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forecasting

Abstract—The paper presents a framework for the mas-
sive multiscale time series forecast. We propose a method of
constructing efficient feature description for the corresponding
regression problem. The method involves feature generation and
dimensionality reduction procedures. Generated features include
historical information about the target time series as well as
other available time series, local transformations and multiscale
features. We apply several forecasting algorithms to the resulting
regression problem and investigate the quality of the forecasts for
various horizon values.

I. INTRODUCTION

We focus on the problem of forecasting behavior of a

device within the concept of Internet of Things. The device at

question is monitored by a set of sensors, which produces large

amount of multi-scale time series during its lifespan. These

time series have various time scales since distinct sensors pro-

duce observations with various frequencies from milliseconds

to weeks. The main goal is to predict the observations of a

device in a given time range.

We assume that the sampling rate of each time series is

fixed and each time series has its own forecast horizon. The

problem of multi-scale analysis arises in such applications as

weather prediction, medical diagnosis and monitoring various

sensor time series [1], [2], [3], [4]. Motivation for multi-

scale analysis comes from the assumption that the behaviour

of complex signals may be governed by essentially different

processes at various time scales. Thus, the time series should

be modeled separately at each scale. This approach is used in

time series classification, prediction and fault detection [5], [3],

[6]. Regardless of the goal of multi-scale analysis, it includes

sequential averaging of the time series to obtain more coarse-

scaled time series [7], or, more rarely, differencing the time

series for a more detailed, fine-scaled version of the time

series [8]. Averaging and differencing, which is equivalent to

application of Haar’s wavelet transform [8], may be replaced

by any other pair of low and high pass wavelet filters [9] or

convolution operation with some kernel function [10]. Using

multi-scale approach in time series prediction usually involves

determining optimal scales [10], [2], decomposition of time

series into separately forecasted components and combination

of the obtained forecasts.

The problem gets more complex when the task is to forecast

multiple time series, which are characterized with different

scales and ranges. Forecasting time series separately might

lead to loss of valuable information. On the other hand, fore-

casting the time series simultaneously might lead to increased

errors since not all the time series in the given set necessarily

depend on the others. In this paper we propose a novel frame-

work for multiscale time series forecasting, which is based

on regression-based forecasts. The goal is to obtain forecasts

of all time series from the given set simultaneously. Adopting

this approach we endeavour to profit as much as possible from

the interconnections between the time series of the set while

keeping the decrease in forecasting quality for the independent

time series reasonably small. Within the proposed framework

the time series of various scales are combined into are single

regression problem. The forecasts viewed as target variables

of the regression problem, where feature description contains

local history of the time series as well as various derivations.

We describe the steps of creating feature description to this

problem: composition of design matrix, feature generation

and selection. Note that the problem of model selection rests

beyond the scope of the paper. To illustrate the proposed

framework in application to the multiscale data set [11] we use

several widely used regression models [12], [13], [14], [15],

[16], [17]. The following section provides a brief overview of

these methods and provide the motivation to use them.



II. RELATED WORK

Along with generic methods of time series forecasting,

such as Autoregressive Moving Average Models (ARMA),

Autoregressive Integrated Moving Average Models (ARIMA),

authors report high predictive performance of the methods,

originally developed for classification or regression, applied to

forecast time series [12], [13], [14], [15], [18], [16]. Here the

input variables are the delayed observations of the time series,

and the output is the forecasted value of time series. However,

the authors of [15] show that this prediction framework suffers

from systematic error that does not converge to zero as the

sample size increases, and ensure error convergence applying

cubic spline approximation to noisy data, which yields much

lower RMSE in case of noisy data.

