Boosting

Victor Kitov

Motivation for ensembles

- Consider M classifiers $f_1(x), ... f_M(x)$, performing binary classification.
- Let $\xi_1,...\xi_M$ denote indicators of mistakes by $f_1,...f_M$ on particular observation x
- Suppose $\xi_1,...\xi_M$ are independent binomial variables with $P(\xi_i=1)=p$
- Then $\mathbb{E}\xi_i=p$, $Var[\xi_i]=p(1-p)$
- Consider F(x) be aggregating classifier, assigning x to the class with maximum votes among $f_1(x), ... f_M(x)$.
- Consider

$$\eta = \frac{\xi_1 + \dots + \xi_M}{M}$$

- Probability of mistake = probability that majority of $\xi_1, ... \xi_M$ are ones = $P(\eta > 0.5)$.
- $P(\eta > 0.5) \to 0$ as $M \to \infty$ because $\mathbb{E}\eta = p$, $Var[\eta] = \frac{p(1-p)}{M}$.

Linear ensembles

Linear ensemble:

$$F(x) = f_0(x) + c_1 h_1(x) + ... + c_M h_M(x)$$

Regression: $\hat{y}(x) = F(x)$

Binary classification: $score(y|x) = F(x), \ \widehat{y}(x) = sign F(x)$

- Notation: $h_1(x), ... h_M(x)$ are called base learners, weak learners, base models.
- Too expensive to optimize $f_0(x), h_1(x), ...h_M(x)$ and $c_1, ...c_M$ jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(h_m(x), c_m)$ greedily.
- After ensemble is built we can fine-tune $c_1, ... c_M$ by fitting features $f_0(x), h_1(x), ... h_M(x)$ with linear regression/classifier.

Forward stagewise additive modeling (FSAM)

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$, general form of "base learner" $h(x|\gamma)$ (dependent from parameter γ) and the number M of successive additive approximations.

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{i=1}^N \mathcal{L}(f(x_i), y_i)$
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, h_m) = \arg\min_{h,c} \sum_{i=1}^{N} \mathcal{L}(f_{m-1}(x_i) + ch(x_i), y_i)$$

set

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_M(x) = f_0(x) + \sum_{m=1}^{M} c_m h_m(x)$

Comments on FSAM

- Number of steps M should be determined by performance on validation set.
- Step 1 need not be solved accurately, since its mistakes are expected to be corrected by future base learners.
 - we can take $f_0(x) = \arg\min_{\beta \in \mathbb{R}} \sum_{i=1}^N \mathcal{L}(\beta, y_i)$ or simply $f_0(x) \equiv 0$.
- By similar reasoning there is no need to solve 2.1 accurately
 - typically very simple base learners are used such as trees of depth=1,2,3.
- For some loss functions, such as $\mathcal{L}(y, f(x)) = e^{-yf(x)}$ we can solve FSAM explicitly.
- For general loss functions gradient boosting scheme should be used.

Table of Contents

- Adaboost
- 2 Gradient boosting
- Boosting extensions

Adaboost (discrete version): assumptions

- ullet binary classification task $y \in \{+1,-1\}$
- family of base classifiers $h(x) = h(x|\gamma)$ where γ is some fitted parametrization.
- $h(x) \in \{+1, -1\}$
- classification is performed with

$$\hat{y} = sign\{f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)\}$$

- optimized loss is $\mathcal{L}(y, f(x)) = e^{-yf(x)}$
- FSAM is applied

Adaboost (discrete version): algorithm

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; number of additive weak classifiers M, a family of weak classifiers $h(x) \in \{+1, -1\}$, trainable on weighted datasets.

