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Proteins

m Protein — a sequence of amino acids {Ala,Arg,...} = A

m Each amino acid consists of atoms
E.g. (Cysteine):

[N, Ca,C, H,0, He, Cg, Hs,, Hg,, S-, H)

backbone part side-chain

m Primary structure — linear sequence of amino acids

m Tertiary structure — 3D structure of protein molecules
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Protein backbone
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Backbone with side-chains
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Rotamer prediction problem statement

Protein backbone

Rotamers — discretized conformations of side-chains

In other words: predict folding of side-chains.

Quality criteria

RMSD-like metrics based on the side-chain geometry

Protein folds according to physical laws, minimizing free energy F
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Rotamers
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Mathematical formulation

m — sequence length,

ny < oo — number of rotamers for k-th amino acid,

rr € {1,...,n} =: R, — indices of rotamers, R = x] Ry,
Ui (r, 1) — symmetrical potentials of pairwise interactions,

Potential energy minimization:

ZZUkl(T’kﬂ’l) — min (1)
k=1 1=1 (T1yeeestm)ER

Drawbacks:

m There are potentials of higher orders
m Actually, it is not free, but potential energy minimization
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Problem statement for protein design

Protein backbone

Primary structure that folds to the target protein structure

Quality criteria

Depends on particular problem statement

m computational time
m similarity of primary structure and the native structure
m consistency with predicted secondary structure:

L(3DL.1D —5 2D, 3D —¢ 2D) — min.
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Notation

m — number of residues,

ar =1,...,20 — amino-acids,

n =y, ng — dimension of the search space,
Exi(ag, a;) — energy.

Protein design optimization problem

m m
Z Z Ekl ag, al —) min (2)

o (a1,...,am)EA
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Reduction to boolean Quadratic Programming

Problem 2 can be reduced to BQP

minimize ' QZ
ze{0,1}m (3)
subject to AT = I,,,,

where
[Qlij = Eij(ai, aj),
1 10 «o0 O +oven- 0 0
0 0 1 oo 1 cvven- 0 0
A= _
0 0 0 -0 O +ovene 1 1
—_— Y ——
20 20 20
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Final optimization problems

Rotamer prediction 1
m m
Z Z Ukl Tk, T‘l —> min
JER

(G-

k=1 1=1

Protein design 2

m m
E E Eksl ak,al — min

m
el =1 (at,...,am)EA

But we do not know actual potentials U,; and E,;!
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Another look

(ri,...,rm) and (a1,...,an) can be treated as proteins
PePpP

energy potentials can be treated as protein scoring functions

m m
ZZUM rk,rl 251(7'1,...,7"m)
k=11=1
m m
ZZEM ak,al :52(a1,...,am)
k=11=1
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Introduced notation

Rotamer prediction 1

Si(ri,...,rm) —  min

(Th-uﬂ“m)ER
Protein design 2
Sa(aty ... am) — min

(a1,...,am)EA™

So, the problem is to score proteins P € P.
Here we can apply machine learning!
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Protein scoring

For each native structure P, a set of decoy structures D is given:

D={P,...,P,}CP

Find
Scoring
(i1, .. im): P, =+ 2 Py < Py.
The problem is to train protein scoring function
S: P —R.

Then
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Performance estimation

First, we have to define the actual score function S*(P).
RMSD
S*(P;) = RMSD(P;, Fy)
TM-score (Template modelling score)

1 Laligned 1
max Ltargei: Zz 1+( d; >2
dO(Ltarget)

GDT-TS (Global distance test, total score)

B GDT-HA (Global distance test, high accuracy)
Then we estimate:

m Loss, Z-score

m Pearson/Spearman correlation

Mikhail Karasikov Protein Scoring 14 /21



Approaches
Features

Methods Algorithms
Results

Two approaches

Single-model QA
m Computationally efficient
m Have far from perfect quality

Consensus-model QA

1
PeP
m More precise
m Hard to compute
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Machine learning

m Features extraction

m Allows using 2D information

m Robust to errors in side-chain positions
Statistical potentials

A — atoms
AT = {aty,...,at,,} — atom types
at: A— AT

S(at(ai), at(aj), ’l“ij) x —kT logﬁ(at(ai), at(aj), ’I"ij)

S(P)= Y S(at(a;),at(a;), 7i;)

aﬁéaj
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Single-model QA

Coarse-grained model
Uses only backbone conformation
m Applied first to predict backbone conformation
m Computationally efficient
m Robust to errors in side-chain positions
All-atoms model
Uses all protein’s atoms

m Applied on the stage of refinement
m Usually more precise
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Reduced representation terms

m Predicted secondary structure penalty
Solvent accessibility
Predicted contact map
Sheet formation
Backbone repulsion
Centroid repulsion
Residue environment potential
Context independent pair-wise potential
Context dependent pair-wise potential
Compactness
All-atom terms
m Side-chain hydrogen bonding
Van der Walls forces

]
m Solvation effects
m Electrostatic interactions
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Geometrical Features

0 = C3CLC2

_ ol 22
Q= cloiecs
ay = C3LC2C?
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Features

Algorithms
Methods Results

Geometrical Features

Featurization:

{P(),Pl,.. ,Pm} —> {fo,fl,...,fm}

Learning:
Classification

Regression

Learning to Rank
Py, < 2Py <Py
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Tabnunua: Top 1, Top 5, Spearman correlation

Logistic Regression | Ridge Regression
Tasser 0.75/0.82 /061 | 0.16 /0.41/0.72
Tasser Original | 0.84 / 0.91 / 0.10 | 0.73 / 0.79 / 0.22
Rosetta 0.93/097 /062 | 0.14/048/0.73
Rosetta Original | 0.00 / 0.05 / 0.03 | 0.14 / 0.31 / 0.17
Modeller 0.80 /0.85/0.69 | 0.25/0.40 /0.78
Modeller Original | 0.90 / 0.90 / 0.49 | 0.55 / 0.65 / 0.74
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