To extend this one-step-ahead forecasting scheme to the

case of multiple predictions, one may use iterative, direct or

multiple output strategies [19]. Within the iterative strategy,

one-step-ahead forecasts are computed recursively, with the

newly predicted values of the time series used as the actual

future records. A less prone to error accumulation, though

more time consuming method is the direct strategy, which

involves estimation of h models to predict h future values

of the time series [20]. Finally, the multiple input multiple

output (MIMO) strategy allows to obtain h prediction with

at one step. The paper [19] compares different strategies of

multi-step-ahead prediction in SVR-based forecasting: direct,

iterative and multiple output. Regardless of the horizon values,

direct and MIMO strategies consistently achieve more accurate

forecasts, than the iterative strategy, with MIMO being most

accurate in most cases.

To demonstrate the application of the proposed framework

of time series forecasting, we utilize Multivariate Linear

Regression (MLR) as the naive approach, as well as three more

complex models: Random Forests (RF) [12], [13], Support

Vector Regression (SVR) [14], [15], [21] and artificial neural

networks (ANN) [18], [16]. Random Forests combine decision

trees with randomly generated nodes to increase the accuracy

of classification or regression [22]. In case of regression trees,

each node of the tree splits the input space into two subspaces

and each leaf specifies a distinct regression model, which is

used for prediction if the input is found in the corresponding

region of the input space. Predictions of the trees in the forest

are averaged, or, for the probabilistic random forest, the prob-

abilities of the outputs are averaged. The advantage of random

forests is their efficiency in case of highly dimensional data

due to the randomness incorporated into selecting informative

features. Since random forests are essentially ensembles of

weak learners, they enjoy high generalization ability, asso-

ciated with boosting algorithms. Similarly, the formulation

of optimization problem within support vector regression

promotes its robustness in case of highly dimensional data.

The authors of [14], [21] reported high predictive performance

of SVR applied to time series forecasting. In case of SVR,

MIMO strategy is based on multivariate SVR [23]. Finally,

artificial neural networks attract researches and practitioners

from various domains [16], [17]. One of the reasons for that is

the ability of ANNs to model complex relationships between

the input data in such fashion that does not require direct

feature engineering. For more suggestions on how to combine

these forecasting methods [17], [24] or use them in the multi-

scale fashion we refer the reader to [9], [25], [5], [26], [27].

III. PROBLEM STATEMENT

Consider a large set of time series D = {s(q)| q =

1, . . . , Q}, where each real-valued time series s

s = [s1, . . . , si, . . . , sT ], si = s(ti), 0 ≤ ti ≤ tmax

is a sequence of observations si = s(ti) of some real-valued

signal s(t). Each time series s(q) has its own sampling rate

1/τ (q):

t
(q)
i = i · τ (q).

The task is to obtain forecasts ŝ(ti) of s ∈ D for ∆tr <

ti ≤ Tmax + ∆tr, given the set D (see Fig. 1). The forecasts ŝ

should minimise symmetric mean absolute percentage error:

SMAPE(s, ŝ) =
1

r

r∑
i=1

2|si − ŝi|
|si + ŝi|

. (1)

Here and throughout this paper we assume that each time

series are standardized.

A. Design matrix

We consider the forecasting problem as the multivariate

regression problem, where target variables are the vectors of

lagged values s(ti) of all the time series s ∈ D.

Let x∗ denote rows of the design matrix X∗ for the regres-

sion problem. Each vector x∗ = [x|y] collects all the time

series over the time period ∆tp (Fig. 2), which stands for the
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Figure 1: Illustration of the procedure of design matrix com-

position.

t, continuous timeyixi
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∆tiFigure 2: Illustration of the procedure of design matrix com-

position.

local prehistory. The vector x∗ includes samples from previous

history of time series from D as well as any derivatives or

generated features. We describe the types of generated features

in Section IV.

