Boosting

Victor Kitov

Motivation for ensembles

- Consider M classifiers $f_{1}(x), \ldots f_{M}(x)$, performing binary classification.
- Let $\xi_{1}, \ldots \xi_{M}$ denote indicators of mistakes by $f_{1}, \ldots f_{M}$ on particular observation x
- Suppose $\xi_{1}, \ldots \xi_{M}$ are independent binomial variables with $P\left(\xi_{i}=1\right)=p$
- Then $\mathbb{E} \xi_{i}=p, \operatorname{Var}\left[\xi_{i}\right]=p(1-p)$
- Consider $F(x)$ be aggregating classifier, assigning x to the class with maximum votes among $f_{1}(x), \ldots f_{M}(x)$.
- Consider

$$
\eta=\frac{\xi_{1}+\ldots+\xi_{M}}{M}
$$

- Probability of mistake $=$ probability that majority of $\xi_{1}, \ldots \xi_{M}$ are ones $=P(\eta>0.5)$.
- $P(\eta>0.5) \rightarrow 0$ as $M \rightarrow \infty$ because $\mathbb{E} \eta=p, \operatorname{Var}[\eta]=\frac{p(1-p)}{M}$.

Linear ensembles

Linear ensemble:

$$
F(x)=f_{0}(x)+c_{1} h_{1}(x)+\ldots+c_{M} h_{M}(x)
$$

Regression: $\widehat{y}(x)=F(x)$
Binary classification: $\operatorname{score}(y \mid x)=F(x), \widehat{y}(x)=\operatorname{sign} F(x)$

- Notation: $h_{1}(x), \ldots h_{M}(x)$ are called base learners, weak learners, base models.
- Too expensive to optimize $f_{0}(x), h_{1}(x), \ldots h_{M}(x)$ and $c_{1}, \ldots c_{M}$ jointly for large M.
- Idea: optimize $f_{0}(x)$ and then each pair $\left(h_{m}(x), c_{m}\right)$ greedily.
- After ensemble is built we can fine-tune $c_{1}, \ldots c_{M}$ by fitting features $f_{0}(x), h_{1}(x), \ldots h_{M}(x)$ with linear regression/classifier.

Forward stagewise additive modeling (FSAM)

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$, general form of "base learner" $h(x \mid \gamma)$ (dependent from parameter γ) and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)=\arg \min _{f} \sum_{i=1}^{N} \mathcal{L}\left(f\left(x_{i}\right), y_{i}\right)$
(2) For $m=1,2, \ldots M$:
(1) find next best classifier

$$
\left(c_{m}, h_{m}\right)=\arg \min _{h, c} \sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+\operatorname{ch}\left(x_{i}\right), y_{i}\right)
$$

(2) set

$$
f_{m}(x)=f_{m-1}(x)+c_{m} h_{m}(x)
$$

Output: approximation function

$$
f_{M}(x)=f_{0}(x)+\sum_{m=1}^{M} c_{m} h_{m}(x)
$$

Comments on FSAM

- Number of steps M should be determined by performance on validation set.
- Step 1 need not be solved accurately, since its mistakes are expected to be corrected by future base learners.
- we can take $f_{0}(x)=\arg \min _{\beta \in \mathbb{R}} \sum_{i=1}^{N} \mathcal{L}\left(\beta, y_{i}\right)$ or simply $f_{0}(x) \equiv 0$.
- By similar reasoning there is no need to solve 2.1 accurately
- typically very simple base learners are used such as trees of depth=1,2,3.
- For some loss functions, such as $\mathcal{L}(y, f(x))=e^{-y f(x)}$ we can solve FSAM explicitly.
- For general loss functions gradient boosting scheme should be used.

Table of Contents

(1) Adaboost
(2) Gradient boosting
(3) Boosting extensions

Adaboost (discrete version): assumptions

- binary classification task $y \in\{+1,-1\}$
- family of base classifiers $h(x)=h(x \mid \gamma)$ where γ is some fitted parametrization.
- $h(x) \in\{+1,-1\}$
- classification is performed with

$$
\widehat{y}=\operatorname{sign}\left\{f_{0}(x)+c_{1} f_{1}(x)+\ldots+c_{M} f_{M}(x)\right\}
$$

- optimized loss is $\mathcal{L}(y, f(x))=e^{-y f(x)}$
- FSAM is applied

Adaboost (discrete version): algorithm

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; number of additive weak classifiers M, a family of weak classifiers $h(x) \in\{+1,-1\}$, trainable on weighted datasets.
(1) Initialize observation weights $w_{i}=1 / n, i=1,2, \ldots n$.
(2) for $m=1,2, \ldots M$:

- fit $h^{m}(x)$ to training data using weights w_{i}
- compute weighted misclassification rate:

$$
E_{m}=\frac{\sum_{i=1}^{N} w_{i} \mathbb{I}\left[h^{m}(x) \neq y_{i}\right]}{\sum_{i=1}^{N} w_{i}}
$$

(3) if $E_{M}>0.5$ or $E_{M}=0$: terminate procedure.

