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One of the main problems in statistical learning
theory is obtaining sufficiently tight generalization
bounds. This problem has remained open for more
than 40 years since the rise of Vapnik–Chervonenkis
(VC) theory [15, 16]. The tightest of the known
bounds are still highly overestimated [10]. The overes�
timation leads either to an unjustified requirement to
increase the sample length up to 105–108 objects [17]
or, in structural risk minimization, to oversimplifica�
tion of classifiers [8]. The known bounds only qualita�
tively describe the relation between overfitting and the
complexity of a set of classifiers; however, they do not
always admit exact quantitative predictions and con�
trolling the learning process. The question of whether
or not overfitting is related to some finer and not�yet�
studied phenomena remains open.

The aim of the present study is to find the cause of
overestimation and to search for ways to improve the
bounds. We show that the overfitting probability essen�
tially depends not only on the complexity of the set
(the number of classifiers in the set) but also on the
diversity of these classifiers. To obtain tight bounds,
one should simultaneously take into account the fol�
lowing two facts: similarity of classifiers in the set and
splitting of the set into error levels. The neglect of one
of these factors frustrates all the efforts to take into
account the second factor. This conclusion is also con�
firmed by the argument that known attempts to take
into account one of these factors separately [2, 1 4, 10]
have not radically improved the bound.

In Section 1, we introduce necessary concepts and
definitions, including the weak (permutational) prob�
abilistic axiom. Section 2 is of survey character; in this

section we present some improvements of VC bounds
due to taking into account the diversity of classifiers.
In Section 3, we derive an exact combinatorial bound
for the probability of overfitting for a set of two classi�
fiers. This is the simplest particular case that exhibits
both overfitting and splitting and similarity properties,
which reduce the probability of overfitting. In Section
4, we consider special classifier sets, called chains of
classifiers, for which the effects of splitting and simi�
larity can be estimated separately. Model experiments
show that computationally tight bounds for the proba�
bility of overfitting can only be obtained by simulta�
neous consideration of the splitting and similarity of
the classifiers.

1. PROBLEM OF ESTIMATING 
THE PROBABILITY OF OVERFITTING

Suppose given a set � = {x1, …, xL}, called a full, or
general, sample. The elements of the set � are called
objects. Let � be a set whose elements are called clas�
sifiers. There exists a binary loss function I: � × � →
{0, 1}. If I(a, x) = 1, it is said that the classifier a makes
an error on the object x.

The number of errors of a classifier a on a sample
X ⊆ � is defined as

The error rate, or the empirical risk, of a classifier a

on a sample X is the quantity ν(a, X) = n(a, X); it

takes values on the interval [0, 1].

n a X,( ) I a x,( ).
x X∈

∑=

1
X
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Denote by  the set of all l�element subsets of the

general sample �. It is obvious that  = .

A learning algorithm is a function μ:  → � that
maps a certain classifier a = μX from � to an arbitrary

training sample X ∈ .

Empirical risk minimization] is a learning algorithm

(1.1)

Let us explain these concepts. In classification
problems, a classifier is a computable function a: � →
� that assigns a class label from a given finite set � to
each object x from �; the error indicator is given by

where y: � → � is an unknown target function. Here
and below, brackets are used to transform a logical
variable into the numbers 0 or 1 according to Iverson’s
convention [true] = 1 and [false] = 0 [5]. The set � is
a parametric set of classifiers, for example, separating
hyperplanes, neural networks, decision trees, etc. [6].
A learning algorithm μ learns the parameters of the
classifier from a given training sample X with known
classifications yi = y(xi). It is also said that the algo�
rithm μ learns the function y(x) from the empirical data

. Examples of well�known learning algo�
rithms are support vector machines (SVMs) for sepa�
rating hyperplanes, back propagation for neural net�
works, and C4.5 for decision trees [6].

In regression problems, “classifiers” are functions
a: � → �; the error indicator can be defined as

where y: � → � is an unknown regression function
and δ is the error threshold.

