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AHHOTAIIN S

Temaruaeckoe MojieIMpoOBaHe, 9ACTO UCIIOIB3YEMOE JIJIsi CTATUCTUYIECKOr0 aHaJ 38 TEKCTOB,
aKTUBHO pasBuBaetcs mocjieanne 20 jger. BepogTHoCTHOE TeMaTHIecKoe MOJIe/JIMPOBaHIe IIPe/I-
Ha3HAYEHO JIJIsI OIpEJIe/IeHIsT TeM JIOKyMeHTOB. OCHOBHOM I1€JIbI0 TEMATUYIECKOIO MOJIE/IMPOBa-
HUS sIBJISIETCS IIOHMMAaHUE U CUCTEeMaTH3allds COJIep:KaHUusA OOJIBINTNX KOJIIEKIU JIOKYMEHTOB.
TemaTudeckue Mojie/i TaKKe MOT'YT ObITh PUMEHEHBI JIJIsi PA3HOPOJIHBIX JAHHBIX TAKMX, KaK
n300parKeHusl, BUIEO WM CUTHAJIBL.

AKryasbHas HaydHas JIATEpaTypa II0 TeMaTHIeCKOMY MOIEJIMPOBAHUIO BKJIIOYAET B cedsd
COTHH MOJIeJieil, aIallTUPOBAHHBIX JIJIA peasibHbIX 11podseM. Ho Hanbosiee oy iapHbl MOJIEIb Be-
POSITHOCTHOT'O JIATEHTHOI'O CEMaHTUYIECKOr0 aHaJM3a M MO/IeJIb JaTeHTHOro pa3Mernerus upu-
XJIe. DTH OMKCHIBAIOT B3AMMOJICHCTBUS MEXKJIy MapaMi 0ObeKTOB JIByX THIIOB (MOJIAJILHOCTEN).
st paboThl ¢ OGOJIBIITUM YUCIOM MOJIAJbHOCTEH MCIOIb3YeTCsT MHOTOMO/IaJIbHOE TeMaTUIeCKOe
MOJIE/TNPOBAHUE.

JlanHoe uccyeoBanme penaeT IpodIeMy, 3aKII0YaIONyI0Cd B TOM, 9TO CYIIECTBYIOIIUE J1a-
TEHTHBIE TeMaTUIeCKIEe MOIE/IN OIMMCHIBAIOT IIOIAPHOE B3anMojieiicTBre MexK 1y oobekTamu. O1-
HaKO Ha IPaKTHKe B3aMMOJIEHCTBUsI MeXK/1y oObeKTaMu 0Oojiee CJIOXKHbIe, U HNPHUOJIUKEHNE HX
HaOOPOM TIOHAPHBIX B3aMMOIAEHCTBUIl NPUBOANT K mHoTepe 3HaunMoil mHMopmarun. [1aBHbIM
BKJIQJIOM JAHHOT'O HUCCJIEIOBAHUS sIBJIsIeTCsT 000OIIEHNne CYIIECTBYIONUX TEeMAaTUIeCKUX MO/Ie-
Jieit Ha cjydail C/I0KHOCTPYKTYPUPOBAHHBIX JAHHBIX, KOTOPbIE MOT'YT OBITH IIPEJICTaBJICHBI B
Bujie runeprpada. IIpemiokeHnbIit aaropuT™ /s paccMaTpUBaeMoro o000IeHnsT Ha3bIBAETCsI
TransARTM u peasmzosan B npoekte BigARTM, npegocraBieHHBIM B CBOOOIHOM JIOCTYIIE.

OKCIEePUMEHTHI ObLIN IIPOBEIEHBI KaK Ha MOJIE/JIbHBIX JAHHBIX, TAK U Ha PEAJbHBIX. YCTOM-
YUBOCTH IIPEJJIOKEHHOIO METOa NCCIeI0BaHa Ha MOAEIbHBIX JaHHBIX. TransARTM Ha Momesns-
HBIX JIAHHBIX JOCTUTAET BBICOKOI'O KadecTBa ObICTpee, YeM JPyTrue pacCMOTPEHHbIE MOJIENH, a
TaKKe JOCTUTAET JIYUIINX Pe3yIbTaTOB Ha OTHOCUTEIHHO MAJIbIX 00beMax BHIOOpKH. MHOroMo-
JaJibHas U IIpeJiyIoyKeHHast rurieprpadoBasi TeMaTHIecKe MOJIC/IU IIPUMEHEHBI K 3a/1ate ITOCTPO-
eHIsT PEKOMEH,IaTe/IbHOIM CHCTeMbl Ha peabHbIX JaHHBIX. TransARTM mokasbiBaeT 3HAUNTEH-
HO JIy4IlIue Pe3yJIbTaThl, YeM PacCMOTpeHHas 6a30Bas MO/Ie/ib, OCHOBAHHAsI Ha PEKOMEHIAIIN

HanboJiee IIOIIYJIAPDHBIX TPEKOB Cpeau HE ,ZLO6&BJ'I€HHI)IX paHee.
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1. INTRODUCTION

1.1. Background

At present human society generates massive amounts of complicated structured information
including digital collections of text documents, social media data, ad networks, recommendation
systems, etc. These informational environments generate transaction data between objects of
multiple types (modalities). The objects can be represented as text documents, word or key
phrases, users, advertisements, products or services, etc. Examples of transactions are of the
relationship or interaction between objects: a user created (read, rated, “liked”) a document
clicked on an ad, a word was found in a document, in an ad, in a user’s request, etc.

A common feature for many approaches is an assumption that these objects have vector
descriptions that correspond to topic interests of people, i.e. they describe semantics of these
objects. Semantics of objects is latent but indirectly manifested in texts related to objects or in
data about the joint use of objects by people. The identification of latent semantic descriptions
of objects is the essence of topic modeling. Knowledge of these descriptions allows to solve a lot
of data analysis tasks, to create qualitatively new Internet services. In particular, topic modeling
methods allow to carry out a semantic information search, to build taxonomies or "road maps”
of subject areas, to make recommendations, targeting advertising, etc. Topic models are also
used for non-textual and heterogeneous data that can be images, audio or video signals.

Conventional latent topic models describe only pairwise interaction between objects. But in
real word problems relationships between objects are more complex, and considering them as a
set of pairwise interactions will lead to loss of valuable information. The goal of this research
is to develop a topic model that considers all complex interactions among objects of different

modalities.

1.2. Literature Review

Methods of topic modeling have been developing over the past 20 years. Topic modeling is
applied to determine trends in news streams or scientific papers [1, 2], for multilingual infor-
mation retrieval [3], in analysis of social network structures [4,5], in problems of classification,

clustering and categorization of documents [6], for topic segmentation of texts [7]. Numerous



ideas, models and applications of topic modeling are described in the survey [8].

Classical problems use only two modalities: documents and words. Probabilistic topic mod-
eling [9, 10] methods allow to construct for each word and each document a topic profile — a
discrete probability distribution on a set of latent topics. Different computational methods of
low-rank matrix expansions can be used to solve this problem. Similar approaches are applied
in recommendation systems and collaborative filtering task [11,12] with the only difference that
other modalities — users and items — are used instead of documents and words. A notable
trend is consolidation of data about content and use of objects [13].