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ...n.
- ② for m = 1, 2, ...M:
 - fit $h^m(x)$ to training data using weights w_i
 - compute weighted misclassification rate:

$$E_{m} = \frac{\sum_{i=1}^{N} w_{i} \mathbb{I}[h^{m}(x) \neq y_{i}]}{\sum_{i=1}^{N} w_{i}}$$

- 3 if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- **o** compute $c_m = \frac{1}{2} \ln ((1 E_m)/E_m)$
- \odot increase all weights, where misclassification with $h^m(x)$ was made:

$$w_i \leftarrow w_i e^{2c_m}, i \in \{i : h^m(x_i) \neq y_i\}$$

Output: composite classifier $f(x) = \text{sign}\left(\sum_{m=1}^{M} c_m h^m(x)\right)$

Set initial approximation, typically $f_0(x) \equiv 0$. Apply FSAM for m = 1, 2, ...M:

$$(c_m, h^m) = \arg\min_{c_m, h^m} \sum_{i=1}^N \mathcal{L}(f_{m-1}(x_i) + c_m h^m(x), y_i)$$

$$= \arg\min_{c_m, h^m} \sum_{i=1}^N e^{-y_i f_{m-1}(x_i)} e^{-c_m y_i h^m(x)}$$

$$= \arg\min_{c_m, h^m} \sum_{i=1}^N w_i^m e^{-c_m y_i h^m(x_i)}, \quad w_i^m = e^{-y_i f_{m-1}(x_i)}$$

$$\sum_{i=1}^{N} w_{i}^{m} e^{-c_{m}y_{i}h^{m}(x_{i})} = \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} e^{-c_{m}} + \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} e^{c_{m}}$$

$$= e^{-c_{m}} \sum_{i:h^{m}(x_{i})=y_{i}} w_{i}^{m} + e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

$$= e^{c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m} + e^{-c_{m}} \sum_{i=1}^{N} w_{i}^{m} - e^{-c_{m}} \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

$$= e^{-c_{m}} \sum_{i} w_{i}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{i:h^{m}(x_{i})\neq y_{i}} w_{i}^{m}$$

Since $c_m \geq 0$ $h_m(x)$ should be found from

$$h_m(x_i) = \arg\min_{h} \sum_{i=1}^{N} w_i^m \mathbb{I}[h(x_i) \neq y_i]$$

Denote
$$F(c_m) = \sum_{i=1}^n w_i^m \exp(-c_m y_i h^m(x_i))$$
. Then
$$\frac{\partial F(c_m)}{\partial c_m} = -\sum_{i=1}^N w_i^m e^{-c_m y_i h^m(x_i)} y_i h^m(x_i) = 0$$

$$-\sum_{i:h^m(x_i)=y_i} w_i^m e^{-c_m} + \sum_{i:h^m(x_i)\neq y_i} w_i^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{i:h^m(x_i)=y_i} w_i^m}{\sum_{i:h^m(x_i)\neq y_i} w_i^m}$$

$$c_m = \frac{1}{2} \ln \frac{\left(\sum_{i:h^m(x_i)=y_i} w_i^m\right) / \left(\sum_{i=1}^N w_i^m\right)}{\left(\sum_{i:h^m(x_i)\neq y_i} w_i^m\right) / \left(\sum_{i=1}^N w_i^m\right)} = \frac{1}{2} \ln \frac{1-E_m}{E_m},$$
where $E_m := \frac{\sum_{i=1}^N w_i^m \mathbb{I}[h^m(x_i)\neq y_i]}{\sum_{i:v':b=1}^N w_i^m}$

Weights recalculation:

$$w_i^{m+1} \stackrel{df}{=} e^{-y_i f_m(x_i)} = e^{-y_i f_{m-1}(x_i)} e^{-y_i c_m h^m(x_i)}$$

Noting that $-y_i h^m(x_i) = 2\mathbb{I}[h^m(x_i) \neq y_i] - 1$, we can rewrite:

$$w_i^{m+1} = e^{-y_i f_{m-1}(x_i)} e^{c_m (2\mathbb{I}[h^m(x_i) \neq y_i] - 1)} =$$

$$= w_i^m e^{2c_m \mathbb{I}[h^m(x_i) \neq y_i]} e^{-c_m} \propto w_i^m e^{2c_m \mathbb{I}[h^m(x_i) \neq y_i]}$$

