K-nearest neighbours

Victor Kitov v.v.kitov@yandex.ru K-NN - Victor Kitov Basic variant of K-NN

Table of Contents

2 Distance metric selection

3 Weighted voting

K-nearest neighbours

Classification using k nearest neighbours

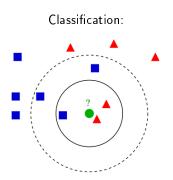
- Find k closest objects to the predicted object x in the training set.
- 2 Associate x the most frequent class among its k neighbours.
 - Regression case: targets of nearest neighbours are averaged
 - k = 1: nearest neighbour algorithm¹
 - Base assumption of the method²:
 - similar objects yield similar outputs

²what is simpler - to train K-NN model or to apply it?

¹what will happen for K = N?

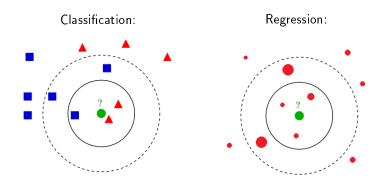
K-NN - Victor Kitov Basic variant of <u>K-NN</u>

K-NN illustration

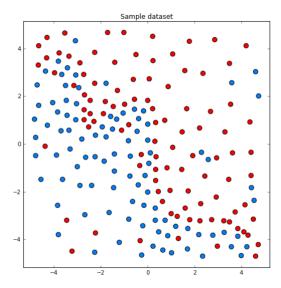


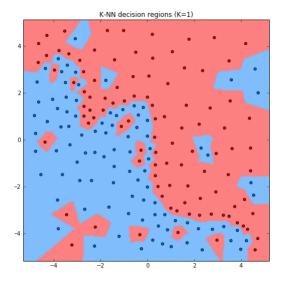
K-NN - Victor Kitov Basic variant of K-NN

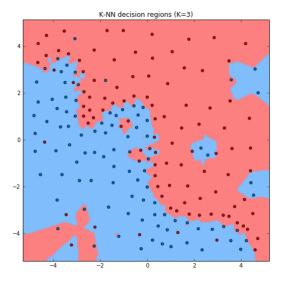
K-NN illustration

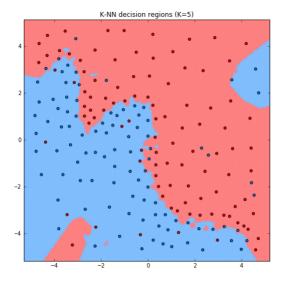


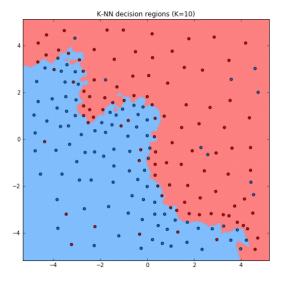
Sample dataset

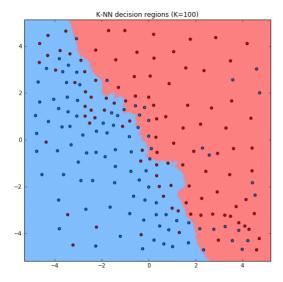






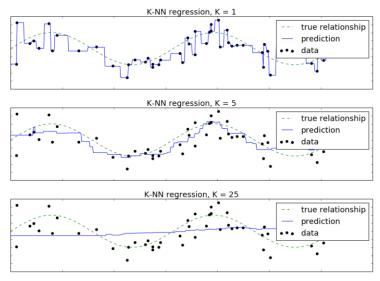






Basic variant of K-NN

Example: K-NN regression



10/36

Parameters of the method

- Parameters:
 - the number of nearest neighbours K
 - distance metric $\rho(x, y)$
- Modifications:
 - $\bullet~$ forecast rejection option 3
 - variable K⁴

³Propose a rule, under what conditions to apply rejection in a) classification b) regression

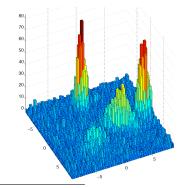
⁴Propose a method of K-NN with adaptive variable K in different parts of the feature space

