are dense and well separated.
 - Fast to compute
- Drawbacks
 - Index is generally higher for convex clusters than other concepts of clusters
 - such as density based clusters.

Example

Calinski-Harabaz Index=193!