- compute $c_{m}=\frac{1}{2} \ln \left(\left(1-E_{m}\right) / E_{m}\right)$
© increase all weights, where misclassification with $h^{m}(x)$ was made:

$$
w_{i} \leftarrow w_{i} e^{2 c_{m}}, i \in\left\{i: h^{m}\left(x_{i}\right) \neq y_{i}\right\}
$$

Output: composite classifier $\underset{8 / 28}{f(x)}=\operatorname{sign}\left(\sum_{m=1}^{M} c_{m} h^{m}(x)\right)$

Adaboost derivation

Set initial approximation, typically $f_{0}(x) \equiv 0$.
Apply FSAM for $m=1,2, \ldots M$:

$$
\begin{aligned}
\left(c_{m}, h^{m}\right) & =\arg \min _{c_{m}, h^{m}} \sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+c_{m} h^{m}(x), y_{i}\right) \\
& =\arg \min _{c_{m}, h^{m}} \sum_{i=1}^{N} e^{-y_{i} f_{m-1}\left(x_{i}\right)} e^{-c_{m} y_{i} h^{m}(x)} \\
& =\arg \min _{c_{m}, h^{m}} \sum_{i=1}^{N} w_{i}^{m} e^{-c_{m} y_{i} h^{m}\left(x_{i}\right)}, \quad w_{i}^{m}=e^{-y_{i} f_{m-1}\left(x_{i}\right)}
\end{aligned}
$$

Adaboost derivation

$$
\begin{gathered}
\sum_{i=1}^{N} w_{i}^{m} e^{-c_{m} y_{i} h^{m}\left(x_{i}\right)}=\sum_{i: h^{m}\left(x_{i}\right)=y_{i}} w_{i}^{m} e^{-c_{m}}+\sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m} e^{c_{m}} \\
=e^{-c_{m}} \sum_{i: h^{m}\left(x_{i}\right)=y_{i}} w_{i}^{m}+e^{c_{m}} \sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m} \\
=e^{c_{m}} \sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m}+e^{-c_{m}} \sum_{i=1}^{N} w_{i}^{m}-e^{-c_{m}} \sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m} \\
=e^{-c_{m}} \sum_{i} w_{i}^{m}+\left(e^{c_{m}}-e^{-c_{m}}\right) \sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m}
\end{gathered}
$$

Since $c_{m} \geq 0 h_{m}(x)$ should be found from

$$
h_{m}\left(x_{i}\right)=\arg \min _{h} \sum_{10 \neq \frac{1}{1}}^{N} w_{i}^{m} \mathbb{I}\left[h\left(x_{i}\right) \neq y_{i}\right]
$$

Adaboost derivation

Denote $F\left(c_{m}\right)=\sum_{i=1}^{n} w_{i}^{m} \exp \left(-c_{m} y_{i} h^{m}\left(x_{i}\right)\right)$. Then

$$
\begin{gathered}
\frac{\partial F\left(c_{m}\right)}{\partial c_{m}}=-\sum_{i=1}^{N} w_{i}^{m} e^{-c_{m} y_{i} h^{m}\left(x_{i}\right)} y_{i} h^{m}\left(x_{i}\right)=0 \\
-\sum_{i: h^{m}\left(x_{i}\right)=y_{i}} w_{i}^{m} e^{-c_{m}}+\sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m} e^{c_{m}}=0 \\
e^{2 c_{m}}=\frac{\sum_{i: h^{m}\left(x_{i}\right)=y_{i}} w_{i}^{m}}{\sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m}} \\
c_{m}=\frac{1}{2} \ln \frac{\left(\sum_{i: h^{m}\left(x_{i}\right)=y_{i}} w_{i}^{m}\right) /\left(\sum_{i=1}^{N} w_{i}^{m}\right)}{\left(\sum_{i: h^{m}\left(x_{i}\right) \neq y_{i}} w_{i}^{m}\right) /\left(\sum_{i=1}^{N} w_{i}^{m}\right)}=\frac{1}{2} \ln \frac{1-E_{m}}{E_{m}}, \\
\text { where } E_{m}:=\frac{\sum_{i=1}^{N} w_{i}^{m} \mathbb{I}\left[h^{m}\left(x_{i}\right) \neq y_{i}\right]}{\sum_{i r^{\prime} i=1}^{N} w_{i}^{m}}
\end{gathered}
$$