Large collections of complex structured and heterogeneous data come from web-sources.
Documents usually contain not only words but also links, images, a lot of metadata containing
authors, date-time stamps, etc. Social networks provide an example of complex data struc-
ture [12,14-16]. Important information is not only a text of a message but also its meta-
data including time count, an author of the message, sender’s and recipient’s geolocation,
socio-demographic data, opinions of other users about this message, etc. In the examined
case, there are relationships not only between pairs of objects of different modalities but also
between triples or any number of objects. For example, (u,w,d) — user u wrote word w in
message d. At the same time for topic modeling pairwise interrelations between elements of
various modalities remain important. For example, a document is associated with its creation
time, an author is associated with geolocation, an advertising banner is associated with words
of an advertising text, etc. Therefore, the actual problem is a generalization of multimodal
topic modeling [17] methods for analysis of transaction data that includes pairs, triples or more
complex interactions.

An adequate mathematical model of transaction data representation is a hypergraph. A
hypergraph is a generalization of an ordinary graph which edges can connect not only two vertices
but any number of vertices. So, vertices of a hypergraph are objects of different modalities, and
an unknown hidden topic profile is associated with each vertex. There are transactions between
objects that are described by hyperedges. Representation of data as hypergraph improves results
of recommendation systems [18,19], classification and clustering [20].

In the current research the problem of restoring topic profiles of objects from transaction
data is stated. It is assumed that probability of a transaction is determined by a similarity

degree of included topic profiles of objects. Mathematical models that solve this problem differ



by the way of this assumption’s formalization. In this research the hypergraph extension of
ARTM approach [21] is developed, it allows describe more complex interactions of objects than
pairwise. The algorithm for the proposed extension is called TransARTM and implemented as
a part of the BigARTM open source project.

The experiments were carried out both on simulated transaction data and real data. On
simulated data stability of the proposed method was investigated. It was shown that the
considered extension takes into account more complex relationships among objects that leads
to a significant increase in results. The million playlist dataset (MPD!) is used as real data for

the problem of playlists extension.

1.3. Potential impacts and novelty

Many real world problems appeal to complex structured data with non-pairwise interactions
between objects. Considering such complex relationships as a set of pairwise interactions leads
to loss of valuable information. For such data conventional topic models are not suitable.
The main contribution of this paper is generalization of topic models to the case of complex
structured data. The proposed model takes into account the relationships among any number
of objects and finds topic profiles of all objects regardless of its modality.

The developed in this paper topic model is supposed to be used for transaction data in
financial organizations. Transaction data analysis is currently considered by some major banks
as an important step towards targeting financial services and providing new services in the field
of industry consulting. Therefore, it becomes relevant to create tools for analysis of transaction
data such that these instruments can give a general understanding of financial flows structure
within the industry. The hypergraphic topic model allows to restore latent information about

company activities types on observed transaction data.

The rest of this paper is organized as follows. In section 2 general problem statement of
topic modeling, ARTM approach, basic models PLSA and LDA, multimodal topic model are
described. In section 3 multimodal topic model on hypergraph with generalized EM-algorithm
is introduced. Section 4 is devoted to experiments on both simulated (see subsection 4.1) and
real data (see subsection 4.2). In this section results of conducted experiments are presented.

Section 5 concludes the results and contribution of this research.

!Million Playlist Dataset, official website hosted at https://recsys-challenge.spotify.com/
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2. TOPIC MODELING

In this section a general problem statement of probabilistic topic modeling is described.
Classic topic models PLSA and LDA are introduced as well as multimodal topic models. The
latter two models are considered as an extension of PLSA. In addition, an approach to solve
a problem of a stochastic matrix factorization using additive regularization of topic models

(ARTM) is discussed.

2.1. Problem Statement

Consider collections of documents D and let T be a finite set of topics and W be a dic-
tionary or a finite set of terms. Each document d € D is represented as a sequence of

terms wy, ws, ..., w,, € W where ng is a length of a document d. Assume that each

d
occurrence of a term w in a document d is associated with some topic ¢ € 7. Taking into
account the bag-of-words hypothesis suppose that term order in a document is not important
and does not affect topic of a document. Therefore, consider only a number of occurrences n4,

of each term w in a document d. Define a probabilistic topic model of text generation using the

law of total probability and the hypothesis of conditional independence:

plwld)=> plw|t,d)p(t|d)=>> pw|t)pt|d) = outbra, (1)
tel teT teT
where 0,4 is a distribution of topics in a document d and ¢, is a distribution of terms in topic ¢.
Matrices © = (014) 1, p and ® = (py)yy« 7 are used to denote model parameters.
The topic modeling problem goal is to find model parameters for which the model (1) gives
a close approximation for frequency estimations of conditional probabilities p(w | d) = ngy/nq
for the given collection of documents.
The equation (1) can be rewritten in matrix form if the following way. The left part of
the equation contains known matrix of term frequencies F' = (p(w|d))y . p- The right part is
product of two unknown matrices ® and ©. Therefore, the topic modeling problem is equivalent

to the stochastic matriz factorization problem.



2.2. Additive regularization for topic models

The stochastic matrix factorization problem is an ill-posed since it has an infinite number
of solutions in a general case. In fact, if a pair ® and © is a solution, then a pair (®S) and
(S7'@) is also a solution for all non-singular matrices S for which the matrices ®S and S~'©
are stochastic.

There is a general approach for solving ill-posed inverse problems called regularization. When
an optimization problem is under defined, an additional criterion (regularizer) is added to the
main criterion taking into account the specifics of the problem and knowledge of the subject
area.

Additive reqularization for topic models (ARTM) [21] is based on maximizing a linear com-

bination of a main objective L and reqularizers R;(®,©0) with non-negative coefficients ;:
L(®,0)+R(P,0)— max, where R($,0)= Zn (2)

In the paper [21] authors showed that ARTM allows to improve topic interpretability along
with model sparsity and common parlance words allocation [22]. It also makes possible to discard
dependent and uninformative topics [23], use specific dictionaries to highlight highly specialized

topics, in particular, for study of inter-ethnic relations using social networks data [24].

2.3. Topic Models PLSA and LDA

Probabilistic Latent Semantic analysis (PLSA)
In probabilistic latent semantic analysis [9] estimation of topic model parameters is done by

maximizing the likelihood of documents collection:

p(D,®,0)=[[p(diw)=[] [Tp(dw)=]] [T ptwld)=p@d > —max  (3)
i=1 deD wed deD wed '
After taking the logarithm:

Inp(D, P, 0) lan d;, w;) —ZZlnp (w|d) + anlnp(d) — max (4)

deD wed deD



Taking into account (1) and dropping the last term the maximization problem is obtained:

L(D,®,0) ZZlnp (wld)= Zanwan¢wtétd—>max (5)

deD wed deD wed teT

with the constraints of non-negativity and normalization:

0iq =0, Z@td =1 and @, >0, Z Ouwt = 1. (6)
teT weW

The log-likelihood maximization problem (5), (6) can be solved using expectation-mazimization
algorithm (EM-algorithm). It consists of random model parameters initialization and two steps
that are repeated in a loop.

At the E-step conditional distributions for latent topics p(t|d,w) are calculated for each
term w in each document d according to the Bayes rule for current values of model param-
eters ., 0iq- At the M-step, on the contrary, a new approximation of model parameters is
calculated based on conditional probabilities for topics p(t |d, w). The formulas for the E and M
steps can be found in [25].

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) topic model was proposed to deal with over-fitting in
PLSA. LDA model is based on an assumption that 6, and ¢; columns are random vectors from
Dirichlet distribution with parameters o € RI”l and g € R"! respectively.

For LDA model the maximization problem also can be written:

L(D,®,0)=>" naund_ @ubu+In][Dir(es;s) [[ Dir(0s; o) =

deD wed teT teT deD
= E E N 1N E Ouwtbra + E E w— 1) In oy + E E (ay — 1) ln@td—nna@X
deD wed teT teT wew deD teT

R(<I>,@)

(7)

Now it is clear that LDA model is the PLSA model with constrained parameters ®, ©O.
Moreover, if §,, = 1 and oy = 1, a prior Dirichlet distribution coincides with uniform distribution

and LDA model corresponds to PLSA [26].
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2.4. Multimodal Topic Models

PLSA and LDA models use only one modality of terms (usually, words). Multimodal topic
model describes documents that contain not only text but some additional metadata that helps
to identify document topic.

