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Course information

Instructor - Victor Vladimirovich Kitov

Tasks of the course

Structure:

lectures, seminars
assignements: theoretical, labs, competitions
exam

Tools

python
ipython notebook
numpy, scipy, pandas
matplotlib, seaborn
scikit-learn.
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Recommended materials

Ëåêöèè Ê.Â.Âîðîíöîâà (âèäåî-ëåêöèè è ìàòåðèàëû íà

machinelearning.ru)

The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Trevor Hastie, Robert Tibshirani,
Jerome Friedman, 2nd Edition, Springer, 2009. http:
//statweb.stanford.edu/~tibs/ElemStatLearn/.

Statistical Pattern Recognition. 3rd Edition, Andrew R.
Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.

Any additional public sources:

wikipedia, articles, tutorials, video-lectures.

Practical questions:

stackover�ow.com, sklearn documentation, kaggle forums.
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Tasks solved by machine learning

Formal de�nitions of machine learning

Machine learning is a �eld of study that gives computers the
ability to learn without being explicitly programmed.

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure

P, if its performance P at tasks in T improves with
experience E.

Examples from text analysis: spell checker, spam �ltering,
POS tagger.
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Tasks solved by machine learning

Major niches of ML

dealing with huge datasets with many attributes (text
categorization)

hard to formulate explicit rules (image recognition)

further adaptation to usage conditions is required
(voice detection)

fast adaptation to changing conditions (stock prices prediction)
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Tasks solved by machine learning

Examples of ML applications

WEB

Web-page ranking
Spam �ltering

e-mails
search results

Networks monitoring

Intrusion detection
Anomaly detection

Business

Fraud detection
Churn prediction
Credit scoring
Stock prices / risks forecsting
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Tasks solved by machine learning

Examples of ML applications

Texts

Document classi�cation
POS tagging, semantic parsing,
named entities detection
sentimental analysis
automatic summarization

Images

Handwriting recognition
Face detection, pose detection
Person identi�cation
Image classi�cation
Image segmentation
Adding artistic style

Other

Target detection / classi�cation
Particle classi�cation
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Problem statement

General problem statement

Set of objects O

Each object is described by a vector of known characteristics
x ∈ X and predicted characteristics y ∈ Y.

o ∈ O −→ (x, y)

Usually X = RD , Y - a scalar, but they may be any structural
descriptors of objects in general.
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Problem statement

General problem statement

Task: �nd a mapping f , which could accurately approximate
X → Y.

using a �nite �training� set of objects with known (x , y).
to apply on a set of objects of interest

Questions solved in ML:

how to select object descriptors - features
in what sense a mapping f should approximate true
relationship
how to construct f
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Problem statement

Variants of problem statement

For each new object x need to associate y .

What is known:

(x1, y1), (x2, y2), ...(xN , yN) - supervised learning:
x1, x2, ...xN - unsupervised learning

dimensionality reduction
clustering

(x1, y1), (x2, y2), ...(xN , yN), xN+1xN+2, ...xN+M -
semi-supervised learning.

If predicted objects x ′
1
, x ′

2
, ...x ′K for which y is forecasted, are

known in advance, then this is �transductive� learning.
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Problem statement

Example of supervised classi�cation

Figure: Supervised learning: x = (x1, x2), y is shown with color
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Problem statement

Example of semi-supervised classi�cation

Figure: Semi-supervised learning.
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Problem statement

Example of clustering (unsupervised)

Figure: Unsupervised learning: clustering
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Problem statement

Dimensionality reduction (unsupervised)

Figure: Unsupervised learning: dimensionality reduction
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Problem statement

Generative and discriminative models1

Generative model

Full distribution p(x , y) is modeled.

Can generate new observations (x , y)

ŷ(x) = argmax
y

p(y |x) = argmax
y

p(x , y)

p(x)
= argmax

y
p(y)p(x |y)

= argmax
y
{log p(y) + log p(x |y)}

Discriminative model

Discriminative with probability: only p(y |x) is modeled

Reduced discriminative: only y = f (x) is modeled.