Adaboost derivation

Weights recalculation:

$$
w_{i}^{m+1} \stackrel{d f}{=} e^{-y_{i} f_{m}\left(x_{i}\right)}=e^{-y_{i} f_{m-1}\left(x_{i}\right)} e^{-y_{i} c_{m} h^{m}\left(x_{i}\right)}
$$

Noting that $-y_{i} h^{m}\left(x_{i}\right)=2 \mathbb{I}\left[h^{m}\left(x_{i}\right) \neq y_{i}\right]-1$, we can rewrite:

$$
\begin{gathered}
w_{i}^{m+1}=e^{-y_{i} f_{m-1}\left(x_{i}\right)} e^{c_{m}\left(2 \mathbb{I}\left[h^{m}\left(x_{i}\right) \neq y_{i}\right]-1\right)}= \\
=w_{i}^{m} e^{2 c_{m} \mathbb{I}\left[h^{m}\left(x_{i}\right) \neq y_{i}\right]} e^{-c_{m}} \propto w_{i}^{m} e^{2 c_{m} \mathbb{I}\left[h^{m}\left(x_{i}\right) \neq y_{i}\right]}
\end{gathered}
$$

Comments:

- We can remove common constants from weights.
- $w_{i}^{m+1}=w_{i}^{m}$ for correctly classified objects by $h_{m}(x)$.
- $w_{i}^{m+1}=w_{i}^{m} e^{2 c_{m}}$ for incorrectly classified objects by $h_{m}(x)$.
- so later classifiers will pay more attention to them

Table of Contents

(2) Gradient boosting
(3) Boosting extensions

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$
F(w) \rightarrow \min _{w}, \quad w \in \mathbb{R}^{N}
$$

Gradient descend algorithm:

```
INPUT:
\eta-parameter, controlling the speed of convergence
M-number of iterations
ALGORITHM:
initialize w
for m=1,2,\ldotsM:
    \Deltaw=\frac{\partialF(w)}{\partialw}
    w=w-\eta\Deltaw
```


Modified gradient descent algorithm

INPUT:

M-number of iterations

ALGORITHM:

initialize w
for $m=1,2, \ldots M$:

$$
\begin{aligned}
& \Delta w=\frac{\partial F(w)}{\partial w} \\
& c^{*}=\arg \min _{c} F(w-c \Delta w) \\
& w=w-c^{*} \Delta w
\end{aligned}
$$

Gradient boosting

- Now consider $F\left(f\left(x_{1}\right), \ldots f\left(x_{N}\right)\right)=\sum_{n=1}^{N} \mathcal{L}\left(f\left(x_{n}\right), y_{n}\right)$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting implements modified gradient descent in function space:
- find $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}\left(x_{i}\right)}$
- fit base learner $h_{m}(x)$ to $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}\left(x_{i}\right)}$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}\left(x_{i}\right)}$
(2) fit h_{m} to $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$, for example by solving

$$
\sum_{n=1}^{N}\left(h_{m}\left(x_{n}\right)-z_{n}\right)^{2} \rightarrow \min _{h_{m}}
$$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}\left(x_{i}\right)}$
(2) fit h_{m} to $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$, for example by solving

$$
\sum_{n=1}^{N}\left(h_{m}\left(x_{n}\right)-z_{n}\right)^{2} \rightarrow \min _{h_{m}}
$$

© solve univariate optimization problem:

$$
\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+c_{m} h_{m}\left(x_{i}\right), y_{i}\right) \rightarrow \min _{c_{m} \in \mathbb{R}_{+}}
$$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}\left(x_{i}\right)}$
(2) fit h_{m} to $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$, for example by solving

$$
\sum_{n=1}^{N}\left(h_{m}\left(x_{n}\right)-z_{n}\right)^{2} \rightarrow \min _{h_{m}}
$$

(3) solve univariate optimization problem:

$$
\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+c_{m} h_{m}\left(x_{i}\right), y_{i}\right) \rightarrow \min _{c_{m} \in \mathbb{R}_{+}}
$$