Each type of metadata forms a separate modality with its own dictionary. Examples of
non-textual modalities are authors, time stamps, geodata, genres, categories, classes, etc. Each
document is considered as a universal container that comprises tokens of various modalities.

Let M be a set of modalities. As noted, each modality has its own dictionary of to-
kens W,,,, m € M. These sets are disjoint. Their union is denoted by W as previously. Modality
of a particular token w € W is denoted by m(w).

Topic model of modality m is similar to the model (1):

plwld) =Y p(w|t)pt|d) = oubu, wEW,, deD. (8)
teT teT
Each modality m responds to a stochastic matrix ®,, = (gowt)meT. Set of matrices ®,,
forms W xT matrix . Assume that topic distribution for each document is common to all
modalities.
Multimodal model is constructed by maximizing a linear combination of the modalities

log-likelihood and regularizers with weights:

Z Tmz Z N angpthtd + R(®,0) — I%%X 9)

meM deD weWy, teT
Z Pwt = 1 ngt O m e M Z th = 1 etd 0 (10)
weWn, teT

where weights 7,, help to balance modalities according to their importance and frequency
of occurrences in documents. Optimization problem (9), (10) can be solved using a regularized

EM-algorithm [17,27].
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3. MULTIMODAL TOPIC MODELS ON
HYPERGRAPHS

3.1. Problem Statement

Topic models on hypergraphs are further generalization of multimodal models.

Consider the case when observed data can be represented as a hypergraph. Define hypergraph
I'=(V, E) which is determined by a set of vertices V' and set of edges £ where each edge e € F
is a subset of vertices e C V' that corresponds to a transaction (interaction or relation). An
example of hypergraph one can find in Figure 1.

For example, in the Internet advertising transaction ”user u clicked on an ad b on a page d”
is an edge of three vertices e=(u, d,b). In social network transaction ”user v wrote a word w in a
blog d” is an edge of three vertices e=(d, u, w). In recommendation system transaction ”a user u
rated a movie f in situational context s” is an edge of three vertices e = (u, f, s). Moreover, in
these examples an interaction of three vertices can not be reduced to pairwise interactions. On
the contrast, in music recommendation system transaction ”a track r by an artist a refers to an
album d that was published in year y” is an edge of four vertices e = (7, a, d, y), however, it still
may be represented by a set of pairwise relationships (d,r), (d,a), (d,y).

Each vertex v € V' has modality m = p(v) that belongs to a given finite set of modalities M.

A set of all vertices consists of disjoint subsets of nodes of different modalities:

V=|]|Vm = Vm={veV:uw)=m} (11)

meM
Each edge e € E has a transaction type k= r(e) from a given finite set K. A set of all

transactions (edges of a hypergraph) is represented by disjoint subsets in the following way:

E=||E. Ei.={c€E:x(e)=k} (12)
keK
For example, in conventional topic models only two modalities are considered: documents D
and terms W, see 2.3. There is also only one transaction type: an occurrence of the term w in
a document d that is associated with an edge e = (d, w). In this case the graph is bipartite.

Each type of edges k corresponds to a discrete probability space €, C 2V x T with a prob-

12



M 1is a set of modalities:
ooaA

K is a set of edge types:

IS PR

T is a set of topics:
sse0e®

Figure 1: Example of the hypergraph with vertices of 3 different modalities and 5 edge types.

ability function py: Q — [0,1]. Tt is assumed that edges of the hypergraph e € Ej, are inde-
pendent observations (e, t) € Q and each edge is sampled n. times, and every entry of edge
is associated with an unobserved (latent) topic t € T. Probability distribution is normalized
within each modality: > .\, pr(v)=1and ) ., pr(v|t)=1.

Usually topic models are asymmetrical. Documents are associated with conditional distri-
butions p(t|d), other modalities with conditional distributions p(v |t). Therefore, documents
are allocated in particular modality which is known as a container. Asymmetry makes building
the model easier.

Turning on to generalization of the asymmetric model for the case of hypergraph assume
that for each type of edges k first modality is a container (for example, document or user).
Denote by D a set of all container vertices in a hypergraph and by (d, z) € Ej an arbitrary edge
of type k where x is a set of all other vertices except d.

Probabilistic model of transaction data generation is based on two basic assumptions.

Firstly, suppose that the distribution of the topics in container vertex d does not depend on
edge type pr(t|d) =p(t|d) for all k € K. This is a generalization of conventional multimodal
topic modeling assumption that topics distribution for the document is equally valid for all
modalities. Simultaneously, vertices distribution for the topic py(v|t) is not assumed to be the
same for all edge types. For example, the distribution of words used in texts on web-pages,
custom queries and ad banners can significantly vary for one topic. An additional requirement
that these distributions are similar can be posted with a help of regularization.

Secondly, introduce a hypothesis of conditional independence of vertices that are a part of

13



edge (d,x):
pr(x | t) =] pr(v|t). (13)

(USH
Under the made assumptions generation process of each edge (d,x) € Ej consists of two
steps. Firstly a topic ¢ from a distribution p(t|d) is generated. Then a set of vertices z C V is
generated, and each vertex v € x of modality m is generated according to its distribution pg(v | t)
over a set V,,.
Mathematical model expresses the probability of hypergraph edges occurrence using a dis-

tribution associated with vertices:

pr(d, ) = pi(d) pi(a | d) = pi(d) Y pr( [ d,t) pr(t | d) = pi(d) Y pr(a [ 1) pilt] d)=
= pi(d) > _p(t|d) [[ e (0 [6) = (@) Y 0ua [ [ unn-

The parameters of this model are a conditional probability of vertices in topics @, = pr(v | 1)
that is normalized for each modality v € V,,,, and a conditional probability of topics in the
containers 0,4 = p(t| d). Probability px(d) is estimated from observed data and does not depend

on parameters of the model:

= > ndx/ > e (15)

(d,z)EE}, e€E),

Therefore, considered hypergraphic topic model is defined by:
e the oriented hypergraph I' = (V| E),
e the set of modalities M,
e the decomposition of the vertices set into subsets of different modalities p: V- — M,
e the set of edge types K,
e the decomposition of the edges set into subsets of different edge types x: £ — K,
e the set of topics T,
e the probability space {2, with the distribution p; for all k € K,
e the model parameters @,y = pr(v|t) and 0,y = p(t | d).
Hypergraphic topic model describes a wide class of topic models mentioned in 3.4. The

subcases of the proposed model are described in 3.4.

14



To optimize model parameters the principle of maximum likelihood for each edge type k
is applied. Therefore, the weighted sum of the log-likelihood with weights 7, is maximized

discarding terms of the form 7xn4, In py(d):

L(®,0)= Z T Z Nz lnz O:q ngvtk — max. (16)

keK  (dx)eEy teT vET

Regularizer R(®,0) is aimed to improve stability of solution. The problem of building a

topic model with constraints of normalization and non-negativity can be formulate as follows:

27 > nawlnd O] ] e+ R(@,0) - max; (17)

keK  (dx)€EE) teT vET

> o €{0,1},  @u >0, keK meM teTl (18)
VEVm

> 6uef0,1},  64>0, teT, deD; (19)
teT

Constraints (18) and (19) provide an opportunity for distributions to be equal to 0. If ¢, =0
for each v € V,,,, topic t is not involved in process of generation edges of type k with vertices
of modality m. If 6,3 =0 for all t € T, consider that a topic model is not able to describe the

content of container vertex d.