The design matrix X∗ for the multiscale autoregressive

problem statement is constructed as follows. Let s(q)i denote

the i-th segment of the time series s(q)

[x
(q)
i |y

(q)
i ] = (2)

s(q)(ti −∆tr −∆tp), . . . ,︸ ︷︷ ︸
x
(q)
i

s(q)(ti −∆tr), . . . , s
(q)(ti))︸ ︷︷ ︸

y
(q)
i

],

where s(q)(t) is an element of time series s(q). To con-

struct the design matrix, select ti, i = 1, . . . ,m from G =

{t1, . . . , tT } such that segments si = [xi|yi] cover time series

s without intersection in target parts yi:

|ti+1 − ti| > ∆tr. (3)

f train
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xi
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Figure 3: Forecasting as regression problem.

Following (2) and (3), extract segments [x
(q)
i |y

(q)
i ], i =

1, . . . ,m from all time series s(q) ∈ D and form the matrix

X∗ =

 x
1×n

y
1×r

X
m×n

Y
m×r

 = (4)


x
(1)
m . . . x

(Q)
m y

(1)
m . . . y

(Q)
m

...
. . .

...
...

. . .
...

x
(1)
1 . . . x

(Q)
1 y

(1)
1 . . . y

(Q)
1

 .
Denote a row from the pair Y,X as y,x and call these

vectors the target and the features.

Now we are able the regression problem as follows:

ŷ = f(x, ŵ), ŵ = arg min
ŵ

S
(
w|f(w,x),y

)
. (5)

Here the error function is given by SMAPE (1) for each

segment [xi|yi], averaged over all segments i = 1, . . . ,m in

the test set:

S
(
w|f(w,x),y

)
=

r

m

m∑
i=1

SMAPE(yi, f(xi,w)).

IV. FEATURE GENERATION

Denote the generated feature vector as φ. This vector con-

sists of concatenated row-vectors φ = [φ(1), . . . ,φ(Q)], which

corresponds to time series local histories s = [s(1), . . . , s(Q)],

modified with set of transformations G. The elements g : s→
φ of this set are listed below. The augmented feature set φ

includes

1) the local history of all time series themselves,

2) transformations (non-parametric and parametric) of local

history,

3) parameters of the local models,

4) distances to the centroids of local clusters.

A. Transformations of local history

We use non-parametric and parametric functions to generate

features. The purpose of this block of features is to introduce

nonlinearities into the feature space of regression problem (5).

The parametric procedure involves two optimization prob-

lems. The first one fixes the vector b̂, collected over all

the primitive functions g = g(b, s) ∈ G, which generate

features φ:

ŵ = arg min
w

S
(
w|f(w,φ),y

)
, where φ = g(b̂, s).



The second one optimizes the transformation parameters b̂

given the obtained model parameters w

b̂ = arg min
b
S
(
b|f(ŵ,φ),y

)
.

This parametric feature generation procedure repeats these

problems until vectors ŵ, b̂ converge. The initial values of

the parameters b are assigned empirically.

B. Convolutions, statistics and parameters of local history

This block of feature generation functions includes convo-

lutions, time averaging and differencing, and basic statistics

of each time series, such as mean and standard deviation,

minimum and maximum of the input x. The features from

these part can be seen as applying Haar’s wavelet transform

to each segment [8]. Motivation for this comes from assuming

the multi-scale nature of the time series: complex signals may

be governed by essentially different processes at various time

scales. Averaging of the time series allows to obtain more

coarse-scaled time series, while differencing the time series

provides a more detailed, fine-scaled version of the time series.

C. Parameters of local history forecast

For the time series s construct the Hankel matrix [28] with

a period k and shift p, so that for s = [s1, . . . , sT ] the matrix

H∗ =


sT . . . sT−k+1

...
. . .

...

sk+p . . . s1+p

sk . . . s1

 , where 1 > p > k.

Reconstruct the regression to the first column of the ma-

trix H∗ = [h,H] and denote its least square parameters as

the feature vector

φ(q) = arg min ‖h−Hφ‖22. (6)

For the time series s(q), q = 1, . . . , Q use the parameters φ(q)

as the features.