(1) set $f_{m}(x)=f_{m-1}(x)+c_{m} h_{m}(x)$

Gradient boosting

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit initial approximation $f_{0}(x)$ (might be taken $\left.f_{0}(x) \equiv 0\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}\left(r, y_{i}\right)}{\partial r}\right|_{r=f^{m-1}}\left(x_{i}\right)$
(2) fit h_{m} to $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$, for example by solving

$$
\sum_{n=1}^{N}\left(h_{m}\left(x_{n}\right)-z_{n}\right)^{2} \rightarrow \min _{h_{m}}
$$

(3) solve univariate optimization problem:

$$
\sum_{i=1}^{N} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+c_{m} h_{m}\left(x_{i}\right), y_{i}\right) \rightarrow \min _{c_{m} \in \mathbb{R}_{+}}
$$

(4) set $f_{m}(x)=f_{m-1}(x)+c_{m} h_{m}(x)$

Output: approximation function $\underset{18 / 28}{ } f_{M}(x)=f_{0}(x)+\sum_{m=1}^{M} c_{m} h_{m}(x)$

Gradient boosting: examples

In gradient boosting

$$
\sum_{n=1}^{N}\left(h_{m}\left(x_{n}\right)-\left(-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}}\left(x_{n}\right)\right)\right)^{2} \rightarrow \min _{h_{m}}
$$

Specific cases:

- $\mathcal{L}=\frac{1}{2}(r-y)^{2}=>-\frac{\partial \mathcal{L}}{\partial r}=-(r-y)=(y-r)$
- $h_{m}(x)$ is fitted to compensate regression errors $\left(y-f_{m-1}(x)\right)$
- $\mathcal{L}=[-r y]_{+}=>-\frac{\partial \mathcal{L}}{\partial r}= \begin{cases}0, & r y>0 \\ y, & r y<0\end{cases}$
- $h_{m}(x)$ is fitted to $y \mathbb{I}[f(x) y<0]$

Table of Contents

(2) Gradient boosting
(3) Boosting extensions

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)$

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)$
(2) For each step $m=1,2, \ldots M$:

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}(x)}$

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit constant initial approximation $f_{0}(x)$: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}(x)}$
(2) fit regression tree h^{m} on $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$ with some loss function, get leaf regions $\left\{R_{j}^{m}\right\}_{j=1}^{J_{m}}$.

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$: $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)$
(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}(x)}$
(2) fit regression tree h^{m} on $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$ with some loss function, get leaf regions $\left\{R_{j}^{m}\right\}_{j=1}^{J_{m}^{\prime}}$.
(3) for each terminal region $R_{j}^{m}, j=1,2, \ldots J_{m}$ solve univariate optimization problem:

$$
\gamma_{j}^{m}=\arg \min _{\gamma} \sum_{x_{i} \in R_{j}^{m}} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+\gamma, y_{i}\right)
$$

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$:

$$
f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} \mathcal{L}\left(\gamma, y_{i}\right)
$$

(2) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}(x)}$
(2) fit regression tree h^{m} on $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$ with some loss function, get leaf regions $\left\{R_{j}^{m}\right\}_{j=1}^{J_{m}}$.
(3) for each terminal region $R_{j}^{m}, j=1,2, \ldots J_{m}$ solve univariate optimization problem:

$$
\gamma_{j}^{m}=\arg \min _{\gamma} \sum_{x_{i} \in R_{j}^{m}} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+\gamma, y_{i}\right)
$$

(1) update $f_{m}(x)=f_{m-1}(x)+\sum_{j=1}^{J_{m}} \gamma_{j}^{m} \mathbb{I}\left[x \in R_{j}^{m}\right]$

Gradient boosting of trees

Input: training dataset $\left(x_{i}, y_{i}\right), i=1,2, \ldots N$; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.
(1) Fit constant initial approximation $f_{0}(x)$:

$$
f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{\dot{N}} \mathcal{L}\left(\gamma, y_{i}\right)
$$

(c) For each step $m=1,2, \ldots M$:
(1) calculate derivatives $z_{i}=-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f^{m-1}(x)}$
(2) fit regression tree h^{m} on $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N}$ with some loss function, get leaf regions $\left\{R_{j}^{m}\right\}_{j=1}^{J_{m}}$.
(3) for each terminal region $R_{j}^{m}, j=1,2, \ldots J_{m}$ solve univariate optimization problem:

$$
\gamma_{j}^{m}=\arg \min _{\gamma} \sum_{x_{i} \in R_{j}^{m}} \mathcal{L}\left(f_{m-1}\left(x_{i}\right)+\gamma, y_{i}\right)
$$

(1) update $f_{m}(x)=f_{m-1}(x)+\sum_{j=1}^{J_{m}} \gamma_{j}^{m} \mathbb{I}\left[x \in R_{j}^{m}\right]$