3.2. EM-algorithm

Denote non-negative valuation operator which converts an arbitrary vector (a;);c; to a vector

of probabilities of a discrete distribution is introduced in the following way:

max{a;, 0} (a:), .
norm a; = = , foralli eI, (20)
i€l > max{a;,0} > (a;),
jel jer

and if a; < 0 for all ¢ € I, suppose that norm a; = 0.
1€
Regularized EM-algorithm is used to solve the problem (17), (18), (19), E and M steps are
performed on each iteration.

On E-step for each of the observed edges (d, z) of hypergraph distribution pgq. = pr(t | d, )

15



is calculated using Bayes rule:

Phtdz = 1OTI (9td H %tk) : (21)

veET

On M-step the obtained values of auxiliary variables p;4, are used to estimate model param-

eters:
OR
Pytk — NOIM (nvtk + (Pvtk—)7 Nyt = Z [U € 37] TiNdzPtdz (22)
vEV a(;pvtk
(d,I)GEk
; gy > > 23
=norm| n — Neg = TNdzPida
td o td td 96, ) td ENdxPtd

k€K (d,x)EEy

where n., is interpreted as a total weight of edges of type k£ containing a vertex v and relevant
to a topic t, n,g — as a total weight of all edges of all types with container vertex d relevant
to a topic t.

The considered EM-algorithm adapted to large collections is described in Algorithms 1 and 2.

Algorithm 1 Fast online EM-algorithm for TransARTM.

Input: collection |J Dy split into batches Dy, b=1,..., B;
keK
Output: @, forallve Vit e Tk € K;

1: initialize p, for allv e Vit € T) k € K
2 Ny =0, Ny :=0forallveV,teT ke K;
3: for all batches Dy, b=1,...,B do
4 iterate each document d € D, at a constant matrix ®:
(Nyik) := (M) + ProcessBatch (D, @); > see Algorithm 2

5: if synchronize then

6: Ntk 1= Ntk + Ny for allv e Vit € Tk € K

7: Dotk = norm(nvtk + govtkaa—R> forallveV,,,me M,teT,k e K;
vEVm Potk

8: Nk :=0forallve ViteT ke K;
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Algorithm 2 ProcessBatch iterates d € D, at a constant .

Input: set of vertices-containers D, matrix &;
Output: matrix (R, );

1: nyr:=0forallveV,teT ke K;
2: for all d € D, do
3: initialize 0,4 := = for all t € T}

T
4: repeat
5: Priz = 1OIM (th [Le. govtk) forallt € T,k € K, (d,x) € Ey;
€

6: Mg = Y. >, TkNazPiaz for all t € T

keK (d,x)EE)
7 0, = norm (ntd + thaae—R> forallt € T}

teT td
8: until 0,; converges;

9: Tootle 1= Ttk + Z(d’z)eEk [v € 2] TkNgePrar for allv € Vit € Tk € K;

3.3. Theoretical justification

Topic t € T is called regular in a modality m € M for edge type k € K if the following

inequality is held at least for one vertex v € V,,:

OR
Ntk + @vtkw > 0. (24)
vtk

Container vertex d is called regular, if the following inequality is held at least for one
topict € 1"

OR
N + QtdaTd > 0. (25)
t

The regularity condition is not overloaded and means that the regularizer R slightly effects
on model when its partial derivative is negative. In PLSA and LDA models the regularity
conditions are held always.

If a topic t is not regular, assume that ¢, = 0 for all v € V,,,. This means that the topic ¢
is not involved in generation process of type k edges.

If a container vertex d is not regular, assume that 6,4 = 0 for all t € T'. This means that the
model is not able to describe the content of vertex-container d.

The following theorem shows that formulas of iteration process (21), (22) and (23) repre-
sent a system of equations that is equivalent to the Karush—Kuhn—Tucker conditions for the

problem (17), (18), (19).
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Theorem 1. If function R(®,O) is continuously differentiable and (¢, ©) is a local maxi-
mum of the problem (17), (18), (19), then the following system of equations for model parame-

ters Yy, 0iq and auxiliary variables pigz, nyg and ny is held:

Phtdz = 1O (etd H %tk) ; (26)

vVET
OoR
otk = N0 (nvtk + Poth 5 —— ), nok =Y [V € 2] TuNaaPraa, (27)
€V a(tpvtk
(d,x)GEk
; g >y )
—norm n Nig = TkNdzPtdx
td 2 td td 3, 90,y td = kNdazPtd
keK (d,x)E By

Proof. First of all, let’s prove the equation (21) using Bayes rule:

pe(t,d,x)  pr(z|d, ) pr(t]d)  pelz|dt)pe(t]|d)

pea =P =5 @) T mlald) S ol d ) pilt]d) 2
= norm (pe(z|d,t) pr(t|d)) = norm (pr(z | t)p(t|d)) = norm <9td H %tk> : (30)

Using Karush-Kuhn—Tucker conditions the Lagrangian of the optimization problem (17) can

be written as follows:

)= 7 > neln) Ou]]ew+R(®0) - (31)

keK  (dx)EE) teT vET

Yy ZM(Z ot — 1) Y T S M= (32)

ke K meM teT vEVm ke K meM veEV,, teT
- E #d( E Ora — 1) — E E LBt (33)
deD teT deD teT

Set the derivatives of the Lagrangian for model parameters to be zero:

0. Ora Huem\v Putk OR
= Z [v € 2] TEN gy

+ _)\k ’Ut_>\k ’U’l)t:O; (34)
O purk (d,z)EEy, (| d) Dotk p(v) 1(v)
E E [Toe. #o OR
aetd (x]d) = 00
keK (dgg GE

Multiply left and right parts of the first equality by @, left and right parts of the second
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equality by 64:

0 d 1 lyes Putk OR
Z ["U € Cl?] TENdx % + %tka— = Aky(v)t@vtk? (36)
(d2)E By RN Ptk
Prtdz =Pk (t|d,x)
0 d 1 1yeq Potk OR
Z Z ThMy —— T T H T2 lv€e T ) g = paba. (37)
(x|d) 0044
keK (d,z)EEy

Prtdz =Pk (t | d,x)

Rewrite these equations within variables n,, from (27) and ny from (28):

vatk:)\ku(v)t = Nyt + wvtk%~ (38)
Oratta = Mg + Orags; (39)

Suppose that Ag, < 0, then the regularity condition (24) is not held, and in this case,
according to the agreement, . =0 is held for each v € V,. If the dual variable A, is
positive, then both parts of the equation (38) are non-negative. Combining these two cases into

one formula the following expression is obtained:

<)Ofutk>\l<;u(v)t - (nvtk + @vtk%)_ﬁ_ : (4())

Similarly, if pg < 0, then the regularity condition (25) is not held, and according to the
agreement, 0,y =0 for all ¢t € T". If g > 0, then both parts of the equation (39) are non-negative.

Combining these two cases into one formula the following expression is obtained:

Orapra = (ntd + etd%) N (41)

After summing left and right parts of the equation (40) by v € V,,, left and right parts of
the equation (41) by t € T, and applying normalization conditions, it is possible to express the

dual variables:

/\kzmt - Z (nvtk + Dotk &(Zik) ; (42>
VEVm, +
Hd = Z <ntd + Qtd%Z)Jr : (43)
teT
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After substituting obtained expressions (40) and (41) of dual variables, (22) and (23) are
derived. The theorem is proved. B

3.4. Special cases

In this subsection PLSA, LDA, MultiARTM topic models described in 2.3,2.4 are repre-
sented in the proposed notations as special cases of hypergraphic multimodal topic model. The

optimization problem of the considered model is the following:

dDome > nand b [ pow + R(2,0) — max (44)

keK  (dx)EE) terT vET

with constraints on matrices ®, © defined in (18) and (19).