Comments:

- We can remove common constants from weights.
- $w_i^{m+1} = w_i^m$ for correctly classified objects by $h_m(x)$.
- $w_i^{m+1} = w_i^m e^{2c_m}$ for incorrectly classified objects by $h_m(x)$.
 - so later classifiers will pay more attention to them

Table of Contents

- Adaboost
- 2 Gradient boosting
- Boosting extensions

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$F(w) \to \min_{w}, \quad w \in \mathbb{R}^N$$

Gradient descend algorithm:

INPUT:

 η -parameter, controlling the speed of convergence M-number of iterations

ALGORITHM:

initialize w

for
$$m = 1, 2, ...M$$
:

$$\Delta w = \frac{\partial F(w)}{\partial w}$$

$$w = w - \eta \Delta w$$

Modified gradient descent algorithm

INPUT: M-number of iterations M-number of iterations M-number of i

- Now consider $F(f(x_1),...f(x_N)) = \sum_{n=1}^N \mathcal{L}(f(x_n),y_n)$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting implements modified gradient descent in function space:
 - find $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - fit base learner $h_m(x)$ to $\{(x_i, z_i)\}_{i=1}^N$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **o** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N}(h_m(x_n)-z_n)^2\to \min_{h_m}$$

3 solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

$$oldsymbol{1}$$
 set $f_m(x) = f_{m-1}(x) + c_m h_m(x)$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r, y_i)}{\partial r}|_{r=f^{m-1}(x_i)}$
 - ② fit h_m to $\{(x_i, z_i)\}_{i=1}^N$, for example by solving

$$\sum_{n=1}^{N} (h_m(x_n) - z_n)^2 \to \min_{h_m}$$

solve univariate optimization problem:

$$\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}(x_i) + c_m h_m(x_i), y_i\right) \to \min_{c_m \in \mathbb{R}_+}$$

$$f_m(x) = f_{m-1}(x) + c_m h_m(x)$$

Output: approximation function $f_M(x) = f_0(x) + \sum_{m=1}^M c_m h_m(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(h_m(x_n) - \left(-\frac{\partial \mathcal{L}(r,y)}{\partial r} |_{r=f^{m-1}(x_n)} \right) \right)^2 \to \min_{h_m}$$

Specific cases:

•
$$\mathcal{L} = \frac{1}{2} (r - y)^2 = -\frac{\partial \mathcal{L}}{\partial r} = -(r - y) = (y - r)$$

• $h_m(x)$ is fitted to compensate regression errors $(y - f_{m-1}(x))$

•
$$\mathcal{L} = [-ry]_+ = > -\frac{\partial \mathcal{L}}{\partial r} = \begin{cases} 0, & ry > 0 \\ y, & ry < 0 \end{cases}$$

• $h_m(x)$ is fitted to $y\mathbb{I}[f(x)y < 0]$

Table of Contents

- Adaboost
- 2 Gradient boosting
- Boosting extensions

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- 2 For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- **2** For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - **2** fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_j^m , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=f^{m-1}(x)}$
 - fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - **9** for each terminal region R_j^m , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

• update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_j^m \mathbb{I}[x \in R_j^m]$

Input: training dataset (x_i, y_i) , i = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_0(x)$: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} \mathcal{L}(\gamma, y_i)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate derivatives $z_i = -\frac{\partial \mathcal{L}(r,y)}{\partial r}\Big|_{r=f^{m-1}(x)}$
 - fit regression tree h^m on $\{(x_i, z_i)\}_{i=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - for each terminal region R_j^m , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(f_{m-1}(x_i) + \gamma, y_i)$$

o update $f_m(x) = f_{m-1}(x) + \sum_{i=1}^{J_m} \gamma_i^m \mathbb{I}[x \in R_i^m]$