1Which is more general problem statement and which - more speci�c?
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Problem statement

Generative and discriminative - discussion

Disadvantages of generative models:

Discriminative models are more general
p(x |y) may be inaccurate in high dimensional spaces

Advantages of generative models:

Generative models can be adjusted to varying p(y)
Naturally adjust to missing features (by marginalization)
Easily detect outliers (small p(x))
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Problem statement

Types of features

Full object description x ∈ X consists of individual features
xi ∈ Xi

Types of feature:

Xi = {0, 1} - binary feature
|Xi | <∞ - discrete (nominal) feature
|Xi | <∞ and Xi is ordered - ordinal feature
Xi = R - real feature
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Problem statement

Types of target variable

Types of target variable:

Y = R - regression (in supervised learning)
Y = RM - vector regression (in supervised learning) or feature
extraction (in unsupervised learning)
Y = {ω1, ω2, ...ωC} - classi�cation (in supervised learning) or
clustering (in unsupervised learning).

C=2: binary classi�cation, encoding - Y = {+1,−1} or
Y = {0, 1}.
C>2: multiclass classi�cation

Y-set of all sets of {ω1, ω2, ...ωC} - labeling
Y = {y ∈ RC : yi ∈ {0, 1}}, yi = 1⇔object is associated
with ωi .
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Training / testing set.
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Training / testing set.

Training set

Training set: X ∈ RNxD - design matrix, Y ∈ RN - predicted
outputs (target values)

Using X ,Y the task is to estimate unknown parameters θ̂ of
mapping ŷ = fθ(x) so that it will approximate true relationship
y = y(x)

It is assumed that zn = (xn, yn) for n = 1, 2, ...N - are
independent and identically distributed random variables (i.i.d).

Two steps of ML:

training

application

21/59



Introduction to machine learning - Victor Kitov

Training / testing set.

Train set, test set
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Training / testing set.

Train set, test set

N - number of objects for which targets (Y) are known.
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Training / testing set.

Train set, test set

D - number of features (advanced case: variable feature count).
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Function class
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Function class

Function class. Linear example.

Function class - parametrized set of functions
F = {fθ, θ ∈ Θ}, from which the true relationship X → Y is
approximated.

Examples of linear class functions:

regression:

f (x) = θ0 + θ1x
1 + θ2x

2 + ...+ θDx
D

binary classi�cation y ∈ {+1,−1}:

f (x) = sign{θ0 + θ1x
1 + θ2x

2 + ...+ θDx
D},
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Function class

Function class. K-NN example.

Figure: Classi�cation:

Figure: Regression:
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Function class

Function class. K-NN example.

Figure: Classi�cation: Figure: Regression:
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Function class

Function class. K-NN example.

denote for each x :

i(x , k) - index of the k-th most close object to x
I (x ,K ) - set of indexes of K nearest neighbours.

regression:

f (x) =
1

K

(
yi(x ,1) + ...+ yi(x ,K)

)
classi�cation:

f (x) = argmax

 ∑
i∈I (x ,K)

I[yi = 1], ...
∑

i∈I (x ,K)

I[yi = C ],
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Function estimation
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Function estimation

Score versus loss

In machine learning predictions, functions, objects can be
assigned:

score, rating - this should be maximized
loss, cost - this should be minimized2

2how can one convert score↔loss?
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Function estimation

Loss function L(ŷ , y)3

Examples:

classi�cation:

misclassi�cation rate

L(ŷ , y) = I[ŷ 6= y ]

regression:

MAE (mean absolute error):

L(ŷ , y) = |ŷ − y |

MSE (mean squared error):

L(ŷ , y) = (ŷ − y)2

3Selecting loss is not trivial. Consider demand forecasting.
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Function estimation

Empirical risk

Want to minimize:∫ ∫
L(fθ(x), y)p(x , y)dxdy → min

θ

Empirical risk:

L(θ|X ,Y ) =
1

N

N∑
n=1

L(fθ(xn), yn)

Method of empirical risk minimization:

θ̂ = argmin
θ

L(θ|X ,Y )
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Function estimation

Estimation of empirical risk

Generally it holds that:

L(θ̂|X ,Y ) < L(θ̂|X ′,Y ′)

where X ,Y is the training sample and X ′,Y ′ is the new data.

L(θ̂|X ′,Y ′) can be estimated using :

separate validation set

cross-validation

leave-one-out method
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Function estimation

4-fold cross validation example

Divide training set into K parts, referred as �folds� (here K = 4).
Variants:

randomly

randomly with strati�cation (w.r.t target value or feature
value).
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Function estimation

4-fold cross validation example

Use folds 1,2,3 for model estimation and fold 4 for model
evaluation.
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Function estimation

4-fold cross validation example

Use folds 1,2,4 for model estimation and fold 3 for model
evaluation.
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Function estimation

4-fold cross validation example

Use folds 1,3,4 for model estimation and fold 2 for model
evaluation.
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Function estimation

4-fold cross validation example

Use folds 2,3,4 for model estimation and fold 1 for model
evaluation.
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Function estimation

4-fold cross validation example

Denote

k(n) - fold to which observation (xn, yn) belongs to: n ∈ Ik .

θ̂−k - parameter estimation using observations from all folds
except fold k .

Cross-validation empirical risk estimation

L̂total = 1

N

∑N
n=1
L(f

θ̂−k(n)(xn), yn)

For K -fold CV we have:

K parameters θ̂−1, ...θ̂−K

K models fθ̂−1(x), ...fθ̂−K (x).

can use ensembles

K estimations of empirical risk:
L̂k = 1

|Ik |
∑

n∈Ik L(fθ̂−k (xn), yn), k = 1, 2, ...K .

can estimate variance & use statistics!4

4will samples be correlated?
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Function estimation
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Function estimation

Comments on cross-validation

When number of folds K is equal to number of objects N, this
is called leave-one-out method.

Cross-validation uses the i.i.d.5 property of observations

Strati�cation by target helps for imbalanced/rare classes.

5i.i.d.=independent and identically distributed
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Function estimation

Cross-validation vs. A/B testing

A/B testing:
1 divide objects randomly into two groups - A and B.
2 apply model 1 to A
3 apply model 2 to B
4 compare �nal results

Table: Comparison of cross-validation and A/B test:

cross-validation A/B test

evaluates forecasting
quality

evaluates �nal business
quality6 (may evaluate

forecasting quality as well)

uses available data, only
computational costs

requires time and resources for
collecting & evaluating
feedback from objects of

groups A and B

6may �nal business quality be high when forecasting quality is low?
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Function estimation

Hyperparameters selection

Using CV we can select hyperparameters of the model7:

regression: # of features d , e.g. x , x2, ...xd

K-NN: number of neighbors K

7can we use CV loss in this case as estimation for future losses?
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Function estimation

Model complexity vs. data complexity

Too simple (under�tted) model

Model that oversimpli�es true relationship X → Y.

Too complex (over�tted) model

Model that is too tuned on particular peculiarities (noise) of the
training set instead of the true relationship X → Y.

Pay attention to di�erence between over�tting and over�tted
model. Over�tting is a typical situation when expected loss on
training set is lower than expected loss on testing set. Since this is
typical, all models are over�tted more (complex ones) or less
(simple ones).
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Function estimation

Examples of over�tted/under�tted models
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Function estimation

Loss vs. model complexity

Comments:

expected loss on test set is always higher than on train set.

left to A: model too simple, under�tting, high bias

right to A: model too complex, over�tting, high variance
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Function estimation

Loss vs. train set size

Comments:

expected loss on test set is always higher than on train set.

right to B there is no need to further increase training set size

useful to limit training set size when model �tting is time
consuming
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Function estimation

Cost matrix8

For classi�cation in case we output �nal class predictions ŷ (not
probabilities) L(y , ŷ) becomes a matrix:

predicted classes
ŷ = 1 · · · ŷ = C

true classes
y = 1 λ11 · · · λ1C
· · · · · · · · · · · ·

y = C λC1 · · · λCC

8propose some sample cost matrix for binary classi�cation predicting ill-
ness
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Discriminant functions

Table of Contents

1 Tasks solved by machine learning

2 Problem statement

3 Training / testing set.

4 Function class

5 Function estimation

6 Discriminant functions

48/59



Introduction to machine learning - Victor Kitov

Discriminant functions

Discriminant functions9

Discriminant functions is the most general way to describe
each classi�er.

Each classi�er implies a particular set of discriminant functions.

Discriminant functions

a set of C functions gy (x), y = 1, 2...C .

gy (x) measures the score of class y , given object x .

Usage

Assign x to class having maximum discriminant function value:

ĉ = argmax
c

gc(x)

9For �xed classi�er are they uniquely de�ned?
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Discriminant functions

Examples10

K-NN:

gf (x) =
K∑

k=1

I[yi(k) = f ]

Linear classi�er:
gf (x) = 〈wf , x〉

Nearest centroid:
gf (x) = ρ(x , µf )

Maximum posterior probability classi�er:

gf (x) = p(y = f |x)

10Provide discriminant functions for classi�er minimizing expected cost
according to given cost matrix.
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Discriminant functions

Binary classi�cation

For two class case y ∈ {−1,+1} we may de�ne a single
discriminant function g(x) = g+1(x)− g−1(x) such that

ŷ(x) =

{
+1, g(x) ≥ 0,

−1 g(x) < 0.

Compact notation: ŷ(x) = sign[g(x)]

Boundary between classes:

{x : g(x) = 0}.
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Discriminant functions

Binary classi�cation: probability calibration

g(x) - score of positive class, p(y = +1|x)11-?

Platt scaling: p(y = +1|x) = σ (θ0 + θ1g(x)),

σ(u) = 1

1+e−u

11does this apply to K-NN? How to smooth probabilities of K-NN for
small K?

52/59



Introduction to machine learning - Victor Kitov

Discriminant functions

Binary classi�cation: probability calibration

g(x) - score of positive class, p(y = +1|x)11-?

Platt scaling: p(y = +1|x) = σ (θ0 + θ1g(x)),

σ(u) = 1

1+e−u

11does this apply to K-NN? How to smooth probabilities of K-NN for
small K?

52/59



Introduction to machine learning - Victor Kitov

Discriminant functions

Binary classi�cation: probability calibration12

Using the property 1− σ(z) = σ(−z):

p(y = 1|x) = σ (θ0 + θ1g(x))

p(y = −1|x) = 1− σ(θ0 + θ1g(x)) = σ (−θ0 − θ1g(x))

Thus p(y |x) = σ (y(θ0 + θ1g(x)))

Estimate θ0, θ1 using maximum likelihood:

N∏
n=1

σ (yn(θ0 + θ1g(xn)))→ max
θ0,θ1

12extend this reasoning to multiclass case
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Discriminant functions

Margin de�nition

Consider the training set: (x1, y1), (x2, y2), ...(xN , yN), where
yi is the correct class for object xi , and Y = {1, 2, ...C} - is
the set of all classes.

De�ne the margin:

M(xi , yi ) = gyi (xi )− max
y∈Y\{yi}

gy (xi )

margin is negative <=> object xi was incorrectly classi�ed
the value of margin shows how much the classi�er is inclined
to vote for class yi
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Discriminant functions

Margin for binary classi�cation

Consider

y ∈ {+1,−1}
g(x) = g+1(x)− g−1(x) - score of positive class versus
negative.

ŷ(x) = sign g(x)

Then

M(x , y) = gy (x)− g−y (x) = y (g+1(x)− g−1(x)) = yg(x)
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Discriminant functions

Categorization of objects based on margin

Good classi�er should:

minimize the number of negative margin region
classify correctly with high margin
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Discriminant functions

General modelling pipeline

If evaluation gives poor results we may return to each of preceding
stages.
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Discriminant functions

Connection of ML with other �elds

Pattern recognition

recognize patterns and regularities in the data

Computer science

Arti�cial intelligence

create devices capable of intelligent behavior

Time-series analysis

Theory of probability, statistics

when relies upon probabilistic models

Optimization methods

Theory of algorithms
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Discriminant functions

Notation used in the course

If this corresponds the context and there are no rede�nitions, then:

x - vector of known input characteristics of an object
y - predicted target characteristics of an object speci�ed by x
xi - i-th object of a set, yi - corresponding target characteristic
xk - k-th feature of object speci�ed by x
xki - k-th feature of object speci�ed by xi
D - dimensionality of the feature space: x ∈ RD

N - the number of objects in the training set
X - design matrix, X ∈ RNxD

Y ∈ RN - target characteristics of a training set
L(ŷ , y) - loss function, where y is the true value and ŷ is the
predicted value.
{ω1, ω2, ...ωC} - possible classes, C - total number of classes.
ẑ de�nes an estimate of z , based on the training set: for example,
θ̂ is the estimate of θ, ŷ is the estimate of y , etc.

All vectors are vectors-columns.
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