D. Distances to centroids of local clusters

This procedure applies the kernel trick to the time series. For

given local history time series x
(q)
i , q = 1, . . . , Q compute k-

means centroids c(q)p , p = 1, . . . , P . With the selected k-means

distance function ρ construct the feature vector

φ
(q)
i = [ρ(c

(q)
1 , s

(q)
i ), . . . , ρ(c

(q)
P , s

(q)
i )] ∈ RP

+. (7)

This k-means of another clustering procedure may use internal

parameters, so that there are no parameters to be included to

the feature vector or to the forecasting model.

Algorithm 1: Initial train-test splitting procedure.

Data: Object-feature matrix X∗ ∈ Rm×(n+r). Train to

test ratio α ∈ [0, 1].

Result: Train and test, X∗
train, X∗

test.

Set train set and test set sizes:

mtrain = bα ·mc, mtest = m−mtrain ;

Decompose matrix X∗ into train and test matrices X∗
train,

X∗
test:

X∗ =

 Xtest
mtest×n

Ytest
mtest×r

Xtrain
mtrain×n

Ytrain
mtrain×r



V. TESTING PROCEDURE

The algorithm below describes the procedure used to evalu-

ate the forecasting errors within the proposed framework given

the model f , data matrix X∗ ∈ Rm×(n+r) and fixed parameters

train to test ratio α, minimal sample (test) size mmin. This

procedure involves creation of design matrix (4), generation

of augmented feature description φ and, since it is likely to

be redundant, dimensionality reduction. Here we use principal

component analysis (PCA) and nonlinear PCA [29].

1) Create design matrix X∗ according to (4) from D.

2) Split matrix X∗ into train and test matrices X∗
train and X∗

test

according to the train-test splitting procedure 1

3) Augment X∗
train with generated features φ

4) Reduce dimensionality of X∗
train

5) Optimize hyper parameters of the model f , using X∗
train

6) For k in {1, . . . ,mtest −mmin} repeat:

• define X∗
train,i as (i+ 1)-th to (i+mmin + 1)-th rows

of X∗
test and x∗

val,i as the i-th row of X∗
test

X∗
test =


. . . . . .

xval,i
1×n

yval,i
1×r

Xtrain,i
mmin×n

Ytrain,i
mmin×r

. . . . . .


• apply feature transformation to X∗

train,i, X
∗
val,i

• train forecasting model f(x, ŵi), using X∗
train,i



Table I: Regression models.

Model name Hyper parameters

Baseline method: ŝi = si−1 None

Multivariate linear regression
(MLR) with l2-regularization

Regularization coefficient: 2

Support vector regression with
multiple output (MSVR)

Kernel type: RBF, p1: 2, p2: 0, γ:
0.5, λ: 4

Artificial neural network (ANN).
Feed-forward ANN with single
hidden layer

Hidden layers size: 25

Random forest (RF) Number of trees: 25 , number of
variables for each decision split: 48

• obtain vector of residuals ε = yval,i − f(xval,i, ŵi)

• compute forecasting quality:

SMAPE(i) =
1

r

r∑
t=1

2|εt|
|2(yval,i)t − εt|

;

7) Return SMAPE, averaged over data splits:

Error =
1

mtest −mmin

mtest−mmin∑
i=1

SMAPE(i).

The models that we use are listed in the table I along with the

optimized hyper parameters.

VI. COMPUTATIONAL EXPERIMENT

This section presents the results of computational validation

of the proposed framework.

A. Datasets

The computational experiments demonstrated in this section

are based on the Energy-Weather data set [11]. The dataset

consists of the Polish electricity load time series and weather

time series in Warsaw (Longtitude: 21.25, Latitude: 52.30,

Elevation: 94). Energy time series contain hourly records

(total of 52512 observations), while weather time series were

measured daily and contain 2188 observations. The multiscale

time series correspond to the period of 1999 to 2004. The

results observed on this data set are illustrative of the proposed

framework since the data set contains the time series that are

both multiscale and have various nature.

