xgBoost

Victor Kitov

Introduction

- xgBoost one of many open source realizations of gradient boosting.
- Very successful:
 - among 29 kaggle competitions on Kaggle in 2015 17 winning solutions used xgBoost and among these 8 used only xgBoost.
- Success reasons:
 - optimization criteria is flexible enough to fit any loss function
 - optimization criteria has regularization.
 - optimized for big data
 - optimized for sparse data
- We will consider only optimization criteria here.

Boosting reminder

 Boosting prediction is performed with sum of M predictor functions:

$$\widehat{y}_i = \sum_{m=1}^M f_m(x_i),$$

where each f_m is a regression tree:

- $f_m \in \{f(x) = w_{q(x)}\},$
- $q: \mathbb{R}^D \to T, w \in \mathbb{R}^T$
- T is the number of leaves.
- Each tree f_m :
 - has independent tree structure q(x) and weights w
 - is built greedily after optimizing $f_1, f_2, ... f_{m-1}$ to achieve greatest score improvement.

Optimization score

At step *m* we optimize:

$$L^{(m)}(f_m) = \sum_{n=1}^{N} \mathcal{L}(y_n, \hat{y}_n^{(m-1)} + f_m(x_n)) + R(f_m)$$
 (1)

Here:

- $\mathcal{L}(y_n, \widehat{y}_n^{(m)})$ is the loss induced by predicting y_n with \widehat{y}_n
- $R(f_m) = \gamma T + \frac{1}{2} \lambda \|w\|^2$ is the regularization term, penalizing f_m for complexity.

 - γT penalizes the number of leaves $\|w\|^2 = \sum_{t}^{T} w_t^2$ penalizes the magnitude of leaf predictions.

Taylor expansion

• Using Taylor expansion expand $\mathcal{L}(y_n, \widehat{y}_n^{(m)})$ into

$$\mathcal{L}(y_n, \widehat{y}_n^{(m)}) \approx \mathcal{L}(y_n, \widehat{y}_n^{(m-1)}) + g_n f_m(x_n) + \frac{1}{2} h_n f_m^2(x_n)$$
 (2)

where

$$g_n = \frac{\partial}{\partial \widehat{y}^{(m-1)}} \mathcal{L}\left(y_n, \widehat{y}_n^{(m-1)}\right), \qquad h_n = \frac{\partial^2}{\partial^2 \widehat{y}^{(m-1)}} \mathcal{L}\left(y_n, \widehat{y}_n^{(m-1)}\right)$$

• Plugging (2) into (1), obtain:

$$L^{(m)}(f_m) \approx \sum_{n=1}^{N} \left[\mathcal{L}(y_n, \widehat{y}_n^{(m-1)}) + g_n f_m(x_n) + \frac{1}{2} h_n f_m^2(x_n) \right] + R(f_m)$$
(3)

Taylor expansion

• We get approximate criterion for (3):

$$\widehat{L}^{(m)}(f_m) = \sum_{n=1}^{N} \left[\mathcal{L}(y_n, \widehat{y}_n^{(m-1)}) + g_n f_m(x_n) + \frac{1}{2} h_n f_m^2(x_n) \right] + \gamma T + \frac{1}{2} \lambda \sum_{t=1}^{T} w_t^2$$
(4)

• Define $I_t = \{n : q(x_n) = t\}$. Then (4) can be rewritten as:

$$\widehat{L}^{(m)}(f_m) = \sum_{t=1}^{T} \left[\left(\sum_{n \in I_t} g_n \right) w_t + \frac{1}{2} \left(\sum_{n \in I_t} h_n + \lambda \right) w_t^2 \right] + \gamma T + const(f_m)$$
(5)

Optimized loss

• Optimizing (5) with respect to w_t , we obtain:

$$w_t^* = -\frac{\sum_{n \in I_t} g_n}{\sum_{n \in I_t} h_n + \lambda}$$

• Plugging w_t^* into (5) gives

$$L^* = -\frac{1}{2} \sum_{t=1}^{T} \frac{\left(\sum_{n \in I_t} g_n\right)^2}{\sum_{n \in I_t} h_n + \lambda} + \gamma T + const(f_m)$$

Split finding

- ullet In optimized loss we have fixed optimal weight w_t^*
- Optimized loss can also be used as impurity function in greedy one-step-ahead tree building.
- define I indexes of objects in the node, being split into left and right node
 - ullet define I_L , I_R indexes of objects inside left and right node
 - using L* the split is found to maximize the gain:

$$gain = -L_{left}^* - L_{right}^* + L_{initial}^*
ightarrow \max_{feature, threshold}$$

which is equal to

$$\frac{1}{2} \left[\frac{\left(\sum_{n \in I_L} g_n\right)^2}{\sum_{n \in I_L} h_n + \lambda} + \frac{\left(\sum_{n \in I_R} g_n\right)^2}{\sum_{n \in I_R} h_n + \lambda} - \frac{\left(\sum_{n \in I} g_n\right)^2}{\sum_{n \in I} h_n + \lambda} \right] - \gamma$$

Additional extensions of xgBoost

- Shrinkage in xgBoost is the same as in usual boosting
- Subsampling is possible:
 - over objects
 - over features
- Approximate split finding possible
 - suppose N (number of objects) is large.
 - for continuous feature there may be up to N unique feature values.
 - instead of looking through all unique values, it is possible to look through fixed number of percentiles:
 - found once and for all nodes
 - or recalculated at each node

Conclusion

- xgBoost is very successful gradient boosting open source implementation
- tree construction is not tied to specific criteria (entropy, gini)
 but is adapted to final user loss function
- optimized loss function has regularization, penalizing complex base learner trees.
- it is possible to optimize through a representative subset of feature values instead of all feature values by looping through percentiles.