In the present study, there is no need to specify
what a classifier is. It suffices to assume that classifiers
are elements of an abstract set � under the additional
assumption that there exists a binary loss function that
gives 1 iff a classifier a makes an error on an object x.
This interpretation of a classifier, on the one hand,
extends the class of problems considered but, on the
other hand, restricts this class to problems in which the
value of the error is not essential.

The deviation of error rates of a classifier a on two

samples X and  = �\X is the difference δ(a, X) = ν(a,

) – ν(a, X).

The deviation of error rates of a classifier a = μ(X)
is called the overfitting of the algorithm μ on the sam�
ple X:

�L
l

�L
l

CL
l

�L
l

�L
l

μX n a X,( ).
a �∈

argmin=

I a x,( ) a x( ) y x( )≠[ ],=

xi yi,( )i 1=
l

I a x,( ) a x( ) y x( )– δ≥[ ],=

X

X

δμ X( ) δ μ X( ) X,( ) ν μ X( ) X,( ) ν μ X( ) X,( ).–= =

We will say that an algorithm μ is overfitted on a
sample X if δμ(X) ≥ ε, where ε is the threshold param�
eter.

Note that usually the term overfitting is introduced
informally and denotes a frequently encountered
unwanted phenomenon when a classifier learned from
a training sample works much more poorly on new
testing data. Here we give this term a more rigorous
formal meaning.

We will stick to the weak probabilistic axiom [18],
which is based on a single probabilistic assumption. It

is assumed that all  partitions of the general sample
� into an observed training sample X of length l and a

hidden testing sample  of length k = L – l can be real�
ized with equal probability. This assumption is in fact
equivalent to the standard conjecture that the ele�
ments of the sample � are independent. However, it is
not assumed that the probability measure exists on the
whole space of objects; moreover, even the space itself
is not introduced. Under the weak axiom, events are
subsets of partitions of the sample �. More precisely,

for an arbitrary predicate β:  → {true, false}, the
probability of event β(X) is defined as the fraction of
partitions for which β(X) is true:

Within the weak axiom, we will consider one of the
main problems of statistical learning theory. Our goal
is to obtain tight upper bounds for the probability of
overfitting for a given algorithm μ:

(3.1)

The introduction of the weak axiom is motivated by
the following arguments.

First, in data analysis problems, samples may only
be finite, no matter if these samples are observed his�
torical data or hidden future data. In some problems,
the number of predictions k is so small that it is merely
incorrect to introduce the error probability as the limit
of the error rate as k → ∞. The weak axiom allows one
to obtain exact nonasymptotic results, valid for any
finite l and k, by purely combinatorial methods. The
concept of error probability in the weak axiom is not
defined at all. The quality of classifiers is characterized
by their error rate on finite samples. The value of over�
fitting is defined as the difference of error rates on two
subsamples, rather than the difference between the
error rate and the error probability. Note that this
approach is not new in statistical learning theory. The
first studies by Vapnik and Chervonenkis [16] were also
based on estimations of the difference of error rates in
two subsamples.

Second, one can easily estimate empirically the
probabilities defined in terms of the fractions of sam�

CL
l

X

�L
l

P β X( )[ ] 1

CL
l

����� β X( )[ ].

X xL
l

∈

∑=

Qε μ �,( ) P δμ X( ) ε≥[ ].=
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ple partitions by replacing the average over all parti�
tions by the average over a random subset of partitions
(the Monte Carlo method). This method resembles
cross�validation [4, 9] but differs from it in that here
one estimates the empirical distribution of overfitting,
δμ, rather than the empirical mean of the error rate on

a testing set, ν(μ(X), ). It is this fact that made it pos�
sible [18] to separate and compare numerically the
four basic factors responsible for the overestimation of
the classical VC bounds. In general, the weak axiom
more clearly illustrates the relation between theoreti�
cal bounds and empirical methods such as permuta�
tion tests, bootstrap, and cross�validation.