Output: approximation function $f_{M}(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_{j}^{m}, not globally for the whole classifier $h^{m}(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_{j}^{m}, but it can be applied to find γ_{j}^{m}, because second task is solvable for arbitrary L.
- Max leaves J
- interaction between no more than $J-1$ terms
- usually $4 \leq J \leq 8$
- M controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage \& subsampling

- Shrinkage of general GB, step (d):

$$
f_{m}(x)=f_{m-1}(x)+\nu c_{m} h_{m}(x)
$$

- Shrinkage of trees GB, step (d):

$$
f_{m}(x)=f_{m-1}(x)+\nu \sum_{j=1}^{J_{m}} \gamma_{j m} \mathbb{I}\left[x \in R_{j m}\right]
$$

- Comments:
- $\nu \in(0,1]$
- $\nu \downarrow \Longrightarrow M \uparrow$
- Subsampling
- increases speed of fitting
- may increase accuracy

Linear loss function approximation

Consider sample (x, y).

$$
\mathcal{L}(f(x)+h(x), y) \approx \mathcal{L}(f(x), y)+\left.h(x) \frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f(x)}
$$

$=>h(x)$ should be fitted to $-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f(x)}$.

Newton method of optimization

- Suppose we want $F(w) \rightarrow \min _{w}$
- Let $w^{*}=\arg \min _{w} F(w)$
- Then $F^{\prime}\left(w^{*}\right)=0$
- Taylor expansion of $F^{\prime}(w)$ around w to w^{*} :

$$
F^{\prime}\left(w^{*}\right)=0=F^{\prime}(w)+F^{\prime \prime}(w)\left(w^{*}-w\right)+o\left(\left\|w-w^{*}\right\|\right)
$$

- It follows that

$$
w^{*}-w=-\left[F^{\prime \prime}(w)\right]^{-1} F^{\prime}(w)+o\left(\left\|w-w^{*}\right\|\right)
$$

- Iterative scheme for minimization:

$$
w \leftarrow w-\left[F^{\prime \prime}(w)\right]^{-1} F^{\prime}(w)
$$

- it is scaled gradient descent
- speed of convergence faster (uses quadratic approximation in Taylor expansion)
- converges in one step for ${ }_{25} \mathrm{q}_{28}$.

Quadratic loss function approximation

$$
\begin{gathered}
\mathcal{L}(f(x)+h(x), y) \approx \\
\mathcal{L}(f(x), y)+\left.h(x) \frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f(x)}+\left.\frac{1}{2}(h(x))^{2} \frac{\partial^{2} \mathcal{L}(r, y)}{\partial r^{2}}\right|_{r=f(x)}= \\
\left.\frac{1}{2} \frac{\partial^{2} \mathcal{L}(r, y)}{\partial r^{2}}\right|_{r=f(x)}\left(h(x)+\frac{\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f(x)}}{\left.\frac{\partial^{2} \mathcal{L}(r, y)}{\partial r^{2}}\right|_{r=f(x)}}\right)^{2}+\operatorname{const}(h(x))
\end{gathered}
$$

$=>h(x)$ should be fitted to $-\left.\frac{\partial \mathcal{L}(r, y)}{\partial r}\right|_{r=f(x)}\left|\frac{\partial^{2} \mathcal{L}(r, y)}{\partial r^{2}}\right|_{r=f(x)}$ with weight $\left.\frac{\partial^{2} \mathcal{L}(r, y)}{\partial r^{2}}\right|_{r=f(x)}$

Case of $C \geq 3$ classes

- Can fit C independent boostings $\left\{f_{y}(x)\right\}_{y=1}^{C}$ (one vs. all scheme)
- $\widehat{y}(x)=\arg \max _{y} f_{y}(x)$
- Alternatively can optimize multivariate $\mathcal{L}(f(x), y)=-\ln p(y \mid x)$
- using linear or quadratic approximation
- for quadratic approximation need to invert $\left.\frac{\partial^{2}}{\partial r^{2}} F(r, y)\right|_{r=f(x)}$. Can use diagonal approximation.

Types of boosting

- Loss function F :
- $F(|f(x)-y|)$ - regression
- $-\ln p(y \mid x)$ or $F(y \cdot \operatorname{score}(y=+1 \mid x))$ - binary classification
- $-\ln p(y \mid x)$ - multiclass classification
- Optimization
- analytical (AdaBoost)
- gradient based
- based on quadratic approximation
- Base learners
- continious
- discrete
- Classification
- binary
- multiclass
- Extensions: shrinkage, subsampling