Properties

- Advantages:
 - only similarity between objects is needed, not exact feature values.
 - so it may be applied to objects with arbitrary complex feature description
 - simple to implement
 - interpretable (case based reasoning)
 - does not need training
 - may be applied in online scenarios
 - Cross-validation may be replaced with LOO.
- Disadvantages:
 - slow classification with complexity O(N)
 - accuracy deteriorates with the increase of feature space dimensionality

The curse of dimensionality

- The curse of dimensionality: with growing D data distribution becomes sparse and insufficient.
- Example: histogram estimation⁵



⁵ At what rate should training size grow with increase of D to compensate curse of dimensionality?

Curse of dimensionality

- Case of K-nearest neigbours:
 - assumption: objects are distributed uniformly in feature space
 - ball of radius R has volume $V(R) = CR^D$, where $C = \frac{\pi^{D/2}}{\Gamma(D/2+1)}$.
 - ratio of volumes of balls with radius $R \varepsilon$ and R:

$$\frac{V(R-\varepsilon)}{V(R)} = \left(\frac{R-\varepsilon}{R}\right)^D \stackrel{D\to\infty}{\longrightarrow} 0$$

- most of volume concentrates on the border of the ball, so there lie the nearest neighbours.
- nearest neighbours stop being close by distance
- Good news: in real tasks the true dimensionality of the data is often less than *D* and objects belong to the manifold with smaller dimensionality.

K-NN - Victor Kitov Basic variant of K-NN

Dealing with similar rank

When several classes get the same rank, we can assign to class:

Dealing with similar rank

When several classes get the same rank, we can assign to class:

- with higher prior probability
- having closest representative
- having closest mean of representatives (among nearest neighbours)
- which is more compact, having nearest most distant representative

K-NN - Victor Kitov Distance metric selection

Table of Contents

2 Distance metric selection

3 Weighted voting

Distance metric selection

- Baseline case Euclidean metric
- Necessary to normalize features.
 - Define μ_j , σ_j , L_j , U_j to be mean value, standard deviation, minimum and maximum value of the *j*-th feature.

Name	Transformation	Properties of resulting feature
Autoscaling	$x'_j = rac{x_j - \mu_j}{\sigma_j}$	zero mean and unit variance.
Range scaling	$x_j' = rac{x_j - L_j}{U_j - L_j}$	belongs to $[0,1]$ interval.

Normalization of features

• Non-linear transformations incorporating features with rare large values:

• For $F_i(\alpha) = P(x^i \leq \alpha)$ transformation $\tilde{x}^i \to F_i(x^i)$ will give feature uniformly distributed on $[0, 1]^6$.

⁶Prove that

Distance metric selection⁷

Metric	<i>d</i> (<i>x</i> , <i>z</i>)
Euclidean	$\sqrt{\sum_{i=1}^{D} (x^i - z^i)^2}$
L _p	$\sqrt[p]{\sum_{i=1}^{D} (x^i - z^i)^p}$
L_{∞}	$\max_{i=1,2,\dots D} x^i - z^i $
L_1	$\sum_{i=1}^{D} x^i - z^i $
Canberra	$\frac{1}{D}\sum_{i=1}^{D}\frac{ x^i-z^i }{ x^i+z^i }$
Lance-Williams	$\frac{\sum_{i=1}^{D} x^i - z^i }{\sum_{i=1}^{D} x^i + z^i }$

⁷Plot iso-lines for L_1, L_2, L_∞ metrics/36

Other frequently used measures

Cosine metric⁸

$$s(x,z) = \frac{\langle x, z \rangle}{\|x\| \|z\|} = \frac{\sum_{i=1}^{D} x^{i} z^{i}}{\sqrt{\sum_{i=1}^{D} (x^{i})^{2}} \sqrt{\sum_{i=1}^{D} (z^{i})^{2}}}$$

$$f(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- ⁸Is it a measure of distance or a measure of similarity? Use $\langle x, z \rangle = \|x\| \|z\| \cos(\alpha)$ where α is the angle between x and y.
- Is it a measure of distance or a measure of similarity?
- ¹⁰Compare qualitively cosine and Jaccard measures for binary encoded sets.