Third, if necessary, bounds of the form Qε(μ, �) ≤
η(ε) can easily be carried over from the weak axiom to
the strong (Kolmogorov) axiom. To this end, one
makes an additional assumption that the objects in �
are chosen randomly and independently of a certain
unknown probability distribution. Then, it suffices to
take the expectation of both sides of the inequality over
the full sample �:

If the bound η(ε) does not depend on the full sam�
ple �, then it is directly carried over from the weak
axiom to the strong axiom. If the bound depends on a
certain function of the full sample, T(�), then one
should either interpret the value of this function as a
priori knowledge or estimate it by the observed part of
the sample. In either case the form of the bound
remains unchanged under transition from the weak to
the strong axiom. Therefore, it is quite feasible to
remain within the weak axiom.

2. VAPNIK–CHERVONENKIS BOUNDS 
AND THEIR IMPROVEMENTS

First, consider the simplest case when the algo�
rithm μ constructs the same classifier a = μ(X) by any
sample X ⊂ �. Actually, this means that there is no
learning. For a fixed classifier a, one estimates the dif�
ference between the error rates of this classifier on the
hidden and observed samples [18].

Theorem 2.1. Suppose that a classifier a makes m
errors on a full sample: n(a, �) = m. Then the following
exact bound holds for any ε ∈ [0, 1]:

(2.1)

Here (s) =  is a hypergeometric dis�
tribution, s0 = max{0, m – k}, and s1(ε) =

.

When l, k → ∞, the right�hand side of (2.1) tends to
zero. Therefore, Theorem 2.1 can be considered as an

X

P� δμ X( ) ε≥{ } E�Qε μ �,( ) E�η ε( ).≤=

P δ a X,( ) ε≥[ ] hL
l m, s( )

s s0=

s1 ε( )

∑ HL
l m, s1 ε( )( ).≡=

hL
l m, Cm

s CL m–
l s–

/CL
l

l
L
��� m εk–( )

analog of the law of large numbers under the weak
axiom. Moreover, the well�known Chernoff, Bennet,
Hoeffding, and other bounds [12] can be considered as
asymptotic inflated estimates for the exact equality
(2.1).

To generalize Theorem 2.1 to the case of an arbi�
trary learning algorithm μ, one should introduce a few
more concepts.

The error vector of a classifier a on a full sample �
is defined as an L�dimensional binary vector (a)� =

. Since we will mainly deal with the error
vectors of classifiers rather than the classifiers them�
selves, we will use, for short, the symbol a instead of
(a)� and say “vector a.”

A shatter coefficient of the set of classifiers � on the
sample � is the number of different error vectors (a)�

generated by all possible classifiers a ∈ �.
Denote by A the set of error vectors generated by

classifiers of the form a = μX on all possible training
subsamples X:

Note that the cardinality of the set of classifiers

{μX: X ∈ } is no greater than . It may even be

strictly less than  because the algorithm μ may con�
struct identical classifiers from different samples. The
shatter coefficient |A | may be still less because different
algorithms may generate identical error vectors. In the

general case, |A | ≤ .

The set of error vectors A is partitioned into L + 1
disjoint subsets A = A0 ∪ … ∪ AL, where Am = {a ∈ A:
n(a, �) = m} is the set of vectors with m errors. We will
say that A is split into error levels.

A sequence of shatter coefficients |Am |, m = 0, …, L,
is called a shatter profile of the set of classifiers � on the
sample � [18].

To obtain upper bounds for the probability of over�
fitting that are valid for any algorithm μ, in the VC the�
ory [16, 15] and in a number of subsequent works (see
the surveys [3, 1]), the uniform convergence principle
was introduced. The functional Qε is replaced by its

upper bound  —the probability of large deviation of
rates in two subsamples:

(3.1)

In the original papers [16, 15], the authors used a
still looser bound: the maximum was taken over all
classifiers of the original set �.

Theorem 2.2. If an algorithm µ minimizes the empir�
ical risk and all vectors a ∈ A have the same error rate
m = n(a, �), then the upper bound (2.2) turns into the

exact equality Qε = .