3.4.1. PLSA and LDA

Consider hypergraphic multimodal topic model with only one edge type — occurrence the
word w in the document d. In this case there are two modalities: document and word, and
each edge consists of two vertices (d,w). Documents are used as container vertices. According

to these characteristics the optimization problem (44) can be rewritten:

T Z Nz lnz Oraprt + R(P,0) — rg’a@x‘ (45)

(dz)EE teT
Substituting 7 = 1 in (45) and renaming x by w one can see that this problem is exactly
the same as (7) and (5) without regularization. Therefore, LDA and PLSA models are special

cases of the proposed topic model.

3.4.2. Multimodal Topic Models

Consider multimodal topic model with a set of modalities M = {1, pa, ..., i}, and add one
more modality pg for container vertices: M’ = M U {uq}. Consider only pairwise interactions
between documents and objects of different modalities that leads to |M’| —1=|M| edge types of
degree 2. Suppose that documents are container vertices and have iy modality. In this case D
is equal to the set of all documents and edge type is defined by the modality of the second
vertex. Therefore, K = M and (d,z) € E,, if and only if z € W,,,, where W, is a set of objects
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with modality m. Putting it all together one can obtain the following optimization problem:

Z Tk Z Ngp 10 Z O1a Ptk + R((I), @) — Igfl@x (46)

meM  (dx)EEn, teT
Renaming k by m, x by w and considering ¢, separately by modality one can see that the
problem (46) coincides with the optimization problem (9), (10). Therefore, multimodal topic

model is also a special case of the considered hypergraphic generalization.

3.5. Regularizers

This section describes regularizers used in the current research. Each of the considered
regularizers is written for objects that are elements of one particular edge type and of the same
modality. Overall regularization is a weighted linear combination of all using regularizers.

Smoothing regularizer introduces a requirement for distributions ¢,,; and ;4 to be from

the given distributions of g3, and «; as for LDA model:

R(®,0)=R(®)+RO)=8>_ > Bulngu+a) > a;nfy — max. (47)

teT weW deD teT

Sparsing regularizer has the same form but regularization coefficients 5 and « are negative

that leads to appearance of zero elements in distributions ¢,,; and 6.
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4. COMPUTATIONAL EXPERIMENTS

This section is devoted to experiments carried out on both simulated transaction data and
real data. The aim of a series of experiments is to study the behavior of TransARTM in

comparison with other topic models described above.

4.1. Simulated Data

Simulated data is an example of transaction data in which the probability of object occur-
rence depends on the type of transaction. The goal is to investigate the quality of restoring
the structure of the matrix of topics distribution for documents denoted by ©. Move on to the

description of the generation procedure for simulated data.

4.1.1. Generation procedure

A generation procedure consists of three main steps:
1. Determination of the following sets: a set of container vertices or documents D, a set of
modalities M, a set of edge types or transaction types K, a set of vertices or objects V =
= || Vi, a set of topics T
meM

2. Generation of matrices © and &, for all £k € K;

3. Generation of transaction data according to obtained © and ®; matrices.

The last two steps should be described in more detail.

Step 2. Since the goal of the experiment is to learn how the structure of © matrix is
restored it is necessary to set the structure during generation procedure. To comply with it
one can specify the assignment of documents into several classes. According to this partition
the dominant topics for each class and the dominant objects among the topics of one class
are randomly determined depending on the edge type. Dominant objects /topics are those
ones with the probability much higher compared to others. All elements of © and ®; matrices
are generated from normal distribution (only positive elements are considered). © matrix also
contains background topics with elements generated from uniform distribution. For © and &,
matrices introduce sparsity parameter that regulates a fraction of non-zero elements. When this

parameter is of a high value there are a lot of zero elements in the matrix. Further, © matrix
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is normalized so that the sum of elements in each column is equal to one:

Z 0ig=1 forall d € D. (48)

teT
The elements of ¢, matrices are normalized within the objects of the same modality separately:

Z%tk:1forallkGK,meM,teT. (49)

vEVm,

The examples of © and ®;, are shown in Figure 2.

I \‘ M :@ :
10 I 5
2 =
3 -
& =
= = = ==
o = 5
> — e —_—__—
Containers (documents) Topics

(a) Example of generated matrix O. (b) Example of generated matrix ®y.

e e R =
= e = T ]

et £ e -
EE=m—= === =
R === = =S == =
= = =

::-=_"\:-\__ . :_: = o=
§Fi— = 8 o= =
£ == =20 = - £ = = e
> . e, > s =

s = =
= - e =
= = = =
= = = =

Topics Topics

(c¢) Matrix @y slices on objects of the same modality.

Figure 2: Examples of generated matrices © and ®; for particular k.

It is important to note that according to this generation procedure depending on the edge
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type dominant objects can differ for the same class.
Step 3. After generation of matrices © and &, for all £ € K simulated transaction data

can be generated according to Algorithm 3.

Algorithm 3 Probabilistic process of simulated transaction data generation.

Input: K, distributions p(t|d), px(v|t), for all k € K;
Output: edges of the hypergraph (transactions);

1: for alld € D do > D is a set of container vertices
2 define K’ C K; > K is a set of edge types
3 for all k € K’ do

4 define the number of hyperedges — ng;
5: for alli=1,... ng do
6 d; := d;

7 choose random topic ¢; from p(t | d;);

8 for all j=2,...,h(k) do > h(k)=le|, e € Ey
9

choose random object v; from py(v|t;);

Transaction data adaptation. Since transaction data is not suitable for conventional
topic models it is necessary to transform it. For multimodal topic models it is proposed to
consider each transaction as set of pairwise interactions between container vertex and other
vertices in this transaction. For PLSA and LDA topic models consider the same transformation

but in addition combine all modalities into one.

4.1.2. Experimental Setup

The main pipeline of all experiments on the simulated data is described below.

First of all, using PLSA, Multimodal and TransARTM topic models O is restored. This
experiment does not imply any regularization so LDA model is not considered.

The next step is the following. According to the generation procedure the assignment of
documents into several classes is already known. Denote this splitting by y. The goal is to
understand how the considered models restore structure of matrix ©. It can be managed
through solving document classification problem using restored topics distribution p(t|d) in a
document as features of this document. The prediction g is constructed by Logistic Regression

without tuning its parameters using 5-fold cross-validation. The quality of © matrix structure
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reconstruction is measured as accuracy of the document classification problem solution:
1 .
Accuracy = — Z [y = i) - (50)

4.1.3. Experiment 1: Restoring matrix ©

The goal of this experiment is to confirm that the proposed TransARTM model can restore
the initial complex structure of transaction data.

In this experiment generation parameters are the following: number of topics |7'|=50 where 3
out of them are background topics, |D| = 5000, |M| =3, |K|=9 where h(k) < 4 for all k € K,
number of classes is equal to 5, sparsity equals to 0.65 and number of other vertices is equal
to 1000. It means that matrix © € R39%5900 and matrices ®;, € RP0*0 for all k € K. Using
the generation procedure 3 about 13.5 million transactions were synthesized.

According to the experimental setup (see 4.1.2) on each iteration of EM-algorithm the quality
of ® matrix structure reconstruction is measured for all considered topic models. The total
number of the iterations equals to 100. For each model 5 different random initializations are
used. The number of topics for restored matrix © was the same as for generation. The results

are demonstrated in Figure 3, the main curve is the mean among all initializations.

