Mixture density models

Victor Kitov

Table of Contents

(1) Mixture models
(2) K-means
(3) Simplifications of Gaussian mixtures

Sample density

Consider sample density:

Parametric density approximation

It can be accurately modelled with existing parametric family Normal

Non-standard sample distribution

What to do if no parametric model fits well?

Mixture models

$$
p(x)=\sum_{z=1}^{z} \phi_{z} p\left(x ; \theta_{z}\right)
$$

- Z - number of components
- $\phi_{z}, z=1,2, \ldots Z$ - mixture component probabilities, $\phi_{z} \geq 0, \sum_{z=1}^{z} \phi_{z}=1$
- $p\left(x ; \theta_{z}\right)$ - component density functions
- Parameters of mixture model $\Theta=\left\{\phi_{z}, \theta_{z}, z=1,2, \ldots Z\right\}$
$p\left(x, \theta_{z}\right)$ may be of single or different parametric families.

Mixture of Gaussians

Gaussians model continious r.v. on $(-\infty,+\infty)$. $p\left(x, \theta_{z}\right)=N\left(x, \mu_{z}, \Sigma_{z}\right), \theta_{z}=\left\{\mu_{z}, \Sigma_{z}\right\}$.

$$
\begin{equation*}
p(x)=\sum_{z=1}^{Z} \phi_{z} N\left(x, \mu_{z}, \Sigma_{z}\right) \tag{1}
\end{equation*}
$$

Mixtures of other distributions

Mixture of random variables:

- continious, distributed on $(-\infty,+\infty)$
- continious, distributed on $[a, \infty)$
- continious, distributed on $[a, b]$
- discrete, distributed on $[a, \infty)$
- discrete, distributed on $[a, b]$

Mixtures of other distributions

Mixture of random variables:

- continious, distributed on $(-\infty,+\infty)$
- Normal, Laplace, Student
- continious, distributed on $[a, \infty)$
- Gamma
- continious, distributed on $[a, b]$
- Beta
- discrete, distributed on $[a, \infty)$
- Poisson
- discrete, distributed on $[a, b]$
- Binomial

Sampling from mixture

(1) Sample mixture component z with random probabilities $\phi_{1}, \phi_{2}, \ldots \phi_{z}$

Sampling from mixture

(1) Sample mixture component z with random probabilities $\phi_{1}, \phi_{2}, \ldots \phi_{z}$

- to do that we sample $u \sim$ Uniform $[0,1]$ and select component z if $\sum_{k=1}^{z-1} \phi_{k}<u \leq \sum_{k=1}^{z} \phi_{z}$
(2) Sample observation $x \sim p\left(x \mid \theta_{z}\right)$

Classification using mixtures

Model within class probability with mixtures:

$$
p(x \mid y)=\sum_{z=1}^{z y} \phi_{y, z} p\left(x ; \theta_{y, z}\right)
$$

where $Z_{y}, \pi_{y, z}$ and $p\left(x ; \theta_{y, z}\right)$ are specific for each class y.
Bayes decision rule:

$$
\widehat{y}=\arg \max _{y} \lambda_{y} p(y) p(x \mid y)
$$

$\lambda_{y}-$ cost for misclassifying class y
$p(y)$ - prior for class y
$p(x \mid y)$ - within class probability

EM-algorithm for normal mixtures

Initialize ϕ_{j}, μ_{j} and $\Sigma_{j}, j=1,2, \ldots g$.
repeat while stopping condition not satisfied:
E-step. Calculate correspondences of x_{n} to component z :
for $n=1,2, \ldots N$:
for $z=1,2, \ldots Z$:

$$
w_{n z}=\frac{\phi_{z} N\left(x_{n} ; \mu_{z}, \Sigma_{z}\right)}{\sum_{k} \phi_{k} N\left(x_{n} ; \mu_{k}, \Sigma_{k}\right)} \quad \#=p(z \mid \times(n))
$$