I a xi,( )( )i 1=
L

A μX( )�: X �L
l∈{ }.=

�L
l

CL
l

CL
l

CL
l

Q̃ε

Qε Q̃ε≤ P δ a X,( )
a A∈
max ε≥[ ].=

Q̃ε
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Proof. The minimization of the empirical risk ν(a,

X) =  for a fixed m is equivalent to the minimization

of the overfitting δ(a, X) =  –  = .

If the set A is split into error levels, then inequality
(2.2) becomes an overestimated upper bound because
the overfitting attains its maximum for classifiers a that
are characterized not only by small s = n(a, X) but also
by large m = n(a, �). In practice one almost always
meets the phenomenon of splitting. This fact is due to
the universal character of the sets of classifiers � used.
For every specific problem defined by an error indica�
tor I and a sample �, only a small part of classifiers of
the set have a low error level. The overwhelming
majority of classifiers are intended for different prob�
lems and make up about half of the errors in a given
problem. Experiments confirm that the distribution of
classifiers by error levels m = 0, …, L has the form of a
narrow peak concentrated near the worst level m = L/2
[11, 10].

Thus, the requirement of uniform convergence is
too strong. It only gives a sufficient condition for
learnability.

An attempt to take into account splitting within the
weak axiom was made in [18], where a bound was

obtained that depends on the shatter profile 
rather than on the shatter coefficient |A |. Below, we
present a shorter proof of the same bound. Here this
bound is derived by the uniform convergence princi�
ple. With regard to Theorem 2.2, this means that this
bound only partially takes into account splitting,
although it depends on the shatter profile.

Theorem 2.3. The following bounds are valid for any
μ, �, and ε ∈ [0, 1):

(3.1)

(3.1)

Proof. Let us show that these bounds are valid for

the functional . We estimate the maximum of the
quantities [δ(a, X) ≥ ε] by their sum (the union bound)
and apply splitting into error levels |A | = + … + |AL |:

s
l
�

m s–
k

���������� s
l
� ml sL–

lk
���������������

Am m 0=
L

Qε Am HL
l m, s1 ε( )( )

m 0=

L

∑≤

≤ A HL
l m, s1 ε( )( ).

m  = 1 … L, ,
max

Q̃ε

Q̃ε P δ a X,( )
a A∈
max ε≥[ ] P δ a X,( ) ε≥[ ]

a A∈
max= =

≤ P δ a X,( ) ε≥[ ]
a A∈

∑ P δ a X,( ) ε≥[ ]
a Am∈

∑
m 0=

L

∑=

=  Am HL
l m, s1 ε( )( )

m 0=

L

∑ A HL
l m, s1 ε( )( ).

m
max≤

The empirical analysis of overestimation factors of
the bound (2.4) has shown that two factors are most
important [18]. The first is the neglect of splitting; it
leads to overestimation of the bound by a factor of
103–105. The second is the neglect of the similarity of
classifiers; it leads to overestimation by a factor of 103–
104. Other factors are of a technical character and are
rather easily removed; they give overestimation by a
factor of 101–102 in total. In particular, the third factor
of overestimation, which is associated with the
replacement of the shatter profile |Am | by a single scalar
shatter coefficient |A | (transition from (2.3) to (2.4))
turned out to be not as essential as one could expect.

The effect of splitting and the related shell bounds
were studied by Langford [10, 11]. Unfortunately,
these bounds have some drawbacks. First, they are too
cumbersome both in form and for computation. To
estimate the shatter profile, one should generate a ran�
dom subset of classifiers from � by the Monte Carlo
method. Second, these bounds do not give a crucial
gain in accuracy compared with the classical VC
bounds. Another approach is based on the algorithmic
luckiness function, which orders all the classifiers from
the set by their preference with respect to a given sam�
ple; then, following the classical VC theory, the union
bound is applied to estimate covering numbers, thus
again leading to overestimation [7].