The Energy-Weather data set was used to generate several

data sets with artificial inserted missing values. The ratios of

missing data are 0.01, 0.03, 0.05 and 0.1.

B. Experimental results

Fig. 4 displays a range of target variables y generated for

the Energy-Weather data set.

Fig. 5 demonstrate the examples of forecasts of individual

time series, obtained within the proposed framework. Here the

design matrix was augmented with the generated features and

PCA was applied to select a subset of features.

Table II lists forecasting errors for the proposed feature

generation strategies applied to time series from the original

Energy-Weather data set. The errors were computed following

the testing procedure, detailed in the section V. After the

multiple forecasts were obtained, SMAPE was computed for

each time series separately. Multirows labeled “Features” unite

results of each model for the particular feature set. The tested

options are:

• “History” corresponds to the standard regression-based

forecast with no additional features.

• Each multirow from “SSA” to “NW” corresponds to a

particular feature set added to historical features sepa-

rately from other generated features. Here “SSA” stands

for parameters of local approximation (6), “Cubic” stands

for coefficients of cubic spline approximation, “Conv” —

for multiscale features and statistics listed in section and

“Centroids” — for the feature set defined by (7).

• “All” stands for all feature generation strategies applied

to the dataset, with no feature selection.

• “PCA” and “NPCA” present the results of applying PCA

and NPCA after all generation strategies were used.

The top row of Table II lists results of the baseline method:

for each time series the next forecasted value is predicted

with the most recent observed value. As can be seen from

the table, the forecasting quality generally improves for all

the time series, even though the weather data is unlikely to

depend on the energy consumption and the multiple all-on-all

regression could lead to increased errors. The errors of the

data sets with missing values increase as the ratio of missing

data gets higher but the general pattern does not change.

According to our results the feature sets differ very slightly

among feature generation strategies and generally demonstrate

poorer performance than the historical features, though this is

not always the case. We also note that there is no single best

or worst combination of model, feature generation and feature



(a)

Figure 4: (a) Target variables of the design matrix composed

of the time series from the Energy-Weather data set. (b)

Forecasting results for Energy-Weather.

selection strategy for all the time series. This motivates us to

direct our further research to ensembles of learners.

VII. DISCUSSION AND CONCLUSION

In this paper we have suggested a framework for multi-

scale time series forecast. The proposed framework employs

regression-based approach combined with feature generation.

We have found that even for such naive approach the results

are still better then those of the baseline method. Though

the results are somewhat discouraging, we expect further

improvement associated with application of mixtures of ex-

perts [30], ensembles of weak learners, where each learner

is relevant to some subspace of the feature space. For this

reason we introduce such feature generation strategies, based

on local approximation parameters and distances to centroids:

these kinds of features have proven efficient in time series

classification problems [31].
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SMAPE Data Energy Max T. Min T. Precipitation Wind Humidity Solar

Features Models test train test train test train test train test train test train test train

History Baseline 0.1948 0.2095 0.1040 0.1351 0.1047 0.1141 1.2034 1.2908 0.4581 0.4600 0.1803 0.1918 0.4641 0.5184

History

MLR 0.130 0.143 0.090 1.265 0.395 0.239 0.673 0.108 0.079 0.057 1.164 0.358 0.168 1.247
MSVR 0.280 0.377 0.227 1.243 0.415 0.369 0.780 0.025 0.055 0.033 1.013 0.114 0.059 0.318
RF 0.137 0.180 0.111 1.306 0.417 0.257 0.473 0.047 0.043 0.030 1.031 0.214 0.102 0.283
ANN 0.157 0.180 0.102 2.050 0.596 0.281 1.526 0.089 0.102 0.076 1.418 0.358 0.146 0.661