M-step. Update component parameters:
for $z=1,2, \ldots Z$:

$$
\begin{aligned}
& \widehat{\phi}_{z}=\frac{1}{N} \sum_{n=1}^{N} w_{n z} \\
& \widehat{\mu}_{z}=\frac{\sum_{n=1}^{N} w_{n z} x_{n}}{\sum_{n=1}^{N} w_{n z}} \\
& \widehat{\Sigma}_{z}=\frac{1}{\sum_{n=1}^{N} w_{n z}} \sum_{n=1}^{N} w_{n z}\left(x_{n}-\widehat{\mu}_{z}\right)\left(x_{n}-\widehat{\mu}_{z}\right)^{T}
\end{aligned}
$$

Interpretation

$$
\begin{aligned}
w_{n z} & =P\left(z \mid x_{n}\right)=\frac{P\left(z, x_{n}\right)}{P\left(x_{n}\right)}=\frac{P\left(z, x_{n}\right)}{\sum_{k} P\left(k, x_{n}\right)}= \\
& =\frac{P(z) P\left(x_{n} \mid z\right)}{\sum_{k} P(k) P\left(x_{n} \mid k\right)}=\frac{\widehat{\phi}_{z} N\left(x_{n} ; \widehat{\mu}_{z}, \widehat{\Sigma}_{z}\right)}{\sum_{k} \widehat{\phi}_{k} N\left(x_{n} ; \widehat{\mu}_{k}, \widehat{\Sigma}_{k}\right)}
\end{aligned}
$$

$\widehat{\phi}_{z}, \widehat{\mu}_{z}, \widehat{\Sigma}_{z}$ are weighted averages, weighted with $w_{n z}=P\left(z \mid x_{n}\right)$:

$$
\begin{gather*}
\widehat{\phi}_{z}=\frac{1}{N} \sum_{n=1}^{N} w_{n z} \quad \widehat{\mu}_{z}=\frac{\sum_{n=1}^{N} w_{n z} x_{n}}{\sum_{n=1}^{N} w_{n z}} \\
\widehat{\Sigma}_{z}=\frac{1}{\sum_{n=1}^{N} w_{n z}} \sum_{n=1}^{N} w_{n z}\left(x_{n}-\widehat{\mu}_{z}\right)\left(x_{n}-\widehat{\mu}_{z}\right)^{T} \tag{2}
\end{gather*}
$$

Table of Contents

(1) Mixture models

(2) K-means
(3) Simplifications of Gaussian mixtures

K-means algorithm

- Suppose we want to cluster our data into g clusters.
- Cluster i has a center $\mu_{i}, i=1,2, \ldots g$.
- Consider the task of minimizing

$$
\begin{equation*}
\sum_{n=1}^{N} \rho\left(x_{n}, \mu_{z_{n}}\right)^{2} \rightarrow \min _{z_{1}, \ldots z_{N}, \mu_{1}, \ldots \mu_{g}} \tag{3}
\end{equation*}
$$

where $z_{i} \in\{1,2, \ldots g\}$ is cluster assignment for x_{i} and $\mu_{1}, \ldots \mu_{g}$ are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (3).

K-means algorithm

Initialize $\mu_{j}, j=1,2, \ldots g \quad$ \# usually by setting them \# to randomly chosen $x(n)$
repeat while stop condition not satisfied:
for $i=1,2, \ldots N: \quad \#$ cluster assignements

$$
z_{i}=\arg \min _{j \in\{\mathbf{1}, 2, \ldots g\}}\left\|x_{i}-\mu_{j}\right\|
$$

for $j=1,2, \ldots g: \quad \#$ means recalculation
$\mu_{j}=\frac{\mathbf{1}}{\sum_{n=\mathbf{1}}^{N} \mathbb{I}\left[z_{n}=j\right]} \sum_{n=\mathbf{1}}^{N} \mathbb{I}\left[z_{n}=j\right] x_{i}$
Possible stop conditions:

- cluster assignments $z_{1}, \ldots z_{N}$ stop to change (typical)
- maximum number of iterations reached
- cluster means $\left\{\mu_{i}, i=1,2, \ldots g\right\}$ stop changing significantly

K-means versus EM clustering

K-means versus EM clustering

- For each $x_{n} \mathrm{EM}$ algorithm gives $w_{n z}=p\left(z \mid x_{n}\right)$.
- This is soft or probabilistic clustering into Z clusters, having priors $\phi_{1}, \ldots \phi_{Z}$ and probability distributions $p\left(x ; \theta_{1}\right), \ldots p\left(x ; \theta_{Z}\right)$.
- We can make it hard clustering using $z_{n}=\arg \max _{z} w_{n z}$.
- EM clustering becomes K-means clustering when:
- applied to Gaussians
- with equal priors
- with unity covariance matrices
- with hard clustering

Initialization for Gaussian mixture EM

(1) Fit K-means to $x_{1}, x_{2}, \ldots x_{N}$, obtain cluster centers $\mu_{z}, z=1,2, \ldots Z$ and cluster assignments $z_{1}, z_{2}, \ldots z_{N}$.
(2) Initialize mixture probabilities

$$
\widehat{\phi}_{z} \propto \sum_{n=1}^{N} \mathbb{I}\left[z_{n}=z\right]
$$

(3) Initialize Gaussian means with cluster centers $\mu_{z}, z=1,2, \ldots Z$.
(9) Initialize Gaussian covariance matrices with

$$
\widehat{\Sigma}_{z}=\frac{1}{\sum_{n=1}^{N} \mathbb{I}\left[z_{n}=z\right]} \sum_{n=1}^{N} \mathbb{I}\left[z_{n}=z\right]\left(x_{n}-\mu_{z}\right)\left(x_{n}-\mu_{z}\right)^{T}
$$

Properties of EM

- Many local optima exist
- in particular likelihood $\rightarrow \infty$ when $\mu_{z}=x_{i}$ and $\sigma_{z} \rightarrow 0$
- Only local optimum is found with EM
- Results depends on initialization
- It is common to run algorithm multiple times with different initializations and then select the result maximizing the likelihood function.
- Number of components may be selected with:

Properties of EM

- Many local optima exist
- in particular likelihood $\rightarrow \infty$ when $\mu_{z}=x_{i}$ and $\sigma_{z} \rightarrow 0$
- Only local optimum is found with EM
- Results depends on initialization
- It is common to run algorithm multiple times with different initializations and then select the result maximizing the likelihood function.
- Number of components may be selected with:
- cross-validation on the final task
- out-of-sample maximum likelihood
- statistical tests, heuristics, such as AIC/BIC information criteria

Table of Contents

(1) Mixture models

(2) K-means
(3) Simplifications of Gaussian mixtures

Simplifications of Gaussian mixtures

- $\Sigma_{z} \in \mathbb{R}^{D \times D}$ requires $\frac{D(D+1)}{2}$ parameters.
- Covariance matrices for Z components require $Z \frac{D(D+1)}{2}$ parameters.
- Components can be poorly identified when
- $Z \frac{D(D+1)}{2}$ is large compared to N
- when components are not well separated
- In these cases we can impose restrictions on covariance matrices.

Unrestricted covariance matrices

- full covariance matrices $\Sigma_{z}, z=1,2, \ldots Z$.
full

Common covariance matrix

- $\Sigma_{1}=\Sigma_{2}=\ldots=\Sigma_{Z}$

Diagonal covariance matrices

- $\Sigma_{z}=\operatorname{diag}\left\{\sigma_{z, 1}^{2}, \sigma_{z, 2}^{2} \ldots \sigma_{z, D}^{2}\right\}$
diag

Spherical matrices

- $\Sigma_{z}=\sigma_{z}^{2} I, I \in \mathbb{R}^{D \times D}$ - identity matrix
spherical