The second factor of overestimation—the neglect
of the similarity of classifiers—arises from the union
bound. The overestimation of the union bound is the
higher the more similar the error vectors of the classi�
fiers are. The effect of the similarity of classifiers on
the probability of overfitting has hardly been studied,
except for the studies by Bax [2] and Sill [14], in which
no significant improvements of the bounds were
obtained.

Following Bax [2], one can refine Theorem 2.3. If
the set of error vectors A is clustered using the Ham�
ming distance into S(r) clusters of radius r each, then

In particular, Bax showed that if the set � is linear

in its parameters, then S(r) ≤ . Unfortunately,

this bound remains strongly overestimated even after
optimization with respect to r.

Sill [13, 14] considered the parametric sets of clas�

sifiers � = {a(x, γ): γ ∈ �
d
} that possess the property of

connectedness, which consists in the following. Under
a continuous variation of any of the coordinates of the
parameter vector γ, a variation of the error vector of
the classifier a(x, γ) occurs only on a single object. One
can show (under some technical assumptions) that a
simultaneous variation of several coordinates has zero
probability. Owing to this property, the set of error vec�
tors of all classifiers of the set almost always forms a

P δμ X( ) ε r
l
�+≥ S r( ) HL

l m, s1 ε( )( ).
m

max≤

1
2r 1+
����������� A
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connected graph whose edges correspond to pairs of
vectors that differ only on a single object. The property
of connectedness is inherent in many classifiers having
a separating surface continuous in the parameters: lin�
ear classifiers, support vector machines with continu�
ous kernels, neural networks with continuous activa�
tion functions, decision trees with threshold stamps,
and many others. Rewriting the expressions from [13,
14] in the weak axiom, one can easily show that a con�
nected set � satisfies the following bound:

which differs from (2.4) only by a factor , which
is much less than the degree of overestimation and,
hence, does not give a considerable improvement in
accuracy.

The question arises: Why have many attempts
failed although efforts have been made to take into
account the effects of splitting and similarity, which
are the basic factors of overestimation?

3. A FAMILY OF TWO CLASSIFIERS

The aim of this section is twofold. First, we show
that it is possible in principle to obtain exact bounds
for the probability of overfitting on the basis of only the
weak probability axiom and simple combinatorial
arguments. Second, we show that the overfitting arises
even in the simplest case, and the effects of splitting
and similarity reduce the probability of overfitting.

Consider a set of two classifiers, � = {a1, a2}. Take,
as μ, the empirical risk minimization algorithm. When
the choice of the best classifier on the training sample
is ambiguous, i.e., when ν(a1, X) = ν(a2, X), we will
take the worst case, assuming that the classifier chosen
is that with the larger number of errors on the full sam�
ple.

Theorem 3.1. Suppose that, in a sample �, there are
m0 objects on which both classifiers make an error, m1

objects on which only a1 makes an error, m2 objects on
which only a2 makes an error, and m3 objects on which
neither classifier makes an error. Let, for definiteness,
m1 ≤ m2:

Then the following exact bound holds for any ε ∈ [0, 1):

P δμ X( ) ε≥[ ] 1

πL
��������� A HL

l m, s1 ε( )( ),
m

max≤

πL

a1 1 … 1 1 … 1 0 … 0 0 … 0, , , , , , , , , , ,( ),=

a2 1 … 1, , 0 … 0, , 1 … 1, , 0 … 0, ,, , ,( ).=

⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

m0 m1 m2 m3

Qε

Cm0

s0 Cm1

s1 Cm2

s2 Cm3

s3

CL
l

���������������������������

s3 0=

m3

∑
s2 0=

m2

∑
s1 0=

m1

∑
s0 0=

m0

∑=

× s0 s1 s2 s3 = l+ + +[ ]

Proof. The empirical risk minimization algorithm
chooses the classifier a1 when ν(a1, X) < ν(a2, X) and
the classifier a2 otherwise. Hence,