1.0
0.9 //
0.8
>
3
g 0.7
)
3]
< 0.6
0.5 —— TransARTM
MultiARTM
0.4 —— PLSA
0 20 40 60 80 100

Iterations

Figure 3: The number of topics is the same as specified during generation.

Conclusion. From this experiment it can be concluded that the proposed hypergraphic

multimodal topic model (TransARTM) achieves high quality faster than other compared models
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on the simulated transaction data.

4.1.4. Experiment 2: Varying number of topics

The goal of this experiment is to evaluate stability of the proposed model with respect to
initialization and the number of topics of matrix © being reconstructed.

This experiment is conducted on the same data as the experiment 4.1.3. All experimental
setups are also the same except the number of topics of matrix © being reconstructed. It varies

from 5 to 100. The results for different number of topics are represented in Figure 4.
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0.9 0.9
0.8 0.8
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g07 £0.7
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<06 <06
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05 L. MultiARTM 03
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0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
(a) Number of topics is equal to 5. (b) Number of topics is equal to 25.
1.0 1.0
0.9 0.9
0.8 0.8
> >
Q Q
£0.7 go07
5 5
Q Q
206 Zos
0.5 0.5
0.4 0.4
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
(¢) Number of topics is equal to 75. (d) Number of topics is equal to 100.

Figure 4: The number of topics varies from 5 to 100.

Conclusion. TransARTM is the most stable model with respect to initialization and selec-

tion of the number of topics.
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4.1.5. Experiment 3: Varying data size

The goal of this experiment is to analyze how quality of reconstruction of matrix © depends
on the size of transaction data.

This experiment also uses the same generated matrices © and ®,, as for the previous exper-
iments. The experiment setup is also the same. Only the size of data varies from 450 thousand
to 13.5 million transactions. The number of topics |T'| = 50 is the same as specified during

generation. The results are illustrated as a series of graphics in Figure 5.
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Iterations Iterations
(a) 450000 transactions. (b) 4500000 transactions.
1.0 1.0
0.9 0.9
0.8 0.8
> >
Q Q
$0.7 £ 0.7
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% 0.6 jﬂ’ 0.6
0.5 0.5
0.4 0.4
0 20 0 60 80 100 0 20 0 60 80 100
Iterations Iterations
(c) 6750000 transactions. (d) 13500000 transactions.

Figure 5: The number of transactions varies from 450000 to 13 500 000.

Conclusion. From these experiments it can be concluded that the proposed model TransARTM
comprehends the initial structure of © matrix even with the small amount of data. On the con-
trast, quality of reconstruction for other compared models depends on data size. As expected
because of larger data size more accurate frequency estimations and differences between classes

are achieved.
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4.1.6. Experiment 4: Varying sparsity

The goal of this experiment is to analyze how quality of the reconstruction of matrix ©
depends on sparsity of matrices © and &, for all £ € K.

This experiment uses the same generation parameters as for experiment 4.1.3 except sparsity
parameter that varies from 0.2 to 0.8. The experiment setup is also the same. The number
of transactions is equal to 6.75 million. Number of topics |T'| = 50. The results one can see

in Figure 6. The green dotted graph represents classification accuracy on the ground truth

matrix ©.
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0.9 0.9
> >
508 508
— —
= 3
Q Q
Z 07 Zo7

0.6 0.6

0 20 0 60 30 100 0 20 40 60 30 100
Iterations Iterations
(a) Sparsity is 0.2. (b) Sparsity is 0.4.
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(c) Sparsity is 0.6. (d) Sparsity is 0.8.

Figure 6: The sparsity of © matrix varies from 0.2 to 0.8.

Conclusion. Hypergraphic multimodal topic model TransARTM shows quality close to
ground truth both at high and low sparsity. The overall quality of reconstruction decreases

with an increase of the number of zero elements in © matrix.
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4.2. Real Data

This section is devoted to the experiments on real data. For these experiments Million
Playlist Dataset (MPD) is used. The aim is to apply the TransARTM model to music track

recommendation task.

4.2.1. Description

MPD is an array of 1000 000 playlists. Each playlist is an ordered list each element of which
contains tracks, albums and artists names. There are also some metadata for each playlist such
as number of editing sessions or time stamp when the playlist was previously update, etc. All
the experiments in this subsection use only track, album and artist representation of playlists.

For the experiments three different datasets are created: train, valid and test sets with the
same distribution of the number of tracks. Fach playlist contains at least 100 but no more
than 200 tracks. For the playlists from valid and test datasets the last 70 tracks are removed
to evaluate the quality of topic models used in these experiments. All tracks in test and valid
datasets as well as all holdout tracks appear in the train dataset. The main characteristics of

the whole dataset and divided sets one can see in Table 1.

Table 1: Different characteristics of MPD and divided sets.

Number of MPD Train Test Valid
Playlists 1000000 100000 1000 1000
Tracks 66346428 9875306 232613 232808

Unique tracks 2262292 296882 39368 38641
Unique albums 734684 140983 20690 20483
Unique artists 295 860 69 280 10081 10008

The goal is to recommend tracks for each of playlists from test dataset.

4.2.2. Metrics

To evaluate solutions the following metrics are used. Denote the ground truth set of objects G
and the ordered predicted list of objects R of size k. Consider the function 7™ : R «+ {0,1}
that equals to 1 if some object from R are in the set (G. Used metrics can be defined according

to these notations.
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Precision is the number of relevant objects divided by the number of predicted objects:

|G N R|

precision@k =
R

(51)

Recall is the number of relevant objects divided by the number of known relevant objects:

|G N R|
recall@k = . (52)
|G|
F-measure is the harmonic mean of precision and recall:
ll@k - ision@k
fscore@lk — 9 . 1€C2 precision (53)

recall@k + precision@k

These metrics reflect total number of retrieved relevant tracks regardless of order.
Normalized discounted cumulative gain (NDCG) measures ranking quality of pre-
dicted objects. It increases when relevant objects are placed higher in list R.

NDCG is equal to DCG divided by the ideal DCG:

dcg@k = 4
Hees idcg Z log, (i —|— 1 Z log2 1+ 1 (54)

All described above metrics are averaged across all playlists in test set.

4.2.3. Experimental Setup

In experiments the PLSA, LDA, multimodal and the proposed hypergraphic multimodal
topic models with smoothing and sparsing regularizers from 3.5 are used. This regularizers
applied to the whole matrix © with coefficient a and to track modality of & matrix with
coefficient 5. In LDA and PLSA models only one modality is considered, so the regularizers are
applied to the whole matrices ©® and ®. For multimodal and hypergraphic multimodal topic
models different interactions between artist, album and tracks modalities are considered.

For each topic model parameters o and [ are tuned using valid dataset. This procedure
is repeated for different number of topics. The metrics are calculated for different number of
predicted tracks that is from 70 to 500. The ground truth sets of tracks is obtained by removing
the last 70 tracks of each playlist in test and valid datasets.
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4.2.4. Parameters tuning

Optimal coefficients of the regularizers a and (3 are selected for each topic model and number
of topics on the valid dataset. Parameters are tuned by grid search during 5 steps over 5 x
x 5 parameters. On each step current optimal parameters are determined as a center of grid
for the next step. Size of a new grid is also decreased seven times. One can find an example of

the first three steps of tuning procedure in Figure 7.

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 7: The first three steps of tuning procedure.

4.2.5. Results

For all considered models experiment setup is the same as described in 4.2.3. The regular-
ization coefficients are tuned in accordance with 4.2.4 for different number of topics separately.
Number of topics varies from 50 to 2 000 while the number of predicted tracks for each playlist —

from 70 to 500. All metrics are averaged across the holdout test dataset.