Output: approximation function $f_M(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_i^m , not globally for the whole classifier $h^m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_j^m , but it can be applied to find γ_i^m , because second task is solvable for arbitrary L.
- Max leaves J
 - interaction between no more than J-1 terms
 - usually $4 \le J \le 8$
- M controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu c_m h_m(x)$$

• Shrinkage of trees GB, step (d):

$$f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} \mathbb{I}[x \in R_{jm}]$$

- Comments:
 - $\nu \in (0,1]$
 - $\nu \downarrow \Longrightarrow M \uparrow$
- Subsampling
 - increases speed of fitting
 - may increase accuracy

Linear loss function approximation

Consider sample (x, y).

$$\mathcal{L}(f(x) + h(x), y) \approx \mathcal{L}(f(x), y) + h(x) \left. \frac{\partial \mathcal{L}(r, y)}{\partial r} \right|_{r = f(x)}$$
=> $h(x)$ should be fitted to $-\frac{\partial \mathcal{L}(r, y)}{\partial r} \Big|_{r = f(x)}$.

Newton method of optimization

- Suppose we want $F(w) \rightarrow \min_{w}$
- Let $w^* = \arg\min_{w} F(w)$
- Then $F'(w^*) = 0$
- Taylor expansion of F'(w) around w to w^* :

$$F'(w^*) = 0 = F'(w) + F''(w)(w^* - w) + o(\|w - w^*\|)$$

It follows that

$$w^* - w = -\left[F''(w)\right]^{-1}F'(w) + o(\|w - w^*\|)$$

• Iterative scheme for minimization:

$$w \leftarrow w - \left[F''(w)\right]^{-1} F'(w)$$

- it is scaled gradient descent
- speed of convergence faster (uses quadratic approximation in Taylor expansion)
- converges in one step for quadratic F(w).

Quadratic loss function approximation

$$\mathcal{L}(f(x) + h(x), y) \approx$$

$$\mathcal{L}(f(x) + h(x), y) \approx$$

$$\mathcal{L}(f(x), y) + h(x) \left. \frac{\partial \mathcal{L}(r, y)}{\partial r} \right|_{r = f(x)} + \frac{1}{2} \left(h(x) \right)^2 \left. \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \right|_{r = f(x)} =$$

$$\frac{1}{2} \left. \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \right|_{r = f(x)} \left(h(x) + \frac{\frac{\partial \mathcal{L}(r, y)}{\partial r} \Big|_{r = f(x)}}{\frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \Big|_{r = f(x)}} \right)^2 + const(h(x))$$

$$= > h(x) \text{ should be fitted to } - \frac{\partial \mathcal{L}(r, y)}{\partial r} \Big|_{r = f(x)} / \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \Big|_{r = f(x)} \text{ with weight } \frac{\partial^2 \mathcal{L}(r, y)}{\partial r^2} \Big|_{r = f(x)}$$

Case of $C \geq 3$ classes

- Can fit C independent boostings $\{f_y(x)\}_{y=1}^C$ (one vs. all scheme)
 - $\widehat{y}(x) = \arg\max_{y} f_{y}(x)$
- Alternatively can optimize multivariate $\mathcal{L}(f(x), y) = -\ln p(y|x)$
 - using linear or quadratic approximation
 - for quadratic approximation need to invert $\frac{\partial^2}{\partial r^2}F(r,y)\Big|_{r=f(x)}$. Can use diagonal approximation.

Types of boosting

- Loss function F:
 - F(|f(x) y|) regression
 - $-\ln p(y|x)$ or $F(y \cdot score(y = +1|x))$ binary classification
 - $-\ln p(y|x)$ multiclass classification
- Optimization
 - analytical (AdaBoost)
 - gradient based
 - based on quadratic approximation
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling