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Abstract

This paper proposes a PAC-Bayes bound to measure the performance of Support
Vector Machine (SVM) classifiers. The bound is based on learning a prior over
the distribution of classifiers with a part of the training samples. Experimental
work shows that this bound is tighter than the original PAC-Bayes, resulting in an
enhancement of the predictive capabilities of the PAC-Bayes bound. In addition,
it is shown that the use of this bound as a means to estimate the hyperparameters
of the classifier compares favourably with cross validation in terms of accuracy of
the model, while saving a lot of computational burden.

1 Introduction

Support vector machines (SVM) implement linear classifiers in a high-dimensional feature space
using the kernel trick to enable a dual representation and efficient computation.

The danger of overfitting in such high-dimensional spaces is countered by maximising the margin
of the classifier on the training examples. For this reason there has been considerable interest in
bounds on the generalisation in terms of the margin.

Early bounds have relied on covering number computations [7], while later bounds have considered
Rademacher complexity. The tightest bounds for practical applications appear to be the PAC-Bayes
bound [4, 5]. In particular the form given in [3] is specially attractive for margin classifiers, like
SVM. The PAC-Bayesian bounds are also present in other Machine Learning models such as Gaus-
sian Processes [6].

The aim of this paper is to consider a refinement of the PAC-Bayes approach and investigate whether
it can improve on the original PAC-Bayes bound and uphold its capabilities of delivering reliable
model selection.

The standard PAC-Bayes bound uses a Gaussian prior centred at the origin in weight space. The
key to the new bound is to use part of the training set to compute a more informative prior and then
compute the bound on the remainder of the examples relative to this prior. The bounds are tested
experimentally in several classification tasks, including the model selection, on common benchmark
datasets.



The rest of the document is organised as follows. Section 2 briefly reviews the PAC-Bayes bound for
SVMs obtained in [3]. The new bound obtained by means of the refinement of the prior is presented
in Section 3. The experimental work, included in Section 4, compares the tightness of the new bound
with the original one and indicates about its usability in a model selection task. Finally, the main
conclusions of this work are outlined in Section 5.

2 PAC-Bayes Bound

This section is devoted to a brief review of the PAC-Bayes Bound Theorem of [3]. Let us consider a
distribution D of patterns x lying in a certain input space X , with their corresponding output labels
y, y ∈ {−1, 1}. In addition, let us also consider a distribution Q over the classifiers c. For every
classifier c, the following two error measures are defined:

Definition (True error) The true error cD of a classifier c is defined as the probability of misclassi-
fying a pair pattern-label (x, y) selected at random from D

cD ≡ Pr(x,y)∼D(c(x) 6= y)

Definition (Empirical error) The empirical error ĉS of a classifier c on a sample S of size m is
defined as the rate of errors on a set S

ĉS ≡ Pr(x,y)∼S(c(x) 6= y) =
1
m

m∑
i=1

I(c(xi) 6= yi)

where I(·) is a function equal to 1 if the argument is true and equal to 0 if the argument is false.

Now we can define two error measures on the distribution of classifiers: the true error, QD ≡
Ec∼QcD, as the probability of misclassifying an instance x chosen from D with a classifier c chosen
according to Q; and the empirical error Q̂S ≡ Ec∼QĉS , as the probability of classifier c chosen
according to Q misclassifying an instance x chosen from a sample S.

For these two quantities we can derive the PAC-Bayes Bound on the true error of the distribution of
classifiers:

Theorem 2.1 (PAC-Bayes Bound) For all prior distributions P (c) over the classifiers c, and for
any δ ∈ (0, 1]

PrS∼Dm

(
∀Q(c) : KL(Q̂S ||QD) ≤

KL(Q(c)||P (c)) + ln(m+1
δ )

m

)
≥ 1− δ,

where KL is the Kullback-Leibler divergence, KL(p||q) = q ln q
p + (1 − q) ln 1−q

1−p and

KL(Q(c)||P (c)) = Ec∼Q ln Q(c)
P (c) .

The proof of the theorem can be found in [3].

This bound can be particularised for the case of linear classifiers in the following way. The m
training patterns define a linear classifier that can be represented by the following equation1:

c(x) = sign(wT φ(x)) (1)

where φ(x) is a nonlinear projection to a certain feature space where a linear classification actually
takes place, and w is a vector from that feature space that determines the separating plane.

For any vector w we can define a stochastic classifier in the following way: we choose the dis-
tribution Q = Q(w, µ) to be a spherical Gaussian with identity covariance matrix centred on the
direction given by w at a distance µ from the origin. Moreover, we can choose the prior P (c) to be
a spherical Gaussian with identity covariance matrix centred on the origin. Then, for classifiers of
the form in equation (1) performance can be bounded by

1We are considering here unbiased classifiers, i.e., with b = 0.



Corollary 2.2 (PAC-Bayes Bound for margin classifiers [3]) For all distributions D, for all classi-
fiers given by w and µ > 0, for all δ ∈ (0, 1], we have

Pr

(
KL(Q̂S(w, µ)||QD(w, µ)) ≤

µ2

2 + ln(m+1
δ )

m

)
≥ 1− δ.

It can be shown (see [3]) that
Q̂S(w, µ) = Em[F̃ (µγ(x, y))] (2)

where Em is the average over the m training examples, γ(x, y) is the normalised margin of the
training patterns

γ(x, y) =
ywT φ(x)
‖φ(x)‖‖w‖

(3)

and F̃ = 1− F , where F is the cumulative normal distribution

F (x) =
∫ x

−∞

1√
2π

e−x2/2dx. (4)

Note that the SVM is a thresholded linear classifier expressed as (1) computed by means of the
kernel trick [2]. The generalisation error of such a classifier can be bounded by at most twice the
true (stochastic) error QD(w, µ) in Corollary 2.2, (see [4]);

Pr(x,y)∼D
(
sign(wT φ(x)) 6= y

)
≤ 2QD(w, µ)

for all µ.

3 Choosing a prior for the PAC-Bayes Bound

Our first contribution is motivated by the fact that the PAC-Bayes bound allows us to choose the
prior distribution, P (c). In the standard application of the bound this is chosen to be a Gaussian
centred at the origin. We now consider learning a different prior based on training an SVM on a
subset R of the training set comprising r training patterns and labels. In the experiments this is
taken as a random subset but for simplicity of the presentation we will assume these to be the last r
examples {xk, yk}m

k=m−r+1 in the description below.

With these r examples we can determine an SVM classifier, wr and form a prior P (w|wr) consist-
ing of a Gaussian distribution with identity covariance matrix centred on wr.

The introduction of this prior P (w|wr) in Theorem 2.1 results in the following new bound.

Corollary 3.1 (Single Prior based PAC-Bayes Bound for margin classifiers) Let us consider a prior
on the distribution of classifiers consisting in a spherical Gaussian with identity covariance centred
along the direction given by wr at a distance η from the origin. Then, for all distributions D, for all
classifiers wm and µ > 0, for all δ ∈ (0, 1], we have

PrS∼D

(
KL(Q̂S\R(wm, µ)||QD(wm, µ)) ≤

||ηwr−µwm||2
2 + ln(m−r+1

δ )
m− r

)
≥ 1− δ

where Q̂S\R is a stochastic measure of the error of the classifier on the m − r samples not used to
learn the prior. This stochastic error is computed as indicated in equation (2) averaged over S\R.

Proof Since we separate r instances to learn the prior, the actual size of the training set to which we
apply the bound is m− r. In addition, the stochastic error must be computed only on the instances
not used to learn the prior, i.e. the subset S\R.

The KL divergence between prior and posterior is computed as follows:

KL(Q(w)||P (w)) = Ew∼Q ln Q(w)
P (w)

= Ew∼Q ln
exp(− 1

2 (w−µwm)T (w−µwm))
exp(− 1

2 (w−ηwr)T (w−ηwr))
= Ew∼Q

[
− 1

2 (w − µwm)T (w − µwm) + 1
2 (w − ηwr)T (w − ηwr)

]
= Ew∼Q

(
µwT

mw
)
− 1

2µ2wT
mwm − Ew∼Q

(
ηwT wr

)
+ 1

2η2wT
r wr



Taking expectations using Ew∼Qw = µwm we arrive at

1
2
||µwm − ηwr||2

Intuitively, if the selection of the prior is appropriate, the bound can be tighter than the one given in
Corollary 2.2 when applied to the SVM weight vector on the whole training set. It is perhaps worth
stressing that the bound holds for all wm and so can be applied to the SVM trained on the whole set.
This might at first appear as ’cheating’, but the critical point is that the bound is evaluated on the set
S\R not involved in generating the prior. The experimental work illustrates how in fact this bound
can be tighter than the standard PAC-Bayes bound.

Moreover, the selection of the prior may be further refined in exchange for a very small increase in
the penalty term. This can be achieved with the application of the following result.

Theorem 3.2 (Bound for several priors) Let {Pj(c)}J
j=1 be a set of possible priors that can be se-

lected with positive weights {πj}J
j=1 so that

∑J
j=1 πj = 1. Then, for all priors P (c) ∈ {Pj(c)}J

j=1,
for all posterior distributions Q(c), for all δ ∈ (0, 1],

PrS∼Dm

(
∀Q(c),∀j : KL(Q̂S ||QD) ≤

KL(Q(c)||Pj(c)) + ln m+1
δ + ln 1

πj

m

)
≥ 1− δ,

Proof The bound in Theorem 2.1 can be particularised for a certain Pj(c) with associated weight
πj and with confidence δπj

PrS∼Dm

(
∀Q(c) : KL(Q̂S ||QD) >

KL(Q(c)||Pj(c)) + ln(m+1
δπj

)

m

)
< δπj ,

Now let us combine the bounds for all the priors {Pj(c)}J
j=1 with the union operation (we use the

fact that P (a ∪ b) ≤ P (a) + P (b)).

PrS∼Dm

(
∀Q(c),∃P (c) ∈ {Pj(c)}J

j=1 :

KL(Q̂S ||QD) >
KL(Q(c)||Pj(c))+ln m+1

δ +ln 1
πj

m

)
< δ, (5)

Finally, let us take the negation of (5) to arrive at the final result.

This result can be also particularised for the case of SVM classifiers. The set of priors is constructed
by allocating Gaussian distributions with identity covariance matrix along the direction given by wr

at distances {ηj}J
j=1 from the origin where {ηj}J

j=1 are real numbers. In such a case, we obtain

Corollary 3.3 (Multiple Prior PAC-Bayes Bound for linear classifiers) Let us consider a set
{Pj(w|wr, ηj)}J

j=1 of prior distributions of classifiers consisting in spherical Gaussian distribu-
tions with identity covariance matrix centred on ηjwr, where {ηj}J

j=1 are real numbers. Then, for
all distributions D, for all classifiers w, for all µ > 0, for all δ ∈ (0, 1], we have

PrS∼D

(
KL(Q̂S\R(w, µ)||QD(w, µ)) ≤

||ηjwr−µw||2
2 + ln(m−r+1

δ ) + lnJ

m− r

)
≥ 1− δ

Proof The proof is straightforward, substituting πj = 1
J for all j in Theorem 3.2 and computing

the KL divergence between prior and posterior as in the proof of Corollary 3.1.

Note that the {ηj}J
j=1 must be chosen before we actually compute the posterior. However, the bound

holds for all µ. Therefore, a linear search can be implemented for the value of µ that leads to the
tightest bound. In the case of several priors, the search is repeated for every prior and the reported
value of the bound is the tightest. In Section 4 we present experimental results comparing this new
bound to the standard PAC-Bayes bound and using it to guide model selection.



4 Experiments

The tightness of the new bound is evaluated in a model selection and classification task using some
UCI [1] datasets (see their description in terms of number of instances, input dimension and number
of positive/negative examples in Table 1).

Problem # samples input dim. Pos/Neg
Wdbc 569 30 357 / 212
Image 2310 18 1320 / 990

Waveform 5000 21 1647 / 3353
Ringnorm 7400 20 3664 / 3736

Table 1: Description of the datasets: for every set we give the number of patterns, number of input
variables and number of positive/negative examples.

For every dataset, we obtain 50 different training/test set partitions with 80% of the samples forming
the training set and the remaining 20% forming the test set.

With each of the partitions we learn a SVM classifier with Gaussian RBF kernel preceded by a model
selection. The model selection consists in the determination of an optimal pair of hyperparameters
(C, σ). C is the SVM trade-off between the maximisation of the margin and the minimisation of
the hinge loss of the training samples, while σ is the width of the Gaussian kernel. The best pair is
sought in a 15×15 grid of parameters where C ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100,

200, 500, 1000} and σ ∈ { 1
8

√
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d}, where d is the input space dimension.

For completeness, this model selection is guided by the PAC-Bayes bound: we select the model
corresponding to the pair that yields a lower value of QD in the bound. Table 2 shows the value of
the PAC-Bayes Bound averaged over the 50 training/test partitions. For every partition we use the
minimum value of the bound resulting from all the pairs (C, σ) of the grid. Note that this procedure
is computationally less costly than the commonly used N -fold cross validation model selection,
since it saves the training of N classifiers (one for each fold) for each parameter combination.

Problem PAC-Bayes Bound Test error rate
Wdbc 0.334 ± 0.005 0.073 ± 0.021
Image 0.254 ± 0.003 0.074 ± 0.014

Waveform 0.198 ± 0.002 0.089 ± 0.008
Ringnorm 0.212 ± 0.002 0.026 ± 0.005

Table 2: Averaged PAC-Bayes Bound and Test Error Rate obtained by the model that yielded the
lowest bound in each of the 50 training/test partitions.

We repeated this experiment using the Prior PAC-Bayes Bound with different configurations for
learning the prior distribution of classifiers. These configurations are defined by variations on the
percentage of training patterns separated to compute the prior and on the number of scalings of
the magnitude of that prior. The scalings represent different lengths η of ||wr|| equally spaced
between η = 1 and η = 100. To summarize, for every training/test partition and for every pair (%
patterns, # of scalings) we look at the pair (C, σ) that outputs the smaller value of QD.

In this case, the use of the Prior PAC-Bayes Bound to perform the model selection increases the
computational burden of using the PAC-Bayes one in the training of one classifier (the one used to
learn the prior), in comparison to the extra N classifiers needed by N -fold cross validation.

Table 3 displays both the average value and the sample standard deviation over the 50 realisations.

It seems that ten scalings of the prior are enough to obtain tighter bounds, since the use of 100 or
500 scalings does not improve the best results. With respect to the percentage of training instances
left out to learn the prior, something close to 50% of the training set works well in the considered
problems. It is worth mentioning that we treat each position in the Table as a separate experiment.



Winsconsin Database of Breast Cancer (PAC-Bayes Bound = 0.334±0.005)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.341 ± 0.006 0.351 ± 0.007 0.364 ± 0.009 0.379 ± 0.011 0.398 ± 0.013
10 0.337 ± 0.010 0.323 ± 0.012 0.314 ± 0.012 0.310 ± 0.013 0.306 ± 0.018
100 0.319 ± 0.007 0.315 ± 0.010 0.313 ± 0.011 0.315 ± 0.013 0.315 ± 0.017
500 0.324 ± 0.007 0.320 ± 0.009 0.319 ± 0.011 0.321 ± 0.013 0.322 ± 0.017

Image Segmentation (PAC-Bayes Bound = 0.254±0.003)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.255 ± 0.003 0.262 ± 0.005 0.274 ± 0.003 0.284 ± 0.005 0.300 ± 0.008
10 0.215 ± 0.004 0.203 ± 0.006 0.200 ± 0.005 0.188 ± 0.007 0.184 ± 0.010
100 0.217 ± 0.004 0.203 ± 0.007 0.196 ± 0.005 0.187 ± 0.007 0.186 ± 0.009
500 0.218 ± 0.004 0.204 ± 0.007 0.198 ± 0.005 0.189 ± 0.007 0.188 ± 0.009

Waveform (PAC-Bayes Bound = 0.198±0.002)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.197 ± 0.003 0.201 ± 0.003 0.207 ± 0.003 0.214 ± 0.004 0.222 ± 0.005
10 0.161 ± 0.004 0.156 ± 0.004 0.153 ± 0.004 0.150 ± 0.005 0.151 ± 0.005
100 0.161 ± 0.004 0.155 ± 0.004 0.153 ± 0.004 0.152 ± 0.005 0.153 ± 0.005
500 0.162 ± 0.004 0.157 ± 0.004 0.155 ± 0.004 0.154 ± 0.005 0.155 ± 0.005

Ringnorm (PAC-Bayes Bound = 0.212±0.002)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.216 ± 0.001 0.225 ± 0.002 0.236 ± 0.002 0.249 ± 0.004 0.265 ± 0.002
10 0.172 ± 0.068 0.140 ± 0.047 0.126 ± 0.037 0.116 ± 0.030 0.109 ± 0.024
100 0.173 ± 0.068 0.139 ± 0.047 0.126 ± 0.037 0.117 ± 0.030 0.110 ± 0.024
500 0.173 ± 0.068 0.140 ± 0.047 0.127 ± 0.037 0.117 ± 0.030 0.110 ± 0.024

Table 3: Averaged Prior PAC-Bayes bound for different settings of percentage of training instances
reserved to compute the prior and of number of scalings of the normalised prior.

However, one could have included the tuning of the pair (% patterns, # of scalings) in
the model selection. This would have involved a further application of the union bound with the 20
entries of the Table for each problem, at the cost of adding an extra ln(20)/m (0.0053 for Wdbc and
less for the other datasets) in the right part of Theorem 3.2. We decided to fix the number of scalings
and the amount of training patterns to compute the prior since to perform all of the different options
would augment the computational burden of the model selection.

In order to evaluate the predictive capabilities of the Prior PAC-Bayes bound as a means to select
models with low test error rate, Table 4 displays the averaged test error corresponding to the mod-
els selected in the previous experiment (note that in this case the computational burden involved in
determining the model is increased by the training of the SVM that learns the prior wr). Table 5
displays the test error rate obtained by SVMs with their hyperparameters tuned on the above men-
tioned grid by means of ten-fold cross-validation, that serves as a baseline method for comparison
purposes.

According to the values shown in the tables, the Prior PAC-Bayes bound achieves tighter predictions
of the generalization error of the randomized classifier in almost all cases.

Notice how the length of the prior is not so critical in comparison with its direction. The goodness
of the latter relying on the subset of samples left out for the purpose of learning the prior classifier.
Moreover it has to be remarked that this tightening of the bound does not appear to deliver any
reduction in the capabilities to select a good model (such a case would imply that we can predict
more accurately a bigger error rate, but our bound is able to predict accurately the same error rate as
the PAC-Bayes Bound).



Winsconsin Database of Breast Cancer (PAC-Bayes Test Error = 0.073±0.021)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.076 ± 0.020 0.076 ± 0.021 0.076 ± 0.021 0.076 ± 0.021 0.076 ± 0.021
10 0.075 ± 0.021 0.076 ± 0.021 0.075 ± 0.021 0.074 ± 0.021 0.072 ± 0.021
100 0.076 ± 0.021 0.076 ± 0.021 0.074 ± 0.021 0.074 ± 0.020 0.072 ± 0.021
500 0.076 ± 0.020 0.076 ± 0.021 0.074 ± 0.020 0.073 ± 0.020 0.072 ± 0.021

Image Segmentation (PAC-Bayes Test Error = 0.074±0.014)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.078 ± 0.011 0.078 ± 0.011 0.078 ± 0.011 0.083 ± 0.019 0.100 ± 0.019
10 0.064 ± 0.011 0.066 ± 0.011 0.063 ± 0.014 0.054 ± 0.010 0.056 ± 0.011
100 0.064 ± 0.011 0.063 ± 0.011 0.061 ± 0.011 0.059 ± 0.011 0.057 ± 0.012
500 0.064 ± 0.011 0.063 ± 0.011 0.061 ± 0.011 0.059 ± 0.011 0.057 ± 0.012

Waveform (PAC-Bayes Test Error = 0.089±0.008)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.089 ± 0.008 0.089 ± 0.008 0.090 ± 0.009 0.091 ± 0.009 0.091 ± 0.009
10 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.009
100 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.009
500 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.008 0.089 ± 0.009

Ringnorm (PAC-Bayes Test Error = 0.026±0.005)
Scalings Percentage of training set used to compute the prior

10 % 20% 30% 40% 50%
1 0.025 ± 0.004 0.030 ± 0.007 0.038 ± 0.005 0.036 ± 0.007 0.038 ± 0.005
10 0.020 ± 0.007 0.021 ± 0.007 0.021 ± 0.007 0.025 ± 0.008 0.026 ± 0.008
100 0.020 ± 0.007 0.021 ± 0.007 0.021 ± 0.007 0.025 ± 0.008 0.026 ± 0.008
500 0.020 ± 0.007 0.021 ± 0.007 0.021 ± 0.007 0.025 ± 0.008 0.025 ± 0.005

Table 4: Averaged Test Error Rate corresponding to the model determined by the bound for the
different settings of Table 3.

Problem Cross-validation error rate Test error rate
Wdbc 0.060 ± 0.006 0.072 ± 0.024
Image 0.022 ± 0.002 0.024 ± 0.008

Waveform 0.079 ± 0.011 0.085 ± 0.009
Ringnorm 0.015 ± 0.001 0.017 ± 0.004

Table 5: Averaged test error rate. For every partition we select the test error rate corresponding to
the model reporting the smaller cross-validation error.

However, the comparison with Table 5 points out that the PAC-Bayes bound is not as accurate
as Ten Fold cross-validation when it comes to selecting a model that yields a low test error rate.
Nevertheless, in two out of the four problems (waveform, and wdbc) the bound provided a model
as good as the one found by cross-validation, added to the fact that in ringnorm the error bars
overlap. We conclude the discussion by pointing that the Cross-validation error rate cannot be used
directly as a prediction on the expected test error rate in the sense of worse case performances. Of
course the values of the cross-validation error rate and the test error rate are close, but it is difficult
to predict how close they are going to be.



5 Conclusions and ongoing research

In this paper we have presented a version of the PAC-Bayes bound for linear classifiers that intro-
duces the learning of the prior distribution over the classifiers. This prior distribution is a Gaussian
with identity covariance matrix. The mean weight vector is learnt in the following way: its direction
is determined from a separate subset of the training examples, while its length has to be chosen from
an a priori fixed set of lengths.

The experimental work shows that this new version of the bound achieves tighter predictions of the
generalization error of the stochastic classifier, compared to the original PAC-Bayes bound predic-
tions. Moreover, if the model selection is driven by the bound, the Prior PAC-Bayes does not degrade
the quality of the model selected by the original bound. Nevertheless, it has to be said that in some
of our experiments the model selected by the bounds resulted as accurate as the ones selected by
ten-fold cross-validation in terms of test error rate on a separate test. This fact is remarkable since
to include the model selection in the training of the classifier roughly multiplies by ten the computa-
tional burden of the training when using ten-fold cross-validation but roughly by two when using the
prior PAC-Bayes bound. Of course the original PAC-Bayes provides with a cheaper model selection,
but its predictions about the generalization capabilities are more pessimistic.

The amount of training patterns used to learn the prior seems to be a key aspect in the goodness of
this prior and thus in the tightness of the bound. Therefore, ongoing research includes methods to
systematically determine an amount of patterns that provides with suitable priors. Another line of
research explores the use of these bounds to reinforce different properties of the design of classifiers,
such as sparsity. Finally, a deeper study about which dataset structure causes differences among the
performances of cross-validation and bound-driven model selections is also being carried out.
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