Baseline. The following baseline model is supposed to clarify the overall quality of topic
modeling. The ordered list of tracks is calculated using the train dataset according to their
popularity. An order of each track is determined by number of its occurrences in a dataset.
Therefore, a track with high number of occurrences is on the top of the list. Then for each
playlist in the test dataset according to the list of tracks popularity a list of recommended
tracks is predicted. The tracks that are already in the playlist are ignored during prediction.

The number of the retrieved tracks varies from 70 to 500. Finally, metrics are calculated and
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averaged across all playlists. The results of baseline model are presented in Table2.

Table 2: The results of baseline model (TopTracks) for
different number of predicted tracks.

Number of Metrics
predicted tracks precision recall fscore ndcg
70 0.0425 0.0425 0.0425 0.0479
100 0.0387 0.0553 0.0455 0.0565
300 0.0268 0.1149 0.0435 0.0905
500 0.0230 0.1646 0.0404 0.1152

PLSA and LDA. These topic models describe the interaction between document and terms.
In the examined case documents are presented by playlists, and terms correspond to tracks.
A set of playlists that contain tracks is supposed as a dataset. The results are introduced in
Table 3 and Table 4 for PLSA and LDA models respectively. The best values of each metric
are highlighted by bold for varying number of topics.

Table 3: The results of PLSA topic model for different
number of predicted tracks and number of topics.

Number of topics
50 100 150 300 500 750 1000 1500 2000

precision@70 0.1208 0.1226 0.1230 0.1211 0.1247 0.1221 0.1235 0.1203 0.1247
precision@100 0.1090 0.1109 0.1118 0.1105 0.1133 0.1114 0.1134 0.1097 0.1126
precision@300 0.0735 0.0747 0.0753 0.0751 0.0750 0.0746 0.0762 0.0748 0.0761
precision@500 0.0572 0.0585 0.0586 0.0583 0.0583 0.0583 0.0592 0.0583 0.0591

recall@70 0.1208 0.1226 0.1230 0.1211 0.1247 0.1221 0.1235 0.1203 0.1247
recall@100 0.1558 0.1584 0.1598 0.1578 0.1619 0.1591 0.1620 0.1567 0.1609
recall@300 0.3150 0.3203 0.3226 0.3219 0.3216 0.3199 0.3264 0.3204 0.3261
recall@500 0.4084 0.4178 0.4188 0.4163 0.4164 0.4162 0.4228 0.4166 0.4218
fscore@70 0.1208 0.1226 0.1230 0.1211 0.1247 0.1221 0.1235 0.1203 0.1247
fscore@100 0.1283 0.1304 0.1316 0.1300 0.1333 0.1310 0.1334 0.1290 0.1325
fscore@300 0.1192 0.1212 0.1221 0.1218 0.1217 0.1210 0.1235 0.1212 0.1234
fscore@500 0.1003 0.1026 0.1029 0.1022 0.1023 0.1022 0.1038 0.1023 0.1036
ndcg@70 0.1319 0.1346 0.1334 0.1324 0.1354 0.1333 0.1344 0.1314 0.1324
ndcg@100 0.1553 0.1585 0.1579 0.1569 0.1602 0.1580 0.1602 0.1557 0.1593
ndcg@300 0.2465 0.2514 0.2512 0.2510 0.2518 0.2502 0.2545 0.2496 0.2531
ndcg@500 0.2931 0.3001 0.2992 0.2981 0.2991 0.2982 0.3025 0.2975 0.3024

Multimodal topic model. This model describes pairwise interactions between documents
and objects of different modalities. For the given task documents also are presented by playlists.
Artist, album and track are considered as modalities. These experiments are aimed to analyze
three models that are defined by used modalities. The results of two conducted experiments

are presented in Table 5.
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Table 4: The results of LDA topic model for different
number of predicted tracks and number of topics.

Number of topics
50 100 150 300 500 750 1000 1500 2000
precision@70 0.1205 0.1214 0.1223 0.1223 0.1131 0.1212 0.1198 0.0613 0.0426
precision@100 0.1090 0.1101 0.1108 0.1116 0.1031 0.1103 0.1094 0.0554 0.0387
precision@300 0.0735 0.0747 0.0746  0.0746 0.0704 0.0738 0.0729 0.0376 0.0268
precision@500 0.0573 0.0583 0.0579  0.0583 0.0554 0.0576 0.0571 0.0305 0.0231

recall@70 0.1205 0.1214 0.1223 0.1223 0.1131 0.1212 0.1198 0.0613 0.0426
recall@100 0.1557 0.1572  0.1582 0.1594 0.1473 0.1576 0.1563 0.0792 0.0553
recall@300 0.3151 0.3202 0.3198 0.3199 0.3017 0.3163 0.3126 0.1612 0.1151
recall@500 0.4095 0.4163 0.4137 04162 0.3958 0.4118 0.4082 0.2177 0.1648
fscore@70 0.1206 0.1214 0.1223 0.1223 0.1131 0.1212 0.1198 0.0613 0.0426
fscore@100 0.1282 0.1295 0.1303 0.1313 0.1213 0.1298 0.1287 0.0652 0.0456
fscore@300 0.1192 0.1211 0.1210 0.1210 0.1142 0.1197 0.1183 0.0610 0.0435
fscore@500 0.1006 0.1022 0.1016 0.1022 0.0972 0.1011 0.1003 0.0535 0.0405
ndcg@70 0.1320 0.1320 0.1333 0.1338 0.1238 0.1314 0.1301 0.0685 0.0480
ndeg@100 0.1555 0.1560  0.1573 0.1587 0.1467 0.1558 0.1545 0.0805 0.0565
ndeg@300 0.2469 0.2495 0.2499 0.2508 0.2352 0.2468 0.2442 0.1274 0.0906
ndcg@>500 0.2939 0.2974 0.2968 0.2988 0.2821 0.2944 0.2919 0.1556 0.1153

In the first experiment different multimodal topic models with various combinations of
modalities are compared. Considered combinations are the following: track and album, track
and artist, track and album and artist. Number of topics is equal to 750. The model that uses
track and artist modalities shows the best results.

The second experiment uses the best model from the first experiment. Number of topics

varies from 500 to 2000. A further increase of the number of topics does not improve results.

Hypergraphic multimodal topic model. TransARTM proposed in this research describes
interactions between any number of objects. For the examined dataset containers (documents)
are also represented by playlists. Artist, album and track are considered as modalities. These
experiments are aimed to analyze four models defined by interacting objects (transactions). The
results of two conducted experiments are presented in Table 6.

In the first experiment different hypergraphic multimodal topic models with various types
of transactions are compared. Considered transactions are following: playlist — album — track,
playlist — artist — track, playlist — album — track, playlist — artist — track, playlist — track —
album — artist. Number of topics is equal to 750. The model considering playlist — artist — track
interaction shows the best results.

The second experiment uses the best model from the first experiment. Number of topics

varies from 500 to 2000. A further increase of number of topics does not improve results.
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Table 5: The resulting scores of multimodal topic models for different combinations of
modalities (Track, Album, Artist) for 750 topics, and scores of the best model with track and
artist modalities for different number of topics.