Whitening transformation

- $x \sim F(\mu, \Sigma)$, $\mu = \mathbb{E}[\mu]$, $\Sigma = cov(x, x)$, $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$
- Whitening transformation:

$$z = \Sigma^{-1/2} (x - \mu)$$

• Properties¹¹:

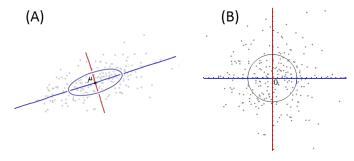
$$Ez = \mathbf{0}, \ cov[z, z] = I.$$

¹¹Prove them

Distance between whitened objects (Mahalanobis distance)

(A): object in initial feature space with Mahalonobis sphere $G_{\alpha} = \{x : \rho_M(x, \mu) = \alpha\}.$

(B): the image of objects and sphere in normalized space $(Im[G_{\alpha}] = \{z : \rho_E(z, 0) = \alpha\}.$



Distance between normalized feature vectors

• Distance between normalized x and x' is equal to Euclidean distance between $z = \Sigma^{-1/2}(x - \mu)$ and $z' = \Sigma^{-1/2}(x' - \mu)$:

$$\rho_{M}(x, x') = \rho_{E}(z, z') = \sqrt{(z - z')^{T}(z - z')} = = \sqrt{(x - x')^{T} \Sigma^{-1/2} \Sigma^{-1/2} (x - x')} = \sqrt{(x - x')^{T} \Sigma^{-1} (x - x')}$$

• This is known as *Mahalonobis distance*¹².

¹²

How will Mahalanobis distance look like when features are uncorrelated? Interpret the result.

Table of Contents

Basic variant of K-NN

2 Distance metric selection

3 Weighted voting

Weighted voting

Let training set $x_1, x_2, ... x_N$ be rearranged to $x_{i_1}, x_{i_2}, ... x_{i_N}$ by increasing distance to the test pattern x: $d(x, x_{i_1}) \leq d(x, x_{i_2}) \leq ... \leq d(x, x_{i_N})$. Define $z_1 = x_{i_1}, z_2 = x_{i_2}, ... z_K = x_{i_K}$. Usual K-NN algorithm can be defined, using C discriminant functions:

$$g_c(x) = \sum_{k=1}^{K} \mathbb{I}[z_k \in \omega_c], \quad c = 1, 2, \dots C.$$

Weighted voting

Let training set $x_1, x_2, ... x_N$ be rearranged to $x_{i_1}, x_{i_2}, ... x_{i_N}$ by increasing distance to the test pattern x: $d(x, x_{i_1}) \leq d(x, x_{i_2}) \leq ... \leq d(x, x_{i_N})$. Define $z_1 = x_{i_1}, z_2 = x_{i_2}, ... z_K = x_{i_K}$. Usual K-NN algorithm can be defined, using C discriminant functions:

$$g_c(x) = \sum_{k=1}^{K} \mathbb{I}[z_k \in \omega_c], \quad c = 1, 2, \dots C.$$

Weighted K-NN algorithm uses weighted voting scheme:

$$g_c(x) = \sum_{k=1}^K w(k, d(x, z_k)) \mathbb{I}[z_k \in \omega_c], \quad c = 1, 2, ... C.$$

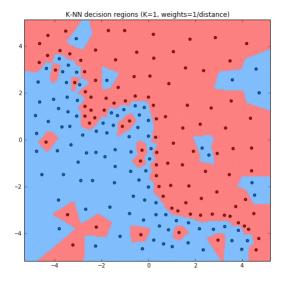
Commonly chosen weights

Index dependent weights:

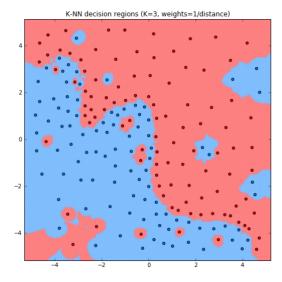
$$w_k = lpha^k, \quad lpha \in (0, 1)$$
 $w_k = rac{K+1-k}{K}$

Distance dependent weights:

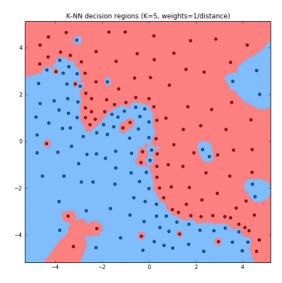
$$w_k = egin{cases} rac{d(z_K,x) - d(z_k,x)}{d(z_K,x) - d(z_1,x)}, & d(z_K,x)
eq d(z_1,x) \ 1 & d(z_K,x) = d(z_1,x) \ w_k = rac{1}{d(z_k,x)} \end{cases}$$

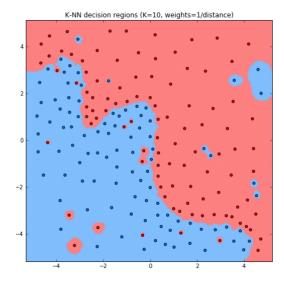


27/36

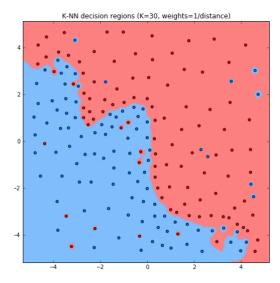


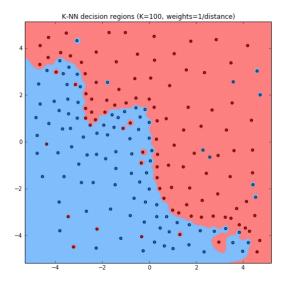
28/36





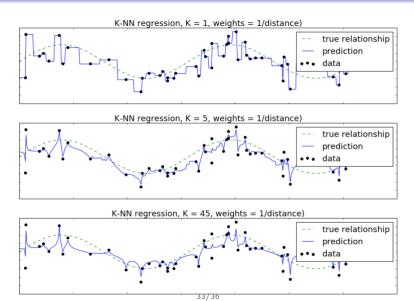
30/36





K-NN - Victor Kitov Weighted voting

Example: K-NN regression with weights



Margin definition

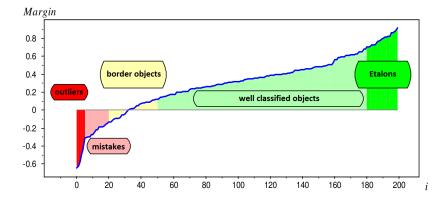
- Consider the training set: $(x_1, c_1), (x_2, c_2), ...(x_N, c_N)$, where c_i is the correct class for object x_i , and $\mathbf{C} = \{1, 2, ..., C\}$ is the set of all classes.
- Define the margin:

$$M(x_i, c_i) = g_{c_i}(x_i) - \max_{c \in \mathbf{C} \setminus \{\mathbf{c}_i\}} g_c(x_i)$$

margin is negative <=> object x_i was incorrectly classified
the value of margin shows how much the classifier is inclined to vote for class c_i

K-NN - Victor Kitov Weighted voting

Categorization of objects based on margin



Good classifier should:

- minimize the number of negative margin region
- classify correctly with high margin

Alternative to K-NN: Parzen window method¹³

Parzen window method:

$$\widehat{f}(x) = \arg \max_{y \in Y} \sum_{n=1}^{N} \mathbb{I}[y_n = y] \mathcal{K}\left(\frac{\rho(x, x_n)}{h(x)}\right)$$

- Selection of h(x):
 - h(x) = const
 h(x) = ρ(x, z_K), where z_K K-th nearest neighbour.
 - better for unequal distribution of objects

13

Under what selection of K(u) and h(x) will Parzen window reduce to simple K-NN?