Divide the set � into four subsets: X0, a subset of
objects on which both classifiers make an error; X1, a
subset of objects on which only a1 makes an error; X2,
a subset of objects on which only a2 makes an error;
and X3, a subset of all the other objects. Obviously, mi =
|Xi |. Denote by si = |Xi ∩ X | the set of objects from Xi

that belongs to the training sample.
In this notation, the error rates of the classifiers a1

and a2 on the samples X and  are given by

The number of partitions under which the set of
values (s0, s1, s2, s3) is realized is given by

(3.1)

Hence, s0, s1, s2, and s3 must satisfy the following
constraints:

In addition, s0, s1, s2, and s3 must satisfy the relation
s0 + s1 + s2 + s3 = l.

Thus,

× s1 s2<[ ] s0 s1+ l
L
��� m0 m1 εk–+( )≤⎝

⎛

+ s1 s2≥[ ] s0 s2+ l
L
��� m0 m2 εk–+( )≤ ⎠

⎞ .

Qε
1

CL
l

����� ν a1 X,( ) ν a2 X,( )<[ ]
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∈
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∑
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l
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Interchanging the summation signs and substitut�
ing (3.1) into this formula, we obtain the required
exact bound.

Along with the probability of overfitting, in experi�
ments it is convenient to estimate the effective local
shatter coefficient (ELSC) introduced in [18]. This is
the value of the shatter coefficient |A | for which bound
(2.4) is not overestimated. Comparing (2.1) and (2.4),
we obtain the following expression for the ELSC:

In this paper, we estimate the upper bound for the
ELSC, which has a more natural interpretation. It
shows how much the probability of overfitting of algo�
rithm μ is greater than the probability of a large devia�
tion of error rates for the best classifier in the set:

It is obvious that, in the case of a two�element set

of classifiers, 1 ≤  ≤ 2.

Figures 1 and 2 show the upper bound for the

ELSC  as a function of the diversity of classifiers for
l = k = 100 and ε = 0.05. The Hamming distance ρ(a1,
a2) = m1 + m2 between error vectors is taken as a natu�
ral measure of diversity. Thin solid lines show the

× s1 s2<[ ]
m0 m1 s0– s1–+

k
��������������������������������

s0 s1+
l

������������– ε≥⎝
⎛

+ s1 s2≥[ ]
m0 m2 s0– s2–+

k
��������������������������������

s0 s2+
l

������������– ε≥ ⎠
⎞ .

Δ
P δμ X( ) ε≥[ ]

P δ a X,( ) ε≥[ ]
a A∈
max
�������������������������������������.=

Δ
P δμ X( ) ε≥[ ]

P δ a X,( ) ε≥[ ]
a A∈
max
�������������������������������������.=

Δ

Δ

ELSC bounds calculated by the Monte Carlo method
using 1000 random partitions.

The charts lead to the following conclusions.

1. Overfitting is provoked by the choice of a classi�
fier from an incomplete data sample X ⊂ � even
though the choice is made merely between two classi�
fiers.

2. If the classifiers make the same number of errors
on � (m1 = m2) but are maximally different (m0 = 0),

then the VC bound  = 2 is either attained or nearly
attained.

3. If the classifiers are similar, then the ELSC
approaches 1; i.e., from the viewpoint of overfitting,
two similar classifiers behave almost as a single classi�
fier.

4. If the classifiers are different in the number of
errors, r = m2 – m1 > 0, then the VC bound is not
attained either. The greater r, the lower the probability
of overfitting.

The main conclusion is as follows: the effect of
overfitting arises even in the simplest case when there
are only two classifiers. In this case, the properties of
splitting and similarity reduce the probability of over�
fitting.