Modalities Number of topics

AlTr Ar Tr Ar AlTy 500 750 1000 1500 2000
precision@70 0.1243 0.1290 0.1260 0.1273 0.1290 0.1264 0.1264 0.1260
precision@100 0.1139 0.1171 0.1150 0.1159 0.1171 0.1152 0.1155 0.1151
precision@300 0.0766 0.0782 0.0774 0.0775 0.0782 0.0781 0.0782 0.0774
precision@500 0.0594 0.0608 0.0601 0.0603 0.0608 0.0608 0.0606 0.0605
recall@70 0.1243 0.1290 0.1260 0.1273 0.1290 0.1264 0.1264 0.1260
recall@100 0.1627 0.1673 0.1643 0.1656 0.1673 0.1646 0.1649 0.1644
recall@300 0.3281 0.3353 0.3317 0.3319 0.3353 0.3348 0.3352 0.3317
recall@500 0.4245 0.4343 0.4292 0.4308 0.4343 0.4343 0.4328 0.4323
fscore@T70 0.1243 0.1290 0.1260 0.1273 0.1290 0.1264 0.1264 0.1260
fscore@100 0.1340 0.1378 0.1353 0.1364 0.1378 0.1356 0.1358 0.1354
fscore@300 0.1242 0.1269 0.1255 0.1256 0.1269 0.1267 0.1268 0.1255
fscore@500 0.1043 0.1067 0.1054 0.1058 0.1067 0.1067 0.1063 0.1062
ndcg@70 0.1343 0.1394 0.1364 0.1375 0.1394 0.1367 0.1365 0.1358
ndcg@100 0.1600 0.1651 0.1620 0.1631 0.1651 0.1622 0.1622 0.1615
ndcg@300 0.2548 0.2616 0.2580 0.2585 0.2616 0.2599 0.2599 0.2574
ndcg@500 0.3029 0.3110 0.3066 0.3078 0.3110 0.3095 0.3085 0.3076

Table 6: The resulting scores of TransARTM models for different types of transactions (Track,
Album, Artist, the playlist is omitted) for 750 topics, and scores of the model considered
playlist — artist — track interaction for different number of topics.

Transactions Number of topics

Al Tr Ar Tr ill‘ %r‘r Ar Al Tr 500 750 1000 1500 2000
precision@70 0.0791 0.1014 0.1005 0.0973 0.1020 0.1014 0.1044 0.1023 0.0884
precision@100 0.0729 0.0922 0.0913 0.0883 0.0924 0.0922 0.0949 0.0935 0.0814
precision@300 0.0495 0.0633 0.0629 0.0593 0.0623 0.0633 0.0641 0.0641 0.0571
precision@500 0.0396  0.0495 0.0499 0.0465 0.0490 0.0495 0.0500 0.0504 0.0458
recall@70 0.0791 0.1014 0.1005 0.0973 0.1020 0.1014 0.1044 0.1023 0.0884
recall@100 0.1041 0.1317 0.1304 0.1262 0.1320 0.1317 0.1356 0.1335 0.1162
recall@300 0.2120 0.2712 0.2697 0.2539 0.2672 0.2712 0.2746 0.2746 0.2445
recall@500 0.2826 0.3534 0.3567 0.3322 0.3501 0.3534 0.3571 0.3603 0.3272
fscore@70 0.0791 0.1014 0.1005 0.0973 0.1020 0.1014 0.1044 0.1023 0.0884
fscore@100 0.0857 0.1084 0.1074 0.1039 0.1087 0.1084 0.1117 0.1099 0.0957
fscore@300 0.0802 0.1026 0.1021 0.0961 0.1011 0.1026  0.1039 0.1039 0.0925
fscore@500 0.0694 0.0868 0.0876 0.0816 0.0860 0.0868 0.0877 0.0885 0.0804
ndcg@70 0.0862 0.1120 0.1095 0.1063 0.1129 0.1120 0.1152 0.1110 0.0972
ndcg@100 0.1029 0.1322 0.1295 0.1257 0.1329 0.1322 0.1361 0.1318 0.1158
ndcg@300 0.1647 0.2122 0.2094 0.1989 0.2104 0.2122 0.2158 0.2128 0.1893
ndcg@500 0.1999 0.2532 0.2528 0.2379 0.2517 0.2532 0.2570 0.2555 0.2305

Putting it all together. PLSA and LDA models consider pairwise interactions between
playlists and tracks. Multimodal topic model allows to describe several pairwise interactions
separately within one model. TransARTM model takes into account interactions between more

than two object. It is important to note the all compared models are special cases of TransARTM
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that was proved in 3.4. Gathering the best results of all considered models for 500 predicted

tracks one can find the summary in Table 7.

Table 7: The best results of all considered models for 500 predicted tracks.

Metrics, @500

Model Considered iteractions . .
precision recall fscore ndcg
TopTracks - 0.0230 0.1646  0.0404 0.1152
PLSA (P1, Tr) 0.0592 0.4228 0.1038  0.3025
LDA (P, Tr) 0.0583 0.4162  0.1022  0.2988
(P1, Al), (P1, Tr) 0.0594 0.4245 0.1043  0.3029
MultiARTM (P1, Ar), (Pl, Tr) 0.0608 0.4343 0.1067 0.3110
(PL, Ar), (P1, Al), (P1, Tr) 0.0605 0.4321  0.1061  0.3098
(P1, AL, Tr) 0.0490 0.3497 0.0859  0.2484
Pl, Ar, Tr 0.0504 0.3603 0.0885 0.2555
TransARTM (P, A(l, Tr), (P, Kr, Tr) 0.0502  0.3587  0.0879  0.2548
(PL, Ar, Al, Tr) 0.0476 0.3398 0.0835 0.2374

To make sure that predicted topics make sence one can pay attention to the top-10 artists
constituents of several topics that are presented in Table 8. This representations are obtained us-
ing TransARTM models with number of topics equal to 750 and considered interaction between

playlist, artist and track.

Table 8: Representation of five different topics by its top-10 artists (descending order).

Linkin Park Nicki Minaj Lil Jon The Beatles Guns N’ Roses
3 Doors Down Beyonce 50 Cent John Lennon Bon Jovi
Evanescence Rihanna Snoop Dogg George Harrison AC/DC
Nickelback Tinashe J-Kwon The Beach Boys Def Leppard
Hinder Omarion Nelly Elvis Presley Ozzy Osbourne
Papa Roach Jeremih Usher Paul McCartney Journey
Hoobastank Trey Songz Kanye West David Bowie Aerosmith
Creed Chris Brown R. Kelly Jim Sturgess Scorpions
Daughtry Big Sean Youngbloodz The Mamas & The Papas Metallica
Finger Eleven Sage The Gemini Bubba Sparxxx The Turtles Survivor

It can be concluded that topic modeling approach for the problem of playlists extension
improves overall results. The best multimodal topic model uses combination of track and
artist modalities. It implies that users tend to listen tracks by several artists they like but not
necessary from particular albums. The proposed TransARTM model shows comparable results
that are still slightly lower. It can be explained by the fact that artist, album and track are

linked hierarchically that means they are not truly independent.
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5. CONCLUSION

In this research hypergraphic multimodal topic model called TransARTM has been proposed.
This model generalizes currently existing topic models of matrix factorization to the case when
original data can be represented as a hypergraph. TransARTM allows to describe more complex
relationships between objects than pairwise interactions. It has been shown that conventional
topic modeling approaches PLSA, LDA and multimodal topic models are actually subcases
of the developed topic model. The proposed extension has been implemented as a part of
BigARTM open source project.

The experiments have been carried out both on simulated transaction data and real data.
The results on simulated transaction data have shown that the proposed model which takes into
account relationships of any number of objects tends to converge faster than other methods to
the best solution even with a relatively small number of data. Also the stability with respect
to the number of topics has been investigated comparing with other models in case of sparse
ground truth matrix ©. Application of multimodal and hypergraphic multimodal models for
the construction of recommendation systems has been demonstrated on real data.

Further experiments are supposed to use transaction data from financial organizations that is
not convenient for the current research due to small sizes of freely distributed financial datasets.
The proposed model is supposed to give a general understanding of structure of financial flows

within the industry.
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