SSA

MLR 0.130 0.144 0.090 1.349 0.394 0.239 0.929 0.108 0.079 0.057 1.161 0.358 0.169 1.117
MSVR 0.317 0.413 0.242 1.237 0.422 0.397 0.837 0.029 0.067 0.040 1.016 0.113 0.060 0.351
RF 0.137 0.181 0.112 1.298 0.438 0.250 0.465 0.047 0.044 0.031 1.013 0.212 0.102 0.280
ANN 0.171 0.209 0.163 4.207 0.464 0.257 1.077 0.120 0.100 0.087 2.289 0.380 0.190 0.546

Cubic

MLR 0.130 0.143 0.090 1.316 0.395 0.239 0.657 0.108 0.079 0.057 1.164 0.358 0.168 0.668
MSVR 0.280 0.378 0.227 1.243 0.415 0.369 0.781 0.025 0.055 0.033 1.015 0.114 0.059 0.318
RF 0.137 0.188 0.112 1.289 0.427 0.259 0.489 0.047 0.045 0.031 1.017 0.216 0.105 0.288
ANN 0.162 0.232 0.125 2.905 0.599 0.337 1.171 0.103 0.094 0.062 6.119 0.416 0.146 0.523

Conv

MLR 0.126 0.146 0.090 1.457 0.397 0.241 0.762 0.103 0.078 0.057 1.162 0.355 0.168 0.637
MSVR 0.298 0.395 0.234 1.242 0.417 0.383 0.811 0.026 0.058 0.035 1.068 0.113 0.060 0.331
RF 0.139 0.211 0.124 1.303 0.432 0.265 0.480 0.049 0.045 0.032 1.013 0.219 0.106 0.274
ANN 0.183 0.205 0.205 2.353 0.562 0.303 1.586 0.114 0.110 0.107 1.646 0.382 0.168 1.507

Centroids

MLR 0.136 0.164 0.108 1.356 0.420 0.260 0.652 0.097 0.075 0.052 1.213 0.346 0.163 0.892
MSVR 0.327 0.424 0.247 1.236 0.424 0.408 0.849 0.030 0.069 0.042 0.974 0.113 0.061 0.356
RF 0.137 0.181 0.109 1.295 0.424 0.261 0.498 0.047 0.043 0.030 1.021 0.210 0.105 0.285
ANN 0.189 0.277 0.118 2.960 0.464 0.306 0.930 0.122 0.090 0.079 1.551 0.356 0.187 0.481

NW

MLR 0.130 0.149 0.094 1.322 0.411 0.238 0.672 0.114 0.084 0.063 1.194 0.377 0.184 0.619
MSVR 0.293 0.383 0.228 1.247 0.419 0.375 0.796 0.022 0.048 0.030 0.929 0.130 0.069 0.293
RF 0.140 0.207 0.129 1.304 0.431 0.275 0.483 0.048 0.044 0.032 1.026 0.219 0.106 0.285
ANN 0.186 0.193 0.115 6.417 0.494 0.275 1.033 0.124 0.097 0.074 1.358 0.427 0.194 1.264

All

MLR 0.132 0.140 0.100 1.410 0.418 0.244 1.514 0.105 0.082 0.062 1.192 0.369 0.182 0.768
MSVR 0.323 0.415 0.242 1.238 0.424 0.399 0.845 0.027 0.064 0.038 1.013 0.117 0.061 0.346
RF 0.139 0.220 0.134 1.292 0.439 0.294 0.495 0.048 0.046 0.033 1.016 0.221 0.106 0.270
ANN 0.208 0.251 0.233 5.489 0.511 0.323 1.063 0.145 0.110 0.108 2.916 0.359 0.176 2.007

PCA

MLR 0.133 0.159 0.110 1.272 0.422 0.242 4.674 0.115 0.091 0.068 1.234 0.383 0.189 0.692
MSVR 0.321 0.412 0.241 1.238 0.423 0.397 0.841 0.027 0.063 0.037 1.030 0.118 0.061 0.345
RF 0.185 0.236 0.155 1.298 0.453 0.311 0.603 0.062 0.053 0.038 1.022 0.225 0.113 0.299
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