4. EXPERIMENTS WITH CHAINS 
OF CLASSIFIERS

The aim of this section is to demonstrate, by a spe�
cific example, that computationally tight bounds for
the probability of overfitting can only be obtained by
simultaneous consideration of the splitting of a set of
classifiers and the similarity of classifiers within a set.
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Fig. 1. Upper bound for the ELSC  as a function of the
diversity of classifiers when the classifiers make the same
number of errors, m1 = m2. The three graphs correspond to
three different values of the number of errors on the full
sample: m = n(ai, �) = m1 + m0 ∈ {20, 40, 100}.
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A sequence of classifiers {a1, …, aD} is called a chain
if the Hamming distance between the error vectors at –

1 and at is 1 for any t = 2, …, D. A chain is the simplest
example of a connected set of classifiers [14].

The probability of overfitting as a function of the
sequence length D was investigated experimentally. To

this end, we constructed two types of model chains
that were defined directly by a sequence of error vec�
tors a1, …, aD.

1. A split chain (Fig. 3, left). The best algorithm a1

makes m errors on the full sample. Each subsequent
error vector at is obtained from at – 1 by inverting one
randomly chosen coordinate. If a chain is sufficiently
long (D � L), then most classifiers make m errors,
which is close to L/2.

2. A nonsplit chain (Fig. 3, right). The number of
errors of classifiers on the full sample alternates
between two values m and m + 1.

For each chain, we constructed a corresponding
nonchain { , …, }, which consists of essentially dif�

ferent classifiers. The error vectors  were generated

randomly but so that ν( , �) = ν(at, �) for all t =
1, …, D. Thus, the neighboring classifiers at – 1 and at in
nonchains were not similar.

In total, we constructed four finite sets of classifiers
with identical values of the parameters D and m. The
juxtaposition of these four cases has allowed us to dis�
tinguish between the effects of similarity (a chain or a
nonchain) and splitting (m errors made either by all the
classifiers or only by the best one) on the probability of
overfitting.

Figures 4 and 5 show the probability of overfitting

Q
ε
 and ELSC  as a function of the number D of clas�

sifiers for four types of sets for l = k = 100 and ε = 0.05.
The probabilities Q

ε
 were calculated by the Monte

Carlo method using 1000 random partitions. The fol�
lowing notation is used in the figures: +C denotes the
chain, –C denotes the nonchain, +S denotes the split,
and –S denotes the nonsplit.

These results lead to the following conclusions.

1. The dependence of the ELSC  on the number
D of classifiers shows what value the shatter coefficient
should take, instead of D, so that bound (2.4) would
not be overestimated. This value may prove to be much

at' aD'

at'

at'
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Fig. 3. Chains with and without splitting. The function ν(at, �) versus t for l = k = 100 and m = 10.
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lem”: the error rate of the best algorithm is ν(a1, �) =
0.05).
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less than D. At some instant, the probability of overfit�
ting reaches a certain maximal value Qmax; in this case,
the ELSC reaches a horizontal asymptote and
becomes independent of D. At the same time, the VC
bound is linear in D and has no horizontal asymptote.
The VC bound is attained only for nonchains and only
for small D (in this experiment, for D < 8).

2. For chains, the probability of overfitting Q
ε
 grows

much more slowly as the number D of classifiers
increases. Thus, owing to the connectedness, the
number of classifiers in a set can be much greater than
that predicted by the VC theory.

3. For splits (thick solid lines in the figures), the
probability of overfitting Q

ε
 may not reach 1 even for

very large D. At the same time, for nonsplit chains,
Qmax reaches the value 1 for D on the order of hun�
dreds. Thus, it is the splitting property that reduces the
horizontal asymptote of Qmax to a level much below
unity. Note that this phenomenon cannot be explained
on the basis of the uniform convergence principle,

because, according to Theorem 2.2, Q
ε
 =  only in

the absence of splitting.
Q̃ε

4. For relatively simple problems, when a low�error
classifier exists, the presence of splitting strongly
reduces the probability of overfitting compared with
the absence of splitting (Fig. 4). As the complexity of a
problem increases, the effect of splitting decreases
(Fig. 5).

5. For large D, only the presence of both a chain
and splitting considerably reduces the probability of
overfitting (the lower curves in the figures). The fact
that precisely this case is widespread in practice gives
grounds for optimism.
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